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Abstract

The paper addresses issues in analysis and synthesis of ran-
dom modulation schemes applied to power converters. Af-
ter establishing that the proper objects of study are the
power spectra of signals, we classify random modulation
schemes and present associated spectral formulas, several of
which are new. A novel switching scheme based on Markov
chains that enables explicit ripple control is also analyzed.
Experimental verifications of some of our analytical results
are presented. We formulate narrow and wide-band synthe-
sis problems in random modulation, and solve them numer-
ically. Our results suggest that random modulation is very
effective in satisfying narrow-band constraints, but has lim-
ited effectiveness in meeting broadband power constraints.

1 Introduction

The area of randomized modulation is a topic of current
interest in power electronics. While implementation results
have been impressive, theoretical analysis has been limited
so far. This paper describes the basic theoretical setup
needed to address analysis and synthesis problems for a
large variety of random switching schemes, and presents
representative results.

We tend to agree with [1] that programmed and random
switching are complementary techniques, and that by com-
bining them a designer can achieve improved results. The
theoretical setup needed to analyze randomized switching
schemes is, however, quite different from the deterministic
PWM analysis approach. The natural quantity to study in
a randomized switching setup is the power spectrum (the
Fourier transform of the autocorrelation of a signal), and
not the harmonic spectrum (i.e. the Fourier transform of

*Authors were partially supported by Digital Equipment Corp.
and the MIT/Industry Power Electronics Collegium.

0-7803-1243-0/93%$03.00 © 1993 IEEE

[N

the signal). Note that the Fourier transform of a particu-
lar realization of a random signal (of arbitrary length) is
a random signal itself, i.e. it is a random variable at each
frequency. The power spectrum, on the other hand, has
much better limiting properties and can be estimated from
the available portion of the signal (see for example [2]).

The lack of a proper framework for analyzing random
modulation is, in our opinion, the main reason why most
references contain only rudimentary analysis, and rely on
plausibility arguments. Judging by a sharp increase in the
number of papers describing randomized switching imple-
mentations (over a dozen in 1992 alone), there exists a def-
inite need for a unifying analysis framework. This will not
only make evaluation and verification of different schemes
possible, but also point out capabilities and limitations of
randomized modulation, which are largely not known at
present.

In Section 2 we classify random modulation schemes, and
in Section 3 we describe an interpretation of standards for
harmonic distortion suitable for random modulation. In
Section 4 we present an example of stationary random mod-
ulation, and give an analytical result for a random modula-
tion scheme reported earlier in the power electronics litera-
ture. In Section 5 we discuss random modulation schemes
applicable to inverter operation, and present a general-
ized formula the for block-version of pulse position modula-
tion. In Section 6 we describe random modulation based on
Markov chains, which enables not only power spectral shap-
ing, but also inclusion of time-domain constraints. This
type of random modulation could be important in prac-
tice, since it offers additional flexibility without being more
complicated to implement. In Section 7 we discuss synthe-
sis problems in random modulation, and present numerical
results suggesting that random modulation is well suited to
meet narrow-band constraints, but much less effective in
satisfying wide-band constraints. In this paper we present
a sample of our results that are pertinent to random modu-
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lation schemes reported previously in the power electronics
literature, and we refer the interested reader to [10] for a
detailed discussion.

2 Classification of Random

Switching Strategies

To find a common ground for comparisons among differ-
ent random modulation methods, we concentrate on the
switching function, denoted by ¢(t), which can take only
0-1 values. The power spectrum of variables related to g(t)
by linear, time-invariant operations can easily be derived
from the power spectrum of g(t). Power spectra for wave-
forms that are not related to g(t) by such operations can
be harder to calculate, but results for certain random mod-
ulation schemes are presented in [10].

The main elements characterizing a random modulation
scheme are some underlying deterministic nominal switch-
ing pattern and the probability laws governing the random
dithering of this pattern.

