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Randomized Modulation of Power
Converters via Markov Chains

Aleksandar M. Stankogi'Member, IEEE,George C. Verghes&jember, IEEE.and David J. Perreault

Abstract—Randomized modulation of switching in power con-
verters holds promise for reducing filtering requirements and Power circuit
reducing acoustic noise in motor drive applications. This paper Measured
is devoted to issues in analysis and synthesis of randomized 1 .
modulation schemes based on finite Markov chains. The main l—ri @ T % % signals
advantage of this novel type of randomized modulation is the
availability of an explicit control of time-domain performance, in
addition to the possibility of shaping the power spectra of signals
of interest. We focus on the power spectra of the switching func- 1 a®
tions that govern converter operation, and on the power spectra
of certain associated waveforms. Numerical (Monte Carlo) and [ t
experimental verifications for our power spectral formulas are
presented. We also formulate representative narrow- and wide-
band synthesis problems in randomized modulation, and solve
them numerically. Our results suggest that randomized mod-
ulation is very effective in satisfying narrow-band constraints, Controller
but has limited effectiveness in meeting wide-band signal power
constraints.

DT T 2T

Index Terms—Power electronics, Markov processes, switching Reference
circuits, modulation, spectral analysis, frequency-domain analy- values
sis, time domain analysis.

Fig. 1. Closed-loop control via modulation of the switching function.
[. INTRODUCTION

\WITCHING power converters are designed to Conveﬁ_Chematica”y indicated in Flg 1, which is drawn for the case
lectrical power from one form to another at high effiof a converter in closed-loop operation.
ciency. The high efficiency is obtained by using only switching In this scheme, the reference values fed to the controller
deviceS, energy Storage e|ementS, and transformers (a”r@iect desired Steady—State waveforms for the controlled volt-
which are ideally lossless), and relying on appropriate mo@ges or currents. Any necessary feedback signals are combined
ulation of the switches to convert the available ac or dith these reference values to determige). Since power
voltage/current waveforms of the power source into (agonverters generally operate in a periodic steady state, con-
proximately) the ac or dc waveforms required by the loayerter waveforms of interest are typically periodic functions
The switches are generally semiconductor devices: diode§time in the steady state, as illustrated in Fig. 2. The average
thyristors, bipolar junction transistors (operating at cutoff ofalue, orduty ratio D, of ¢(¢) usually determines the nominal
saturation, not in their active region), MOSFET’s, and seutput of a dc/dc converter, while the fundamental component
on. The engineering discipline devoted to this form of powd ¢(t) usually determines the output of a dc/ac converter;
conversion is called power electronics, see [11]. similar statements can be made for ac/dc and ac/ac converters.
The conventional switching scheme for a switch in a power Converter waveforms that are periodic have spectral compo-
converter involves generating a (scaled version of a) switchifignts only at integer multiples of the fundamental frequency.
function ¢(t), which by definition has the value one when thd he allowable harmonic content of some of these waveforms
switch is conducting, and the value zero otherwise. This i often constrained; an example is the current in the interface
to the electric utility, which ideally should have only the

_ , , . 60 Hz (or 50 Hz) fundamental component present. In this
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these implementations tend to be very successful in achieving

4
a0 1, Cyele peme certain kinds of spectral shaping in the frequency domain,
1 they offer no guarantee or even description of the time-
_I r domain performance that accompanies the switching. This is
r time objectionable in many cases, for example when accumulated
Period deviations of the randomized switching waveform from the
T nominal (deterministic) waveform give rise to inadmissible

variations in related currents and voltages. This problem,
together with the lack of a widely known and accepted
analysis framework for randomized switching waveforms, are
among the main impediments to the wider use of randomized
modulation.

In this paper we describe a generalization of the class
of stationary randomized modulation schemes that enables
explicit control of the time-domain performance of randomized
switching, in addition to spectral shaping in the frequency
domain. In this technique, the switching signé) comprises

time

@

q®

Cycle Cycle DC/AC a concatenation of distinct waveform segments, chosen in

1 _ sequence according to a Markovian model. In developing an
_| analysis approach for this class of randomized signals, we

tme present previous results from communication theory that are

Period not well known outside that community, and develop some

new results as well. We also pose and solve numerically
certain synthesis problems that are formulated to assess the
effectiveness of randomized modulation in achieving various
performance specifications in the frequency domain.

To find a common ground for comparisons among different
randomized modulation methods, we concentrate on the power
spectrum of the switching functiof(¢). The power spectra of
variables related t@(¢) by linear time-invariant operations
can easily be derived from the power spectruny@f. Power
Fig. 2. Nominal switching functiom(¢) and e stat it | spectra for waveforms that are not relatedq{@) by such
2 Dl e Vel cagperations take more effort to determine (some resuls are
D; (b) dclac converter. presented in [28]).

