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Abstract - This paper addresses the dynamic analysis of
a class of paralleled symmetric systems having nonlinear
subsystem coupling and external feedback. A
transformation is introduced that allows the stability of
the full system to be assessed through examination of only
two low-order subsystems. The paper also considers the
use of the new results for the analysis of paralleled power
converter systems with active current sharing. Itisshown
that the analysis of paralleled converter systems can be
simplified by this approach even when challenging
nonlinearities appear in the current-sharing control loops.

I. Introduction

Systems comprising identical subsystems coupled
identically to one another - termed symmetric systems [1,2]
- are of interest in several applications. Our particular
application involves active current sharing among paralleled
switching power converters that supply a common load
whose voltage is regulated, [3], see Fig. 1. As will become
clear shortly, this application corresponds to a case in which
the outputs of the symmetrically coupled subsystems are
summed to form the overall system output, which is then fed
back through some dynamics to generate a common input to
the subsystems. In other words, the symmetrically-coupled
subsystems are paralleled, and then have a feedback loop
closed around them.

The key to studying the open-loop dynamics of a linear
(though possibly time varying) symmetric system comprising
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Fig.1 A parallel converter system supplying a single
load.
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N identical subsystems, each described by an n** order state
vector, is a transformation to a new set of variables, namely
(i) an n™ order vector that is the average of the N subsystem
state vectors, and (ii) N-1 vectors of order n, describing the
deviations of N-1 of the subsystem state vectors from the
average vector (the deviation of the remaining state vector
from the average vector then follows directly, since the sum
of all N deviations has to be 0). The result of such a
transformation is to create (i) a linear n™ order
common-mode subsystem that describes the dynamics of the
average state vector, and (ii) N-1 linear differential-mode
subsystems, all identical to each other and of order only n,
that describe the dynamics of the deviations from the
average.

The fact that the differential-mode subsystems are
identical allows one to study their dynamics by just studying
that of a single representative; the fact that each of these
subsystems is of order only » means that a significant order
reduction is thereby obtained. For instance, stability analysis
of the overall system now involves only assessing two
subsystems (the common-mode, and a representative
differential-mode subsystem) of order n each, rather than
assessing the original system, whose order is Nn.

We also note that if each of the original symmetric
subsystems is driven by a common signal, which may be
exogenous or a function (possibly nonlinear and/or time
varying) of the state variables, then this signal will, after the
transformation, drive the common-mode subsystem but not
the differential-mode subsystems. Thus one can first study the
linear differential-mode dynamics, and then assess the effects
of the differential-mode and other external signals on the
common-mode.

A related observation is that when symmetrically-coupled
subsystems are paralleled, the differential-mode subsystems
end up being uncontrollable and unobservable, as is easily
shown. The external feedback thus acts only on the
common-mode dynamics. The study of the overall system
then reduces to studying a representative differential-mode
subsystem, and also studying the feedback loop comprising
the common-mode dynamics and the feedback dynamics.

With this basic picture in mind, we can turn to our
specific application, which is represented schematically in
Fig. 1. The converter output currents are summed and fed to
the load. The linear "V control” feedback loops are aimed at
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regulating to zero the load-voltage deviations from a
specified reference value. These loops may be absorbed into
the dynamics of the individual symmetric subsystems,
without destroying the symmetric structure or its linearity .
The "I control” feedback loops are designed to reduce to zero
the individual output current deviations from a reference
current. This reference current may be the average current or
the maximum of the individual output currents; in both cases,
proper current sharing among the converters is enforced,
provided the feedback control works as desired. When the
current reference is the average current, the "I control” loops
are linear, and can again be absorbed into the dynamics of
the individual symmetric subsystems. However, when the
maximum current is used as a reference, the "max" operation
introduces a nonlinearity that prevents similar absorption
into the individual symmetric subsystems while preserving
symmetry and linearity. Nevertheless, since the nonlinear
term affects each of the symmetric subsystems equally, it
ends up leaving the differential-mode subsystems unaffected,
and only drives the common-mode subsystem. The load
dynamics, which relate variations in the output current (i.e.
the sum of the subsystem output currents) to variations in the
load voltage (i.e. the common "input" to the subsystems),
constitute additional feedback around the common-mode
subsystem. This special structure permits a complete analysis
of our application.

Section II of the paper introduces the state-space structure
of the class of systems to be analyzed, and displays the
transformation into differential-mode and common-mode
subsystems. Section III introduces simple averaged models
for paralleled power converters with active current sharing,
and demonstrates how the theoretical developments of
Section II can be employed for stability analysis in this
application. Section IV presents a circuit-based
interpretation of these results for an example system, along
with supporting simulation results, and Section V concludes
the paper.