We have to check if the nominal patterns, e.g. duty ra-
tios, vary from one cycle to the next, as they do in inverter
operation. The other issue is the time variation of proba-
bility densities used to evaluate the dither at each cycle. If
the probabilistic structure is constant from cycle to cycle,
we call the switching stationary; if it is constant only over a
block of cycles (as in inverters) we call it block-stationary.
Changes in probabilistic structure that we consider are of
Markovian nature, where the probability density used for
dither at a cycle depends on a suitably defined state at the
beginning of that cycle.

The basic analysis problem in random modulation is to
relate the spectral characteristics of ¢(t) and other related
waveforms in a converter to the probabilistic structure that
governs the dithering. The synthesis problem in random
modulation is to design a random switching procedure that
minimizes given criteria for power spectra. Practically use-
ful optimization procedures include the minimization of dis-
crete spectral components (denoted as narrow-band op-
timization in this paper), and the minimization of signal
power in a given frequency segment (denoted as wide-band
optimization).

3 Performance Specifications

International standards in power electronics are given in
terms of Fourier components of a waveform, not in terms
of its power spectrum, because they are meant for periodic
operation. Note however that the power density spectrum
of a periodic frequency at each frequency is the square of
the magnitude of the corresponding Fourier component. We
therefore map the standards to the power spectrum domain

by squaring them, and apply the resulting constraints to the
non-periodic waveforms obtained by random modulation.

4 A New Result for Asynchronous
Modulation

In this section we present an example a of stationary ran-
dom modulation scheme. This is meant as an illustration,
and we refer the interested reader to [10] for an exten-
sive discussion of stationary random modulation. We con-
sider the DC/DC random modulation scheme introduced in
[3], without power spectral formulas. In this asynchronous
scheme, the lengths of successive cycles T; are randomized,
while the duty ratio is kept fixed. The scheme is differ-
ent from the simplified version used by the same authors
later [4], in which T; is random, but the duration of the
on-state is constant. This latter simplified asynchronous
scheme has been analyzed in [5], [6], building on a formula
for the power spectrum of a dithered impulse train. The
original scheme, when the duty ratio is fixed, is harder to
analyze, as two correlated dithered impulse trains have to
be used. If we denote by P(f) the Fourier transform of the
probability density function p(T’) used to determine succes-
sive cycle lengths T;, then our derivation shows that the
power spectrum of the pulse train is

. _ 2 P(f)
S,(f)y = ——(27rf)2[1+Re(————1_P(f))+
pL Pl
+R6(-IT(§Z()T)) - 2R€(1T(}§Z)f—))]

In Figure 1 we show the calculated spectrum (dotted
line), and the estimated spectrum (obtained via Monte-
C'arlo simulations and Welch’s estimation method). Ver-
ification issues for power spectral formulas have been ad-
dressed in [11].

5 Random Modulation for In-
verter Operation

In this section, the nominal on-off pattern is assumed to
change from one switching cycle to the next, but repeats
periodically over a block of cycles. This pattern is then
dithered in each cycle using a set of mutually independent
trials with statistical structure that remains constant from
block to block. Power spectra for line-to-line or line-to—
neutral variables in a three phase system can be found easily,
once the spectrum corresponding to one phase is known.
Consider the case of N basic duty ratios in a block of
cycles, with possibly different cycle lengths T;, and possibly
different probability densities (with characteristic functions
). Let U;(f) denote the Fourier transform of the pulse
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Figure 1: Calculated and Estimated Power Spectra for q(t)
in Asynchronous Modulation

u;(t) in the i-th cycle of the block (defined with respect to
a time origin at the start of the corresponding cycle), and
let

ui(f)
Uz(f)e—ﬂro,
U(f) =
Un(f)e™ ) Tad' ™
and
UL(HP(f)
. Ua(f)Pa(f)e=*2/T1
uiH=1 .

Un(f)Pn(f)e 2 L5 T

Let 1 denote an N x 1 vector of ones, and let Ellv T; =T.
Then the power spectrum of the resulting waveform equals:

S = ZUUIP =101 +

1 rocn _k .
7l oof1 Y a(f T) (1)

k=—o00

where ||U||? is the sum of magnitudes squared of the ele-
ments of vector U, and U¥ is the complex conjugate trans-
pose (Hermitian) of U. A special case of (1) governs the
setup considered in [7].