The basicanalysisproblem in randomized modulation is to
redesign, or an increase in the switching frequency of thelate the spectral characteristicsggt) and other associated
power converter supplying the motor, which in turn increasagaveforms in a converter to the probabilistic structure that
the switching power losses. governs the dithering of an underlying deterministic nominal

As the use of pulsewidth modulation (PWM) technologgwitching pattern. The kegynthesisproblem in randomized
and microprocessors in power converters matured during thedulation is to design a randomized switching procedure
early 1980’'s, new methods became available to address that minimizes given criteria for power spectra, while re-
effects of acoustic noise in dc/ac converters supplying motoggecting various constraints, including those on time-domain
and the effects of electromagnetic interference (EMI). Whilelzehavior. Practically useful optimization procedures include
substantial part of the engineering effort was directed towaifte minimization of discrete spectral components (denoted as
the optimization of deterministic PWM waveforms (“pro-narrow-band optimization in [28]-[30]), and the minimization
grammed switching”), an alternative in the form of randomizeaf signal power in a given frequency segment (denoted as
modulation for dc/ac conversion was offered in [35]. Thevide-band optimization in [28]-[30]).
same idea has been pursued in a dc/dc setup in [32], an®ection Il describes a motivating example and introduces
in numerous references afterwards, for example, [2]-[4], [Bpme notation. Section Il recalls definitions of the auto-
[8], [13], [15]-[17], [25], [27], [31], [33], and [34]. The effect correlation and power spectrum for the class of signals of
of the randomization is to attenuate the discrete spectrum, dntgrest. Section IV discusses issues in numerical (Monte
introduce a continuous spectrum. Carlo) verification of power spectral formulas. In Section V we

All prior results on randomized modulation in power elecdescribe and analyze randomized modulation based on Markov
tronics, with the exception of [28], are based on schemebains; details of derivations are in the Appendix. Section VI
in which successive randomizations of the switching pulgkeals with synthesis problems in randomized modulation, and
train (or of the periodic segments of this pulse train) angresents numerical results that suggest randomized modulation
statistically independent and governed by invariant probis- well suited to meeting narrow-band constraints, but much
bilistic rules. We denote such schemessaationary While less effective in satisfying wide-band constraints.

time

(b)
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“1(0 u, © transitions that the chain spends in stateare solutions to
4
T LT np=1, S I =1 )

k=1

1 2 3 07 4 and equalll = [0.2 0.3 0.3 0.2]. ThusII is the left
0.75 ’ @ eigenvector of P corresponding to eigenvalug, = 1. For
later use we define the vector of switching cycles

7'1)

(
u uy(® u(r1) = 2813 , 0<nm<T 3)
025 2 3 0.25 3
T T u4(71)

where in the example,(r;) = 1 for 0 < nn < (3/4)T
andwu;(m) = 0 for (3/4)T < 1 < T, etc. Our goal it to
characterize the switching wavefor(t) in the frequency
domain.

U1

<

3
fim

Fig. 3. An example of switching governed by an ergodic Markov chain.

Il. AN EXAMPLE OF SWITCHING

GOVERNED BY A MARKOV CHAIN
. . . IIl. A UTOCORRELATION AND POWER SPECTRUM
Consider the following switching scheme that could be used

to randomize the operation of a dc/dc converter wranssrage A Basic Definitions

duty ratio is required to be 0.5. Suppose we have two kinds

of duty ratios D available: long, L, with B= 0.75; and short, A random signamay be thought of as a signal selected from
S, with D = 0.25. The duty ratios have the desired average 8f ensemble (family) of possible signals by a random experi-
0.5, but we want to discourage long sequences of pulses of fAgnt governed by some specification of probabilistic structure.
same kind, thus preventing ripple buildup. We introduce a fouFhe ensemble of signals and the specification of probabilities
state Markov chain, corresponding to the following policy. Théogether comprise theandom procesgor stochastic process)
controller observes the two most recent switching cycles, agiinerating the random signal.

if they are SL or LS, then either of the pulses is fired with The time-average autocorrelatiorf20], [24], [36] of a
probability 0.5 for the next cycle. If the pair observed is LL{andom procesg(t) is defined as

then an S pulse is applied with probability 0.75 (and an L 1 w

pulse with probability 0.25). If the pair observed is SS, then Ry(r) = lim —/ Elqt)q(r + )] dt 4)

an L pulse is applied with probability 0.75 (and an S pulse W—oo 2W J_w

with probability 0.25). The chain is shown schematically ifyhere the expectatiof[] is taken over the whole ensemble,
Fig. 3. The switching waveform(t) is generated by piecing [.]. The process is termed quasi stationary [20] (or asymptoti-
together switching cyclegu(t)) corresponding to the statescajly mean stationary, [19]) if this limit and a similar one for

k successively visited by the chait, € (1,---,4). Note p[4(t)] exist; we shall assume throughout thgt) is quasi-

that this scheme offers additional flexibility when Comparegtationary. (Such processes are more general than wide-sense
with switching based on statistically independent trials: W&ationary processes, where the time averaging is not needed to
discourage runs of three pulses of the same kind, and Gt a result independent 6f) This definition is applicable to
even completely prevent such runs (by setting the approprigfgterministic signals as well, since for deterministic signals the
probabilities to 0). ensemble consists of a single member. The (mean or average)

