People / Directory (General Staff Directory)

category
3
Vladan Vuletic
Back to List180238

Vladan Vuletic

Lester Wolfe Professor of Physics, Physics (Department of)
MIT's Vladan Vuletic: Lester Wolfe Professor of Physics, Physics (Department of).
77 Massachusetts Avenue
Room 26-231
Cambridge, MA 02139
vuletic@mit.edu
617.324.1174—Tel

Administrative Assistants

Paula Sack
pzsack@mit.edu
617.324.7413—Tel
Room 26-239
Joanna Welch
j_k@mit.edu
617.253.6830—Tel
Room 26-237

Professor Vladan Vuletic is a principal investigator in the Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology (MIT). In 1992, he earned the Physics Diploma with highest honors from the Ludwig-Maximilians-Universität München, and in 1997, a Ph.D. in Physics (summa cum laude) from the same institution.

While a postdoctoral researcher with the Max-Planck Institute for Quantum Optics in Garching, Germany, Professor Vuletic accepted a Lynen Fellowship at Stanford University in 1997. In 2000, he was appointed an Assistant Professor in the Department of Physics at Stanford and in June 2003 accepted an Assistant Professorship in Physics at MIT. He was promoted to Associate Professor in July 2004, and to Professor in 2011.

Professor Vuletic’s interests lie in many-body quantum mechanics and the experimental implementation of entangled many-body states. He is particularly interested in entangled states that can be used to overcome the so-called standard quantum limit in measurements, a limit that is associated with quantum mechanical measurements on collections of independent particles. His group concentrates on the light-atom interaction as a tool to generate non-classical states of atomic ensembles and of light. Recently, his group has demonstrated spin squeezing, a method to redistribute the quantum noise in atomic ensembles so as to improve the precision of an atomic clock beyond the standard quantum limit. His group has also demonstrated several techniques to induce strong interactions between individual photons. Among them are vacuum-induced transparency, a technique where the vacuum field inside an optical resonator renders an absorbing material transparent, and a strongly nonlinear medium that will transmit one photon but absorb two.

Keywords

atom cavity interaction, cavity cooling, cold collisions, molecule formation, Bose-Einstein condensation, laser spectroscopy, quantum computation, quantum optics, precision measurements
atom cavity interaction, cavity cooling, cold collisions, molecule formation, Bose-Einstein condensation, laser spectroscopy, quantum computation, quantum optics, precision measurements

Selected Publications

Related News Links