II. Analysis of Paralleled Symmetric Systems

Consider a paralleled symmetric system that has identical
nonlinear couplings among the symmetric subsystems and is
connected in closed loop with another system. The resulting
system can be described in state-space form as:
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Here, x; to xy are the vectors of state variables of the
symmetric subsystems and are denoted collectively by x; wis
the state vector of the system in the feedback path; and f; is
the nonlinear coupling shared by the symmetric subsystems.
(We can also allow for additional external inputs; these are
omitted for simplicity here, but our example in Section IV
includes such inputs.) The large dimensionality of the
system, along with the nonlinear couplings, would appear to
make dynamic analysis challenging, but the particular
structure of (2) actually allows dramatic simplification.
We now introduce a transformation
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where T; is Lunze’s transformation for linear symmetrically-
coupled systems [1]:
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The effect of T} is to replace the x; for i = 1 to N-1 by their
deviations x; from their average % , and to replace xy by Xy .
Thus, %; for i = 1 to N-1 become differential-mode state
variables, and Xy comprises the common-mode state
variables. Applying the transformation (3), (4) to the system
(1), (2) results in the following transformed system:
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The transformation thus results in a simple block-diagonal
structure for the transformed A matrix, revealing a set of N-1
identical, decoupled differential-mode subsystems, and a
single common-mode subsystem. In addition, the
transformation isolates the nonlinearity of the original system
into the common-mode subsystem.

Stability assessment is much easier in the transformed
system than in the original system. The differential-mode
subsystems are entirely linear and have identical dynamics,
so their stability can be assessed by examining the
eigenvalues of A;. The common-mode subsystem remains
nonlinear, but can be tractable.

III. Application to Paralleled Power Converters

Power converters are often operated in parallel to create
a single large power converter system, as illustrated in Fig.
1. This is done to achieve higher reliability and availability
through redundancy, and to permit the use of individual
converters of smaller rating, which can be manufactured
more efficiently than large converters [4]. A crucial issue in
such paralleled power converter architectures is that of
current sharing, which must be maintained in order to realize
many of the benefits of a paralleled architecture [3-17]. The
favored approach in present practice is to impose current
sharing through the use of an explicit control loop based on
a feedback signal common to all of the converters. Often, the
nature of the feedback signal results in nonlinear current-
sharing dynamics, which can be hard to analyze. The high
dimensionality of the system (especially when a large number
of paralleled converters are employed) further complicates

system analysis and control. The theoretical results of
Section II can be employed to simplify the analysis of such
systems.

Consider an averaged model [18] for a current-mode-
controlled power converter, Fig. 2. The output voltage v,,, of
the converter is compared to a reference voltage v,,, and the
error between the two is used by the voltage control
compensator to generate a reference current i, for the
converter. Based on this current reference, the current-
controlled power stage generates an average output current
iy into the filter/load combination. If a voltage-loop
compensator G (s) of the form

KL‘
€ =
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Y

is used, and assuming the current-controlled power stage
gain may be well approximated as H(s) ~ 1, then we can form
a circuit representation of the averaged model as shown in
Fig. 3, where L = 1./ x,, and R = 1/x.. This makes physical
sense, since the averaged model of the converter is a voltage
source in series with an output impedance whose nature is
determined by the voltage control loop. (The R, C,
combination is taken as the load for specificity, but other
loads can be treated similarly.)

In cases where multiple converters are paraileled, as
illustrated in Fig. 4, one would not expect the converters to
share current equally, given that the voltage references of the
different converters will be slightly different. Furthermore,
the desire for good output voltage regulation generally causes
the output resistances of the converters to be kept small,
meaning that even slight imbalances in the voltage references
will cause large current imbalances. To address this, many
paralleled converter systems employ an active current-
sharing control system in which each cell adjusts its voltage
reference by a small amount about a base value in order to
maintain current sharing with the other cells. Typically,
each converter compares its own output current to some
function (such as the average, maximum, minimum, rms) of
all the output currents, and uses this error signal to generate
an adjustment (Av,) to the base reference (v,,). For
example, one approach that is easily implemented is to have
each converter employ the following current-sharing control
law:
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Fig. 2 Block diagram of the averaged model for a current-mode-controlled power converter.
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The k, term adjusts the voltage reference to achieve current
sharing, while the k, (decay) term keeps the reference voltage
adjustment from wandering. It should be pointed out that
while this control law is conceptually simple, popular, and
particularly easy to implement, it is challenging from an
analytical point of view because the max(-) function is not
differentiable everywhere, thus limiting the usefulness of
linearization-based analysis methods [3,17].