For the four-state Markov chain in Fig. 3, we defiffeas power density spectrurs,(f) is then defined as the Fourier
the 4 x 4 state-transition matrix, and it&, {)th entry is the transform of R,(7)

probability that at the next transition the chain goes to state

given that it is currently in staté S.(f) = /oo @_jQWfTRq(T) dr. (5)
1/4 3/4 0 0 From this definitionS,(—f) = S,(f)* since R,(r) is real,

p_ |0 0 172 172} (1) so we will only considerf > 0 in the sequel. In cases

/2 1/2 0 0 of practical interest,S,(f) can have a continuous and an
0 0 3/4 1/4 impulsive part [5]. The impulsive part of,(f) is referred to

as thediscretespectrum, and is characterized entirely by the
Note that each row of? sums to 1;P is thus a stochastic locations fi, fo,--- of the impulses (“line frequencies” and
matrix, and therefore has a nonrepeated eigenvalue= 1 “harmonic frequencies”) and by positive numbers ps, - - -
(with corresponding right eigenvectdy = [1 1 1 1]¥) representing the strengths of the impulses (i.e., the signal
and all other eigenvalues with moduli strictly less than onpower at the harmonic frequencies). Integratifigf /) over
The steady-state probabilities corresponding?tavhich can a frequency range yields the signal power in that frequency
be interpreted as the fraction of a (large) total number of statnge.
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Ergodic 4-state Markov chain example, discrete spectrum
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Fig. 4. Calculated power spectrum gft) for the Markov chain example of Section II.

B. Power Spectra and Linear Systems The quantity (1/2W)|Xaw (f)|? is called theperiodogram
An important result for applications is the transformation dff #(t). For nonstationary processes that have a well-defined
the autocorrelation when a proces&) with autocorrelation autocorrelation via (4) the equality in (8) is in the sense of
R.(r) passes through a linear, time invariant filter. The filter istributions [5], [20], [36].
characterized by its impulse resporigg) and corresponding
frequency responsé&( f), which is the Fourier transform of IV.  VERIFICATION |SSUES
h(t). The outputy(t) of the system is given by convolution  The formulas that will be developed shortly for power
00 spectra of different randomized modulation schemes are rather
y(t) = / z()h(t — u) du. (6) involved, and a need arises to verify and explore them through
—o0 simulation. (We also provide experimental verification in some

Using this relation it can be shown [36] that the procg&s cases.) The power spectrum of a (M_onte C_arlo) simulation of
has a well defined autocorrelation, given by (4), and that fis'@ndomized switching waveforgit) is obtained through an
power spectrum is estimation procedure. Power spectrum estimation is one of the

most important problems in signal processing and has a very
S,(f) = |H(f)|*S.(f). (7) rich history [20], [21], [24], [26], [33].
The discussion in this section deals primarily with direct
This relation can be used in our setting to evaluate the powestimation methods that yield the power spectriy( f)
spectrum of any waveform related to the switching waveformithout estimating the autocorrelation. We concentrate on
q(t) = z(t) through a convolution, once the power spectrumonparametric, classical estimation methods, which are well
of ¢(t) is known. The relation (7) holds whenever the integralnderstood and for which software is readily available [26].
of the right-hand side over all frequencies is finite; although Classical direct estimation methods may be thought of as
bounded-input bounded-output (BIBO) stability of the filteppproximate implementations of the operations specified in the
suffices for this, BIBO stability is not necessary [36, ppEinstein-Wiener—Khintchine theorem (8). Typically, a single
487-490]. realization of the process of lengthK'W is divided into
Let Xow (f) denote the Fourier transform of the symmetri&’ sections, and the (discrete-time) periodogram is computed
cally truncatedversion ofz(t), extending from—W to +W for each section (from closely spaced time samples of the
in time. An important result of the Fourier theory [5], [18] duesignal). The availability of the fast Fourier transform (FFT) to
to the Einstein—Wiener—Khintchine theorem, shows that  calculate the Fourier transforms involved is a major advantage.
The expectation operation in (8) is then approximated by
S.(f) = lim E<L|X2W(f)|2>. (8) averaging theX individual periodograms. This approach is
Wooo \ 2W referred to as Bartlett's method. Under appropriate conditions
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(related to ergodicity of the stochastic process, which permj
time averages to be substituted for ensemble averages) RN B e
computation produces a consistent, asymptotically unbiag

estimate of the power spectrum [10], [26], so the estima - ST rg[f:é"%
tACEL BL

converges to the true spectrumfs— oo, W — oo. We shall - |

assume that the switching functiop@) of interest to us satisfy : SO . sToRE

the conditions required for validity of such an estimatio T N W

procedure. The close match that will be demonstrated betv RN R B ' : o

our analytical formulas and the Monte Carlo verification 3 T A i TN

suggest that this is indeed a good assumption. : <
Although the above estimation procedure is asymptotical L . SRR L 5 T

