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Randomized Modulation of Power
Converters via Markov Chains
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Abstract—Randomized modulation of switching in power con-
verters holds promise for reducing filtering requirements and
reducing acoustic noise in motor drive applications. This paper
is devoted to issues in analysis and synthesis of randomized
modulation schemes based on finite Markov chains. The main
advantage of this novel type of randomized modulation is the
availability of an explicit control of time-domain performance, in
addition to the possibility of shaping the power spectra of signals
of interest. We focus on the power spectra of the switching func-
tions that govern converter operation, and on the power spectra
of certain associated waveforms. Numerical (Monte Carlo) and
experimental verifications for our power spectral formulas are
presented. We also formulate representative narrow- and wide-
band synthesis problems in randomized modulation, and solve
them numerically. Our results suggest that randomized mod-
ulation is very effective in satisfying narrow-band constraints,
but has limited effectiveness in meeting wide-band signal power
constraints.

Index Terms—Power electronics, Markov processes, switching
circuits, modulation, spectral analysis, frequency-domain analy-
sis, time domain analysis.

I. INTRODUCTION

SWITCHING power converters are designed to convert
electrical power from one form to another at high effi-

ciency. The high efficiency is obtained by using only switching
devices, energy storage elements, and transformers (all of
which are ideally lossless), and relying on appropriate mod-
ulation of the switches to convert the available ac or dc
voltage/current waveforms of the power source into (ap-
proximately) the ac or dc waveforms required by the load.
The switches are generally semiconductor devices: diodes,
thyristors, bipolar junction transistors (operating at cutoff or
saturation, not in their active region), MOSFET’s, and so
on. The engineering discipline devoted to this form of power
conversion is called power electronics, see [11].

The conventional switching scheme for a switch in a power
converter involves generating a (scaled version of a) switching
function which by definition has the value one when the
switch is conducting, and the value zero otherwise. This is
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Fig. 1. Closed-loop control via modulation of the switching function.

schematically indicated in Fig. 1, which is drawn for the case
of a converter in closed-loop operation.

In this scheme, the reference values fed to the controller
reflect desired steady-state waveforms for the controlled volt-
ages or currents. Any necessary feedback signals are combined
with these reference values to determine Since power
converters generally operate in a periodic steady state, con-
verter waveforms of interest are typically periodic functions
of time in the steady state, as illustrated in Fig. 2. The average
value, orduty ratio of usually determines the nominal
output of a dc/dc converter, while the fundamental component
of usually determines the output of a dc/ac converter;
similar statements can be made for ac/dc and ac/ac converters.

Converter waveforms that are periodic have spectral compo-
nents only at integer multiples of the fundamental frequency.
The allowable harmonic content of some of these waveforms
is often constrained; an example is the current in the interface
to the electric utility, which ideally should have only the
60 Hz (or 50 Hz) fundamental component present. In this
case, stringent filtering requirements may be imposed on the
power converter. A significant part of a power converter’s
volume and weight can thus be due to an input or output filter.
Similar requirements hold for acoustic noise control in motor
applications. Harmonic components of the motor voltages
and currents may excite mechanical resonances, leading to
increased acoustic noise and to possible torque pulsations.
Solutions to these problems include either a costly mechanical
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(a)

(b)

Fig. 2. Nominal switching functionq(t) and sample state variablei(t) in
two types of power converters: (a) dc/dc converter operating with duty ratio
D; (b) dc/ac converter.

redesign, or an increase in the switching frequency of the
power converter supplying the motor, which in turn increases
the switching power losses.

As the use of pulsewidth modulation (PWM) technology
and microprocessors in power converters matured during the
early 1980’s, new methods became available to address the
effects of acoustic noise in dc/ac converters supplying motors,
and the effects of electromagnetic interference (EMI). While a
substantial part of the engineering effort was directed toward
the optimization of deterministic PWM waveforms (“pro-
grammed switching”), an alternative in the form of randomized
modulation for dc/ac conversion was offered in [35]. The
same idea has been pursued in a dc/dc setup in [32], and
in numerous references afterwards, for example, [2]–[4], [7],
[8], [13], [15]–[17], [25], [27], [31], [33], and [34]. The effect
of the randomization is to attenuate the discrete spectrum, and
introduce a continuous spectrum.

All prior results on randomized modulation in power elec-
tronics, with the exception of [28], are based on schemes
in which successive randomizations of the switching pulse
train (or of the periodic segments of this pulse train) are
statistically independent and governed by invariant proba-
bilistic rules. We denote such schemes asstationary. While

these implementations tend to be very successful in achieving
certain kinds of spectral shaping in the frequency domain,
they offer no guarantee or even description of the time-
domain performance that accompanies the switching. This is
objectionable in many cases, for example when accumulated
deviations of the randomized switching waveform from the
nominal (deterministic) waveform give rise to inadmissible
variations in related currents and voltages. This problem,
together with the lack of a widely known and accepted
analysis framework for randomized switching waveforms, are
among the main impediments to the wider use of randomized
modulation.