We present experimental verification for the previous for-
mula next. Experimental circuit comprised of a single phase
of a three-phase inverter, and it was driven with a pattern

002 Random PPM, pulses .25 then .73, dither .23, Total .1218
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Figure 2: Calculated Spectrum for Block-Stationary Ran-
dom Modulation Example.

Figure 3: Measured Power Spectrum in Block-Stationary
Random Modulation Example.

whose randomization was determined by a 68332 micropro-
cessor. The average switching frequency was 250 Hz. All
our experiments were meant to verify various theoretical re-
sults, and each individual random modulation scheme can
be implemented with much simpler hardware. Consider the
case N = 2, with uniform dither between 0 and Z,;‘ = .25.
The basic pulses have D) = .25 and D, = .75 and the cal-
culated spectrum is given in Fig. 2. The results shown in
Fig. 2 are in close agreement with the experimental results
for the same case, which are shown in Fig 3. In this exam-
ple the discrepancies between theoretical and experimental
results for discrete harmonics are under 5%.
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6 Modulation Based on Markov
Chains

In this section we present an example to show the applica-
bility to power electronic systems of a random modulation
scheme based on Markov chains. Some analysis results for
this class of modulation have been provided by communica-
tion theorists [9],[8], but applications in power electronics
have not been suggested before. The case of inverter mod-
ulation based on Markov chains with different lengths of
basic cycles requires results that are not in the communica-
tion theory literature either; our results for this scheme are
given in [10].

Consider a scheme for DC/DC converters. Suppose we
have two kinds of duty ratios available (long L, D=.75, and
short S, D=.25). The duty ratios have the desired average
of 0.5, but we want to discourage long sequences of pulses
of the same kind, thus preventing ripple buildup. We in-
troduce a 4 state Markov chain, corresponding to the fol-
lowing policy. The controller observes the last two pulses
and if they are SL or LS, then either of the pulses is fired
with probability 0.5. If the pair observed is LL, then an
S pulse is applied with probability 0.75 (and an L pulse
with probability 0.25). If the pair observed is SS, then an L
pulse is applied with probability 0.75 (and an S pulse with
probability 0.25).

The theoretical discrete and continuous spectrum corre-
sponding to our example are shown in Fig. 4, where unit fre-
quency corresponds to the switching frequency. The mea-
sured power spectrum in the same case is shown in Fig. 5.
The circuit used for experimental verification was a down
converter, without the output capacitor, and the nominal
switching frequency was 10 kHz. Our experimental experi-
ence is that random modulation schemes based on Markov
chains are not more difficult to implement than the schemes
reported earlier in the literature.

The results can be compared with deterministic switch-
ing at a constant duty ratio 0.5, in which case only discrete
spectrum exists, with a first harmonic of ;1-,- = 0.1013, for
example (and subsequent odd harmonics reduced by #).
Another meaningful comparison is with a random PWM
scheme in which at each trial a random choice is made be-
tween duty ratios .25 and .75, independently of previous
outcomes. Calculated and measured spectra in this case
are shown in Figs.6 and 7. The experimental setup was
the same as in the case of random switching governed by a
Markov chain.

While the two schemes are quite similar in terms of their
power spectra, their time-domain performance is very dif-
ferent. As an example, let us consider the event “five suc-
cessive long (L) pulses” in both schemes. This event could
be of interest, since it is associated with a fairly large net
buildup of the local duty—ratio. In the case of independent
random PWM, probability of “5 L in a row” is 0.03125.

0.03 Discrete S .Mutov n, .28 or .7, ;
001fF - S [ . g
| i i
0
0 1 2 3 4 s 6
Frequency, in harmonics

0.1 Continuous Power Sm Markov Chain, .25 or .75 )

25 3 33 4 43 3
Frequency, in harmonics

Figure 4: Calculated Power Spectrum of ¢(t) for the Markov

C'hain Example

Figure 5: Measured Power Spectrum of ¢(t) for the Markov
Chain Example

In the case of the modulation based on the Markov chain
from the example, the same probability equals 0.003125,
i.e. it is reduced ten times. These results have been verified
both in simulations and in an actual circuit implementa-
tion. This example illustrates the power of the Markov
chain modulation, which achieves the shaping of the power
spectrum, while enabling control of the time—domain wave-
forms. Other variations are possible. For example, an S
pulse could be required after an LL pair has been observed
in the last two pulses (and symmetrically for an SS pair),
thus preventing the occurrence of more than two pulses of
the same sort altogether.
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Figure 6: Calculated Power Spectrum of ¢(t) for the Ran-
dom PWM Example