unbiased, in practic& andWV are finite, so there is inevitable - ‘

bias. The use of appropriate windows in the time domain cq Lo o RECALL

tributes to bias reduction. An unpleasant effect of windowi -

is known as leakage and has its source in the side-lobes
the frequency domain) of the windows used. Leakage res
in loss of resolution in the estimates. Welch’s modification
of Bartlett’s method, [26], allows data segments to overlap fg- 5. Measured power spectrum 4fft) for the Markov chain example.
addition to windowing data in the time domain. This method is
widely used and is available in the Matlab software package.vhs quantity is independent of the initial state under ergodicity
more detailed discussion of verification problems is prese“tﬁgsumptions.
in [28]. Some analysis results for waveforms generated in the fash-
ion described here have been provided by communication
theorists [6], [37], but applications in power electronics have
not been suggested before. The case of inverter (dc/ac) mod-
ulation based on Markov chains requires results that do not
seem to be in the communication theory literature either; our
In this section we consider the class of randomized mogksults for this case were derived in [28], and are presented
ulation schemes introduced via the example in Section later in this paper. A development relevant for dc/ac converters
A switching waveform segment of lengthy, is associated is the study of a particular category of periodic (but possibly
with the Markov chain being in théth state,k € 1,---,n. asynchronous) Markov chains. Thestates are divided into
Concatenation of these segments yields a continuous-tifNeclasses, and state transitions of the underlying discrete-time
switching (0-1) waveformy(t) that is associated with the Markov chain are constrained to occur from one class to the
evolution of the chain. The first task is to establish relationsext (k — k + 1,1 < k< N, and from theNth class to the
linking the discrete-time Markov chain with the continuousfirst). In this case, limiting state probabilities as defined earlier
time switching functiong(¢). This connection is complicated do not exist (they do exist, however, conditioned on knowledge
by the fact that the duration®; of switching cycles corre- the class in which the chain is located). This setup represents a
sponding to individual states of the chain could be differergieneralization of the block-stationary independent randomized
If the he lengths of the cycles are equal for all states, (i.enodulation analyzed in [28]-[30]. One can think of each class
Ty, = T for all k), the chain is calledynchronousi.e., 7, = 7" having approximately the local average needed in a part of the
for all k); otherwise, the chain is denoted @synchronous  the ac waveform (e.g., pulsewidth modulated approximation of
We briefly review some definitions and results from the field sinusoid), while the switching cycles within a class differ in
of Markov chain analysis. For a complete review, see, fether features (e.g., pulse position).
example, [9], [14], and [18]. A slightly different nomenclature
is used in [12]. A Markov chain igrreducible if every state
can be reached from every other state. The gtasarecurrent
(or essential) if the chain can eventually returrktivom every Ergodic Markov chains (i.e., irreducible and aperiodic
state that may be reached frdmevery state in an irreducible chains) are considered in this section. Our goal is to analyze
chain is therefore recurrent. A recurrent state to which thke continuous-time switching waveforms associated with
chain can return only after an integer multiplecbfransitions an n-state discrete-time Markov chain. As in the example
(d > 2) is called a periodic state, with periatl The property in Section Il, the chain is characterized by thex n state
of irreducibility, which is assumed in this paper, implies tharansition matrix P and by the corresponding steady-state
all periodic states have the same period. probabilities I1. We allow switching cycles generated in
A Markov chain with finitely many states is classified asglifferent states to have different lengtd%, but require that
ergodicif it is irreducible and aperiodic (i.e., has no periodi¢chese be integer multiples of a greatest common di\ZfS(ire.,
states) [14]. In this case limiting state probabilities exist, thE, = EkT,E € N). We also definely; = max(T3), T =
limiting state probabilityT;, of the state: being the probability min (73) and T = ¥r_, 115, Note thatT is the expected
that the chain is in statke after a great many state transitionstime between transitions. Let the 0-1 waveform in the

START: @ Hz BM: 477.43 Hz STOP: 50 000 Wz TRACEFLE
%1 30000 Wz Yi 2,429 sV 2 SELECT

V. MODULATION BASED ON MARKOV CHAINS

A. Switching Governed by Markov Chains

B. Power Spectra Generated by Ergodic Markov Chains
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Fig. 6. Calculated power spectrum gft) for the randomized PWM example.

switching cycle of durationZ; associated with the state
be u;(-), and letu(-) be ann-vector with entriesus(+).

The main task is to find the autocorrelation of the
continuous-time waveform generated by the Markov chai
using the formula (4). We shall assume (without loss d
generality) that a particular realization @ft) contains2N
whole pulses in a window of duratio2i¥. The contribution
of the fractional pieces withigWW to R,(r) will tend to zero
as N — oo, so (4) becomes

AISTORED*2

By(r) = lim o7

| Bl +0lde @

where the average pulse lengthZis[22].

Due to its technical nature, the detailed derivation of o
spectral formulas is given in the Appendix. To present th
results here, let us introduce the following notatid# f)
is the Fourier transform of the-vector «(-) of waveforms
uy(+) associated with various state8; = diag (ID); Q(f) =
diag (772 T ) Py G(f) = (I-Q(f))~* (where defined). The 1) Example of Switching Governed by Ergodic Markov
end result for the continuous power spectrum is Chain: Next we evaluate the preceding expressions for power

spectra on the four-state example introduced in Section II.
See(f) = UHP[OG(f) + (0G(f)HH —OlU(f) (10) The theoretical discrete and continuous spectra corresponding
to our example are shown in Fig. 4, where unit frequency
corresponds to the switching frequency. The measured power
spectrum in the same case is shown in Fig. 5. The circuit used
for experimental verification was a modified buck converter
5 (without the output capacitor), and the nominal switching
ke N. (11) frequency was 10 kHz. We focus on the switching function,
and it is not influenced by details of the circuit topology

BH: 477.43 Hz
Y1 2.429 aV*2

Fig. 7. Measured power spectrumgit) for the randomized PWM example.