The state-space structures of (1), (2) are useful for
describing such paralleled converter systems. The vectors x;
describe the states of the individual converters, while the
vector w describes the state of the load/filter combination.
The entries of matrix A contain the description of the output
voltage control law, while entries of A along with the
coupling function f; contain the description of the current-
sharing control law. Consider a system with the voltage
control law (7), the current-sharing control law (8), and a
capacitive output filter in parallel with a resistive load. If we
choose the subsystem state vectors as x; 7 = iy, ; , Av ;1 ,
w’ = [ v,,, ], then the subsystem matrices are:
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and the nonlinear coupling function is
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Fig. 3 Averaged circuit model for a current-mode-
controlled power converter.

AVief,3
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Fig.4 Averaged circuit model for a parallel converter
system with three converters.

The direct analysis of a parallel power converter system
of this type is challenging due to both the large number of
interdependent state variables (especially when many
converters are paralleled) and the nature of the nonlinear
coupling among subsystems. However, applying the
transformation (3), (4) results in dramatic simplification of
the problem. In an N-converter system, the transformation
yields N-1 decoupled, linear (differential-mode) subsystems
of low order (whose dynamics are easily determined), and a
single nonlinear (common-mode) subsystem of low order.
Furthermore, the analysis of the nonlinear subsystem is
extremely simple in this case because the nonlinear term
turns out to be only a function of the differential-mode
variables, whose behavior is known from the linear
subsystem analysis. We carry out the analysis in the next
section, using circuit realizations of the transformed system
equations to make analysis transparent for readers who would
rather think with circuits than differential equations!

IV. Circuit Representations of the Transformed Model

A straightforward circuit interpretation of the transformed
system provides insight into the transformation to
differential-mode and common-mode subsystems. We again
consider the 3-converter parallel system modeled in Fig. 4,
with the nonlinear current-sharing control law of (8), (9).
One possible circuit realization of the transformed system is
shown in Figs. 5 and 6, where R, = R, =k, / k,, C,=C,=1
/ k,. As can be seen in Fig. 5, there are two identical,
decoupled differential-mode circuits, which are linear and
whose stable dynamics are easily computed. Figure 6 shows
the circuit realization of the common-mode subsystem; the
transformed version of the load system and common-mode
elements of the paralleled converters are easily identified.
The effects of the nonlinear current-sharing control loop are
simply captured by the controlled current source 7 , whose
value is defined as

F=max(iy, i,, -i,-i,). (12)
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Fig. 5 Differential-mode subsystem circuit model for a
three-cell parallel converter system.

The advantage of the transformation with respect to the
nonlinearity is apparent; the differential-mode circuit
variables feed into the nonlinearity in the common-mode
circuit, but the resulting common-mode circuit values do not
feed back into the differential-mode circuit, greatly
simplifying the analysis. Because the differential-mode
circuits are stable, and we know the nature of the nonlinearity
(12), we know that the variables in the common-mode
portion of the circuit decay exponentially as well (although
“max” is not differentiable, it is Lipschitz, which is all we
need).

To illustrate these results, we have developed simulations
of both an example three-cell paralleled converter system
(Fig. 4) and the equivalent transformed system (Figs. 5,6).
The averaged model for each of the three cells has
parameters k; = 5, k, =2, L =0.03 H, R =4 Q, and the load
parameters are R, =1 Q, C,=0.05F. Also, we assume that
the base reference voltages for the three cells (vy,,;) are 0V,
0.1 V, and 0.05 V, and that the initial conditions of the
reference adjustments (Av,,;) are 0.5 V, 0.2 V, and 0 V,
respectively. Figure 7 shows the simulated response of the
three-cell system, while Fig. 8 shows the simulated response
of the equivalent transformed system.  Appropriate
combinations of the transformed system variables exactly
match the response of the original system (so we omit any
graphical comparison). This fact confirms the validity of the
transformation and the circuit-based interpretation of the
transformed system.

Vm = (Ybase,1 + Vbase,2* Vbase,3 /3

Fig. 6 Common-mode subsystem circuit model for a
three-cell parallel converter system.

V. Conclusions

In this paper, we have addressed the dynamic analysis of
a class of paralleled symmetric systems having nonlinear
subsystem coupling and external feedback. It has been
demonstrated that a transformation into differential-mode
and common-mode subsystems permits a rather complete
understanding of the dynamic behavior of the whole system.
With this method, one only needs to study two low-order
subsystems to assess the stability of the full system. The
paper also considers the use of the new results for the
analysis of paralleled power converters with nonlinear active
current-sharing control. In addition to representing an
important use of our results, this application allows us to
develop a circuit-based interpretation of the transformation.
It is shown that analysis of paralleled converter systems can
be simplified by this approach, even when challenging
nonlinearities appear in the current-sharing control loops.
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Fig. 7 Simulation of 3-cell paralleled converter system.
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Fig. 8 Simulation of Transformed 3-cell system.
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