Figure 7: Measured Power Spectrum of ¢(t) for the Random
PWM Example

7 Synthesis Problems

In this section the goal is to explore how effective ran-
dom modulation is in achieving various performance spec-
ifications in the frequency domain. Desirable properties of
power spectra are dependent on the particular application.
Requirements of particular interest in practice are the fol-
lowing:

e Minimization of one or multiple, possibly weighted, dis-
crete harmonics. This criterion corresponds to cases
where narrow-band characteristics of discrete harmon-
ics are particularly harmful, as for example in acoustic
noise, or in narrow-band interference.

e Minimization of signal power (integral of the power
spectrum) in a frequency segment that is of the order
of an integral multiple of the switching frequency. This
criterion corresponds to wide-band constraints in mil-
itary specifications, and it could be of interest for EMI
interference problems.

The performance achievable by random modulation de-
pends on the width of the support of the dither probability
density, which is in turn dictated by the duty ratio of the
nominal switching waveforms. All optimization problems in
this section are presented for the case of random PPM. For-
mulations for other modulation schemes are analogous, and
could be specified using the analytic expressions derived in
[10]. To streamline the notation, it is assumed that the pe-
riod of the reference (deterministic) switching waveform is
unity, To = 1. In that case the power spectrum for random
pulse position modulation (PPM) is given by [10]

SN =WAHN=PH P+ PO D 8(F-k)

k=-00

where the non-negative function W(f) represents the
square of the Fourier transform of a rectangular pulse of
unit height and width D centered at 0. Note that the k-th
discrete harmonic has intensity | P(k) |>. Then a typical
narrow-band optimization criterion, which corresponds to
the minimization of the sum of discrete harmonics between
the I-th and L-th, can be written as

L
INE =) " wW(k) | P(E)I?
k=l

where a weighting function could be absorbed in W(f).

A wide-band optimization criterion used for illustration
in this section corresponds to the minimization of the signal
power for random PPM in the frequency segment [0 1.5],
where the switching frequency is 1. This criterion can be
written as

2
e = / " W(f)(1- | P(F) P)df + W(1) | P(D) 2

0
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Both the narrow-band criterion J¥2 and the wide-band
criterion JWB are in general nonlinear in P(f); in the PPM
case, they are quadratic.

The optimization process, which is performed in the fre-
quency domain, has to generate a function that satisfies
constraints in the time domain. In the case of stationary
modulation schemes, the optimization is performed over the
space of candidate probability distributions P. In all cases
of practical interest these distributions have finite support,
which in the example of PPM is constrained to be at most
[0, 1—D], where D is the nominal (undithered) duty ratio.

If global optimality of solutions to optimization prob-
lems in random modulation is needed, then a complete
parametrization of the domain P in the frequency domain
is required. None of the results from Fourier theory known
to us establishes a complete parametrization of the set of
P(f), even in the absence of constraints in time domain.
Thus, for our optimization purposes, it is necessary to con-
struct partial parametrizations of the domain P. Several
simple parametrizations of P were used in our numeri-
cal procedures, and together they enable optimization over
many probability distributions of interest in implementa-
tions. The parametrizations used in the optimization prob-
lems here are defined in the time domain as

N
p(t) =Y aip(t)
=1

where the p; are known probability densities (“basis func-
tions”) with appropriate finite support, and the o; are co-
efficients to be determined in the optimization. The co-
efficients satisfy Zﬁ__l a; = 1, and a; > 0. It turns out
that optimal probability densities obtained with different
basis functions are very similar, and that they yield a very
similar performance in terms of the criterion values. This
gives some assurance that the choice of basis functions is
not critical for the optimization.