while the final result for the intensities of the impulses (“lines
in the discrete spectrum) is
(2)
T

k 1
qu <%> - ﬁ HU
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(related waveforms such as input and output voltages and Class 1
currents do depend, however, on the circuit topology). Our T34 D=05 T=5/4
experiments suggest that randomized modulation schemes
based on Markov chains are not more difficult to implement ™.__
than the schemes reported in the literature for stationacrl)’;M
randomized modulation. For example, one only needs a two-
bit random number generator and a state counter to implement
the Markov chain of this example.
The results can be compared with deterministic switching
at a constant duty ratio of 0.5, in which case only the discrete
spectrum exists, with a first harmonic af7? = 0.1013,
(and subsequent odd harmonics reduced1py?). Another
meaningful comparison is with a randomized PWM scheme .
in which a random choice is made at each trial between duty.-~
ratios of 0.25 and 0.75, independently of previous outcomes. Class 3
Results for randomized PWM can be found in [22], [28]. For- D=05
mulas (10) and (11) can also be applied to the correspondifgl s. Periodic Markov chain with eight states and four classes.
two-state Markov chain in which all transition probabilities
are equal to 0.5. Calculated and measured spectra in this casgne conditioning used in the derivation of the power spec-
are shown in Figs. 6 and 7. The experimental setup was ¥gm formula in the previous subsection (and detailed in the
same as in the case of randomized switching governed bhgpendix) has to be adjusted in the following way. The
Markov chain. contribution that states of the Markov chain belonging to the

While the two schemes are quite similar in terms of thejass ¢}, make to the time-averaged autocorrelation (4) is
power spectra, their time-domain performance is very diffet.aq bka/E{Q

_ ! _ v Ty, where T; is the expected time spent
ent. As an example, let us consider the event “five successjxeia classC;

i ] before a transition into the clasS;; (we
long (L) pulses” in both schemes. This event could be @f 5 ate these quantities later).

interest, since it is associated with a fairly large net buildup of 1 -4 be shown (e.g., in [1]) that after a possible renumber-

the local duty-ratio. In the case of independent randomiz% of the states, the matri® (and (), see the appendix) for a

PWM, the probability of “five L in a row” is(1/2)° = hseriodic Markov chain can be written in a block-cyclic form
0.03125. In the case of modulation based on the Markov

chain from the example, the probability of the same event 0 0 - 0

equals0.2 x (1/4)® = 0.003125 [28], i.e., it is reduced ten 0 0 Py - 0

times. These results have been verified both in simulations and P= i - '

in an actual circuit implementation. This example illustrates PO 8 8 © Proix
N,1

the power of Markov chain modulation, which achieves the
shaping of the power spectrum, while enabling control of the Let P, denote the product of submatrices &f in the
time-domain waveforms. Other variations are possible. Ftallowing order: Py = Py, --- Px3Pp2, and letII' denote
example, an S pulse could equired after an LL pair has the vector of the steady-state probabilities, conditional on the
been observed in the last two pulses (and symmetrically feystem being in clas€’;. Then
an SS pair), thus altogether preventing the occurrence of more It =1tp (12)
than two pulses of the same sort. .
and the average time spent in claSs is 77 = X I} T},
where the summation is taken over all states in clEss
C. Periodic Markov Chains LetT = ¥, 73, and let®;, = diag (II*). The conditioning
The case of pulse trains specified by a classpefiodic Procedure used in the Appendix, based on the number of
Markov chains is considered in this section. This class jg@nsitionsii betweenr, andr, + 7, will be used again, with
denoted agrgodic cyclicin some places [12]. A related resulithe following modification. If the first pulse belongs to the

for the special case of synchronous Markov chains is giv&l#Ssk; then the pulse straddling + 7 belongs to the class
in [6]. We assume that the state of the chain goes throu +1m)| mod N. When we add the contributions of all classes

a sequence ofV classes of state€), occupying a state in © the average power spectrum (scaled by the relative average

each class for an average tiriig [ = 1,---,N. In the power duration of each clas_s, as iIIustr_ated in the Appendix), the
electronic setup, periodic Markov chains are of interest ffSult can be written in the following compact form:
randomized modulation for dc/ac applications, where the basic 1 Iy 7

(reference) single-cycle on-off pattern changes from one cycleS,(f) = = Z —f“U,fI(f)@kUk(f) +2Re (1%5(:11@)

to the next in a deterministic fashion. This pattern is further = L

dithered in each cycle using a set of dependent (Markovian) 1 00 I

trials in order to satisfy time-domain constraints (for example + 72 Re(l%Sle) Z 6<f - %> (13)

to control the “ripple” of waveforms of interest). I=—o0
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Calculated continuous and estimated total spectrum
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Fig. 9. Estimated and calculated spectrum for the periodic Markov chain in Fig. 8 with eight states and four classes.

where 7" is the greatest common divisor of all wavefornThis may correspond to a (very crude) approximation of a
durations,1 is an N x 1 vector of ones and;, is the vector sinusoid. When randomizing this pattern, it is desirable to
of Fourier transforms of waveforms assigned to states in clgggvent large deviations from the values in the corresponding
Cj,. A circular indexing scheme (i.e., modulzﬁi) is used in deterministic pulse train (i.e., the one with the above duty
this subsection. ratios and all blocks of the fixed shape). The periodic Markov
The matrixS. has a Toeplitz structure, witfk, [)th entry  chain shown in Fig. 8, with eight states divided into four
~ classes, is an example of a solution to such a design problem.

Satlf) = U (DI = M) Mt DU (14) I this case a short (duration 3/4) and a long (duration 5/4)

r cycle is available in each of the four classes; in classes 1

where A;, is a product of N matrices and 2 the transition patter fayors patterns in which t'he two
types alternate. We analyze this chain using (13), and in Fig. 9

Ak = Qr—1,k s Qrk+1 we compare the theoretical predictions for the continuous

spectrum (solid line) with estimates of the total spectrum
obtained via Monte Carlo simulations (circles). The agreement
At =Qicig, s Q1 between the two is quite satisfactory; the theoretical prediction
. " . for the impulse strength gt = 4 is 0.0036, which agrees well
with no repetitions allowed in\,;, so that the number of \yit the estimated value of 0.0037. In Fig. 10 we show the
matrices formingAy; is NV — |k — I|. Also, the (k,[)th entry ey perimentally observed power spectrum for the same periodic
of S Markov chain. An application of (13) for Markov chains with
i Ti o I\ s i many more classes of states could become computationally
dk,l<f = 7) = ?Uk <f = E)H (11°) Ul<f = 7)- intensive. This is not a major drawback, however, due to the
(15) off-line character of the calculation. Our experience suggests
that a real-time implementation of switching based on a
The result (13) appears to be novel [28], and it is will be noMarkov chain is not necessarily more complicated than con-
verified via an example. ventional “programmed” switching, especially if the transition
1) Example of Switching Governed by a Periodic Markoprobabilities are of the forni1/2)®, whereb is the number of
Chain: In this example we consider a simplification of grandom) bits needed for the Markov chain implementation.
switching scheme applicable to dc/ac converters. The goal is
to generate a switching function in which blocks of pulses VI. SYNTHESIS PROBLEMS
have nominal (deterministic) duty ratios

and

In this section the goal is to explore how effective random-
[0.5,0.75,0.5,0.25]. ized modulation is in achieving various performance specifica-
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TABLE |
NARROW-BAND OPTIMIZATION, CRITERION VALUES (><10—’1)

“ Modulation ] Probabilities JNEB J{AEI

Randomized PWM Independent, Dy = 0.25, D, = 0.75 253 | 613
Standard Markov Chain | p1o = .75,p23 = .5,D1 = 0.25, D, = 0.75 | 253 | 613
Optimal Markov Chain | p1o = .75,p23 = .5,D1 = 0.05, D, = 0.95 0 11.5

TABLE 1
WIDE-BAND OPTIMIZATION, CRITERION VALUES (><10*4)
[ Modulation I8 Probabilities [JTE]
Randomized PWM Independent, Dy = 0.25, Dy = 0.75 800

Standard Markov Chain | py o = .75,p2,3 = .50,D¢ = 0.25, Dy = 0.75 806
Optimal Markov Chain | p12 = .05,pa3 = .95,D1 = 0.22, Dy = 0.77 786

The optimization process has to address two related issues:
RANGE: 15 dBY AYER L TRACELE . . . . .
AISTORED*2 iy EEF it 1) Design of ann-state Markov chain (possibly periodic),
which reduces to the specification of a stochastic matrix
P;
2) Choice ofn 0-1 functions, each supported ¢ 73],
that correspond to distinct cycles of the switching func-
tion.

While the criterion functions are defined in the frequency
domain, the design is performed in the time-domain. This
makes the optimization problem difficult, and we present and
comment on numerical results. A complete parameterization
in the frequency domain of all candidate functions is not
known, even for the much simpler case of stationary random
modulation [28]—[30].

t 477.43 Wz STOP: 5 080 Hz TRACEFLE Synthesis problems for randomized modulation governed
by Markov chains will be illustrated on the example from
Fig. 10. Measured power spectrum for the periodic Markov chain of Fig. §8Ction IV-B1. The transition probabilities , from state 1 to
state 2, angh; 3 from state 2 to state 3 will be optimized, while
the symmetry of the chain is preserved. Thus the transition

tions in the frequency domain. Desirable properties of powBRIX is

BU: 477.43
Yt 1.801 avi2

spectra are dependent on the particular application. Require- P12 1-p12 0 0
ments of particular interest in practice are the following. p— 0 0 D2,3 1—pas (16)
« Minimization of one or multiple, possibly weighted, dis- L=pa3 P23 0 0 |
crete harmonics. This criterion corresponds to cases where 0 0 L=p12 P12

the narrow-band characteristics corresponding to discratRe duty ratios of the short and long pulses are also made
harmonics are particularly harmful, as for example iariable, with the same average vallle= 0.5 as in the origi-
acoustic noise, or in narrow-band interference in confral example. The optimized narrow-band criteria are shown in
munication systems. Table I. Thus a considerable improvement in criterion value is
* Minimization of signal power (integral of the powerattained as a consequence of optimization.
spectrum) in a frequency segment that is of the order|t is evident from Table Il that switching based on a Markov
of an integral multiple of the switching frequency. Thighain is not particularly effective in reducing wide-band signal
criterion corresponds to wide-band constraints in milower. The purpose of our optimization procedures is to point
tary specifications, and it could be of interest for EMput salient capabilities of randomized modulation governed by
problems. Markov chains, and consequently our searches were performed
A typical narrow-band optimization criterion is a weightedver granular grids. In the numerical experiments reported
sum of discrete harmonic intensities between ltheand Lth  here, as well as in examples with average duty ratios different
harmonics, and is denoted d$7°. A reasonable wide-band from 0.5, the duty ratio variations seem to be most effective
optimization criterion, used for illustration in this sectionjn dealing with narrow-band constraints. This fact is expected
corresponds to the minimization of the signal power in thieom the performance analysis of stationary schemes [28].
frequency segment [0, 1.5], where the average switchidgso, transition matrix variations have effects mostly on wide-
frequency is one. band criteria, but their overall effectiveness is limited. The true
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importance of the transition matrix optimization is in the time
domain, where it influences the ripple.