The basis functions used to parametrize the domain of
candidate probability densities in this paper are:

e Rectangles, dividing the available probability density
support ([0, 1- D] in the PPM case) into N segments
of equal width;

e Hanning windows (“raised cosine” functions), with p,
and py being “half-windows”.

e Discrete probability densities of N point masses sum-
ming to 1, at fixed or variable locations;

o [(-densities, given (on the segment [0, 1— D] ) by the
expression

p(t) = B(;,b)

ta—l (1 _ t)b—l

Table 1: Narrow-Band Optimization JZ: Crit. (x10%).

[[ Modulation [ D=0.1 | D=0.5 | D=0.9 ||
Undithered 450.0 | 1250.0 | 450.0
Point Masses 71.8 0.0 197.0
Hanning 3.3 153.0 | 232.0
Rectangles 35 208.0 242.0
Uniform 35 417.0| 283.0
Uniform Pt. Masses | 255.0 | 211.0 | 240.0

where B(a,b) is the normalizing constant

1-D
B(a,b) = / o®~1(1-0)"ldo
0

A B-density depends on only two parameters, and it
can approximate probability densities having a single
maximum or minimum.

Other probability densities used for comparison are the uni-
form density, and a density comprising N equally spaced

probability masses with coefficients #

Optimization of the narrow-band criterion J{'3} = JNB
i1s considered first, with N = 4 basis functions in each

parametrization. The criterion values at the numerically
computed optimum are given in Table 1. These optimiza-
tion results are in agreement with the intuition that in cases
when there is a large “dithering length” available (i.e., when
the nominal duty ratio D is small), then a large reduc-
tion of the size of harmonics should be achievable. Though
none of our parametrizations for probability densities ends
up being superior for all cases, the optimal solutions for
different parametrizations are in fact similar. For exam-
ple, for D = 0.5, the optimal rectangle coefficients are
[0.5 0 0 0.5], while the optimal peak height ratios for
the Hanning basis functions are [0.5 0 0 0.5].

In the case of the duty ratio D = 0.5, with equal point
masses at 0 and 0.5, the orthogonality of W(f) and | P(f) |
vields 0 as the value of the criterion. This modulation
scheme is sometimes referred to as dual modulation. Such
extreme effectiveness in the reduction of discrete harmonics
is not always a characteristic of random modulation, but it
might account for some dramatic improvements reported in
inplementations. .

The criterion JV2 is considered next, and results ob-
tained for random PPM are given in Table 2. The results
suggest a limited effectiveness in reducing the total signal
power in a wide frequency band (relative peak heights are
given in the third column for the Hanning basis).

These examples suggest that random modulation is in
general very effective in reducing the size of discrete com-
ponents, thus providing a quantitative basis for widespread
applications of random modulation to acoustic noise reduc-
tion. On the other hand, random modulation is much less
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Table 2: Wide-Band Optimization J}¥B, D = 0.5: Crit.
(x10%).

[ Modulation | Criterion | Coefficients ||
Undithered 1013
Point Masses 965 | 0.5 at 0.16 and 0.34
Hanning 973 | [0.33 0.17 0.17 0.33
Rectangles 973 | [0.35 0.15 0.15 0.35
B—density 975 a=b0=0.76

effective in addressing wide-band spectral requirements.
Spectral changes introduced by random modulation are
mostly localized in frequency. Thus, if the transfer function
to the part of circuit under study is known in the frequency
band of interest, then an adequate assessment of effects of
random modulation is possible.

8 Conclusions

The main motivation for use of random modulation so
far has been the possibility of acoustic noise reduction in
inverter-based motor drives. It is argued in this paper
that random modulation could be beneficial for operation
of any power converter. The main benefit from randomized
switching strategies in this context is better utilization of
the allowable harmonic content of waveforms at the equip-
ment/utility interface. Random modulation is not merely
a way to take advantage of present regulations, which have
been written for a deterministic switching discipline, but
also a flexible approach to solving problems caused by elec-
tromagnetic or acoustic noise. To that end, the analytical
results reviewed here might serve as an aid to assessment of
the potential benefits of random modulation, and as basis
for design.
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