These results suggest a decomposition of the Markov chain
optimization problem into two subproblems. The first subprob-
lem is the transition matrix optimization, and it is concerned
mostly with time domain requirements (ripple control), and
to a certain extent with the wide-band constraints in the
frequency domain. The second subproblem is the optimization
of the waveforms at each state, and its primary effects are
in satisfying the narrow-band requirements. The proposed T
decomposition could significantly improve the tractability of
the optimization of Markov chains with many states.

k transitions
IIR A
]
]
i
t
]
I
i
]
]

T T,

Fig. 11. Notation for the switching waveform generated by a Markov chain.

VII. CONCLUSIONS

In this paper we have presented analysis and synthe‘é’ ere

results for randomized modulation strategies governed by N Ty

Markov chains, suitable for different classes of power con- Aq(7) I/ Elg(r)q(r + m1)|k] dry. (18)

verters. Randomized modulation switching schemes governed 0

by Markov chains that are applicable to dc/dc and dc/aWe have used the symbdl[-|k] to denote the expectation

converters have been described and analyzed. Our speatwadditioned on thdirst pulse being of typé, and we use the

formulas for periodic Markov chains are believed to be novedymbol r; to denote the epoch (point in time) relative to the

Synthesis problems in randomized modulation have also bdmginning of the first pulse (see Fig. 11—we assume in this

considered, where both optimization criteria and numericdérivation that both pulses in Fig. 11 are within the window

results are described. It is shown that randomized pulsklength2/NT', which yields correct results in the limit). We

modulation can be very efficient in reducing the size of discreshall user, to denote the epoch relative to the start of the

harmonics and in satisfying narrow-band constraints, but dgcle straddling the instant +7. ThenE[q(r1)q(7+71)|k] =

much less effective in dealing with wide-band requirementsus, (71 ) E[q(T + 71)|k]. Given thatu(r;) = 0 for 71 > T}, the

value ofA’q“(T) will not change if the integration is performed
from zero toTy,, (recall thatTs; = max (T})). This property
APPENDIX holds for all integrals involving integrands that are products
In this section we provide a derivation of spectral formula@f ux(-) with other functions.

for ergodic Markov chains. A synopsis is as follows: after Let us consider an experiment in which we fix and =

introducing some notation, the proof outline contains fiv&e observe the numben of state transitions between and

main steps: in the first we derive an expression for tife + 7. Itis finite for any finiter (since all7}, are finite), and

autocorrelation conditioned on the number of state transitiof¥reover it forms an event space, as differénare mutually

of the governing Markov chain; in the second step we obta@¥clusive and collectively exhaustive events. We will be using

a formula for the part of the power spectrum correspondifiis result to evaluaté(r) by using additivity of probabilities

to positive delayr in the autocorrelation. At this point we Of events conditioned om. If 7> 0

arrive at an expression involving an infinite matrix sum, and M

we present relevant eigenvalue considerations in the third step. AF(r) = A’;(ﬂm =0)+ Z A’;(ﬂm =m) (19)

In the fourth step we derive an expression for the continuous oo

part of the power spectrum, and in the fifth step we obtain a

formula for the discrete part. where A’;(ﬂm = m) denotes the contribution to the expec-

Let M denote the number of state transitions in @pf7- tation in the case wher, = m, and M can be chosen as
truncated realization (as noted beford, < 2NT/T,, +1). M =7/Tn+1 (recall thatl;,, = min (7})). We shall consider
Note that due to the ergodicity of the Markov chain th&he first term, with/ = 0, later.
asymptotic behavior of\f is MT/2W — 1, asW — oo. Observe that the main difficulty in our calculation 4f (r)

A typical waveform is shown in Fig. 11. is the calculation of the ensemble averagg(m )E[q(T +

Step 1: For the integral in (9),t ranges over cycles of 71)|k], due to the Markovian dependence of successive pulses.
each of then types. We first separate this integral to displafzeferring to Fig. 11, giverr and the number of state tran-
the contribution due td lying in cycles of typek for each sitions s during 7, only certain epochs: are possible for
k € [1,n]. Next, we use the law of large numbers fothe pulse that straddles the instant+ 7. Note thatrs is

irreducible Markov chains [12, Th. 4.2.1, pp. 73-74] to obtaifi discrete random variable that satisfies € [0,7%], and
whose probability mass function depends on the trajectory of

1 the chain. To keep track of both the possible range,oénd
Ry(1) = 7 Z 11, A¥(7) (17) of the associated probabilities of the pulse that straddlasr
k=1 being of typel, we will introduce am x n matrix (o) whose
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(k,Dth entry isQy (o) = Py ;6(c — T3,). We can thus write  Since the integral converges to the Fourier transforQ o
(since the integrand is zero for> MT;) we write
Qo) =diag(6(c — Tp))P = A(o) - P.

M

In the example from Section 1IR(c) = diag(é6(c — T))P. S;r(f) — iUT(—f)G lim Z(Q(f))ﬁl U(f) (23)
The expectationE[q¢(r + 71)|k, = m] (remembering that M—oo c—
the first pulse is of typd:) can now be evaluated as th¢h
entry of the vector whereQ(f) is the Fourier transform of the matrig(c).
Tur Step 3: From the construction, Q(f) =  diag
Q™ (1 + 11 — 2 )u(ry) dr. (e92IT\p = A(f)P. Recall thatP has the eigenvalue
0 A1 = 1, with the corresponding right eigenvector
In this equation™ denotes then-fold convolution of Q(o) ¥+ = 1T" - [1’_'"’1]T and with the left eigenvector
with itself. wy; = II*; other eigenvaluesy,k = 2,.--,n have moduli

At this point we note that the conditioning af, enters strictly less than 1, and corresponding right e_igenvecmrs
in calculations ofA%(r) for all k in the same manner, what@nd left eigenvectoray,. Let A (f) denote the eigenvalue of
can be used for a direct evaluation B (7). Let us define Q(f) with the IargeSQt r}"nzegnltude In the case of a synchronous
R, (r]i = m) to denoteR, () conditioned on the knowledge CNain: As(f) = =77, and clearly|Ay(f)| = 1 for al
of /h. Now recalling (17), we get (in a convenient mam)g‘requenues If the chain is asynchronous, than(/)| = 1

notation) for frequencies that satisfy the following condition: for each
ordered pair of(Ty,T;), Tr, <T; and T}, = EkT T = 4T
Do T (WhereT is the the greatest common divisor of @}}), there
Ry / / exists an integet such that

m
QM+ n 7'2) (12) dm dmo (20) o4 f0d = fod
where ® = diag(Il).

Step 2: Let SF(f) be the Fourier transform ok, (7| >  Clearly, for f = k/T,k € N the above equation is satisfied for
1) for >0, and S; (f) be the Fourier transform of the same = 0 in all pairings of 7%, 7, and A(f) = I,A; = Ay = L;
autocorrelation forr <0. For any ¢(t) we haveS; (f) = Wwe denote such frequencies as class A. The frequenues that
S;r(—f) — (S;f(f))*; we defmeSO(f) to be the Fourier satisfy the above condition for nonzercare said to belong

transform of R, (|7 = 0). Given that our conditioning on to class B.

7 forms an event space Step 4: The case whenA,(f)| <1 is straightforward, as
. B o the geometric series involvin@(f)™ converges, so we in-
Sq(f) =57+ S (f) +5,(f). troduce
Next we write > 9
F — m 4
e M (£) Zl<cz<f>> (24)
+ _ . m=
Sq (f) - J\}inoo/ / /

=1 that equals
QM (r + 1 — )u(r) dr d’rge_ﬂ’rﬁ dr. (21)

. _ F(H=I-QUN-1=aG(f)-1 (25)
We definee¢ = 7 + 4 — 72 and recognize that for €

[0, MT],0 € [T, MT + Ty]. Observe that the limit of T complete evaluation of the continuous power spectrum,
the integral overs is not influenced by this change, sincéote that in the case of no transition durimga procedure
the integrand@™(s) = 0, for o < 0; similarly, the limit  completely analogous to the one performed in the case of
of that integral is not changed by the addition of finife; 4, > 0 transitions yields

to the upper limit of integration. Thus, we can set the order

of integration asr; ¢ 7»; we can also multiply and divide the o 1. _.p

previous equation by—i27/mi27f7 in order to extract the Sy = ?U (=1)eu(f). (26)
Fourier transforn/(f) of »(-) (and its conjugate transpose);

the integrals over; andr, are unaffected if the upper limit of Finally, by recallingS,(f) = S (f) + S;(f) + S9(f), we
integration is set tac, since integrands are identically zeroarrive at the spectral formula

Thus (21) becomes )
1 - Seq(F) = ZUHT[OF () +(OF ()T +0)U(f). (27)
HOEFUMEHT T

q

MT ’ The subscript: is used to emphasize that this is a continuous
- lim Z / —92717 iy spectrum, i.e., the signal power is spread over all frequencies.
Mmoo £ By substitutingF” = G — I in the above equation we recover

U(f). (22) (10).
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Step 5: The case wherA,|(f) = 1 is considered next; so7, = 7'. The final result for the intensities of the impulses
note that this can happen only at frequencies when all entri¢nes” in the discrete spectrum) equals (11), in agreement
in the diagonal matribA(f) (namelye=727f1¢) are the same. with [37]

We first decompose the matr@(f) using its eigenvectors )

k 1 k
Q) = e LI 37 A2 ] qd<T> 72 <T> .
k=2

Then ACKNOWLEDGMENT
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D QU™ =D (eI IL+ &(f) (28) tions offered by the reviewers, and in particular by Associate

=1 =1 Editor J. Chiasson.
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