In this paper we describe a generalization of the class
of stationary randomized modulation schemes that enables
explicit control of the time-domain performance of randomized
switching, in addition to spectral shaping in the frequency
domain. In this technique, the switching signal comprises
a concatenation of distinct waveform segments, chosen in
sequence according to a Markovian model. In developing an
analysis approach for this class of randomized signals, we
present previous results from communication theory that are
not well known outside that community, and develop some
new results as well. We also pose and solve numerically
certain synthesis problems that are formulated to assess the
effectiveness of randomized modulation in achieving various
performance specifications in the frequency domain.

T. o find a common ground for comparisons among different
randomized modulation methods, we concentrate on the power
spectrum of the switching function The power spectra of
variables related to by linear time-invariant operations
can easily be derived from the power spectrum of Power
spectra for waveforms that are not related to by such
operations take more effort to determine (some results are
presented in [28]).

The basicanalysisproblem in randomized modulation is to
relate the spectral characteristics of and other associated
waveforms in a converter to the probabilistic structure that
governs the dithering of an underlying deterministic nominal
switching pattern. The keysynthesisproblem in randomized
modulation is to design a randomized switching procedure
that minimizes given criteria for power spectra, while re-
specting various constraints, including those on time-domain
behavior. Practically useful optimization procedures include
the minimization of discrete spectral components (denoted as
narrow-band optimization in [28]–[30]), and the minimization
of signal power in a given frequency segment (denoted as
wide-band optimization in [28]–[30]).

Section II describes a motivating example and introduces
some notation. Section III recalls definitions of the auto-
correlation and power spectrum for the class of signals of
interest. Section IV discusses issues in numerical (Monte
Carlo) verification of power spectral formulas. In Section V we
describe and analyze randomized modulation based on Markov
chains; details of derivations are in the Appendix. Section VI
deals with synthesis problems in randomized modulation, and
presents numerical results that suggest randomized modulation
is well suited to meeting narrow-band constraints, but much
less effective in satisfying wide-band constraints.
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Fig. 3. An example of switching governed by an ergodic Markov chain.

II. A N EXAMPLE OF SWITCHING

GOVERNED BY A MARKOV CHAIN

Consider the following switching scheme that could be used
to randomize the operation of a dc/dc converter whoseaverage
duty ratio is required to be 0.5. Suppose we have two kinds
of duty ratios D available: long, L, with D 0.75; and short,
S, with D 0.25. The duty ratios have the desired average of
0.5, but we want to discourage long sequences of pulses of the
same kind, thus preventing ripple buildup. We introduce a four-
state Markov chain, corresponding to the following policy. The
controller observes the two most recent switching cycles, and
if they are SL or LS, then either of the pulses is fired with
probability 0.5 for the next cycle. If the pair observed is LL,
then an S pulse is applied with probability 0.75 (and an L
pulse with probability 0.25). If the pair observed is SS, then
an L pulse is applied with probability 0.75 (and an S pulse
with probability 0.25). The chain is shown schematically in
Fig. 3. The switching waveform is generated by piecing
together switching cycles corresponding to the states

successively visited by the chain, Note
that this scheme offers additional flexibility when compared
with switching based on statistically independent trials: we
discourage runs of three pulses of the same kind, and can
even completely prevent such runs (by setting the appropriate
probabilities to 0).

For the four-state Markov chain in Fig. 3, we defineas
the state-transition matrix, and its th entry is the
probability that at the next transition the chain goes to state
given that it is currently in state

(1)

Note that each row of sums to 1; is thus a stochastic
matrix, and therefore has a nonrepeated eigenvalue
(with corresponding right eigenvector
and all other eigenvalues with moduli strictly less than one.
The steady-state probabilities corresponding towhich can
be interpreted as the fraction of a (large) total number of state

transitions that the chain spends in stateare solutions to

(2)

and equal Thus is the left
eigenvector of corresponding to eigenvalue For
later use we define the vector of switching cycles

(3)

where in the example for
and for etc. Our goal it to
characterize the switching waveform in the frequency
domain.

III. A UTOCORRELATION AND POWER SPECTRUM

A. Basic Definitions

A random signalmay be thought of as a signal selected from
an ensemble (family) of possible signals by a random experi-
ment governed by some specification of probabilistic structure.
The ensemble of signals and the specification of probabilities
together comprise therandom process(or stochastic process)
generating the random signal.

The time-average autocorrelation[20], [24], [36] of a
random process is defined as

(4)

where the expectation is taken over the whole ensemble,
The process is termed quasi stationary [20] (or asymptoti-

cally mean stationary, [19]) if this limit and a similar one for
exist; we shall assume throughout that is quasi-

stationary. (Such processes are more general than wide-sense
stationary processes, where the time averaging is not needed to
get a result independent of This definition is applicable to
deterministic signals as well, since for deterministic signals the
ensemble consists of a single member. The (mean or average)
power density spectrum is then defined as the Fourier
transform of

(5)

From this definition since is real,
so we will only consider in the sequel. In cases
of practical interest, can have a continuous and an
impulsive part [5]. The impulsive part of is referred to
as thediscretespectrum, and is characterized entirely by the
locations of the impulses (“line frequencies” and
“harmonic frequencies”) and by positive numbers
representing the strengths of the impulses (i.e., the signal
power at the harmonic frequencies). Integrating over
a frequency range yields the signal power in that frequency
range.
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Fig. 4. Calculated power spectrum ofq(t) for the Markov chain example of Section II.

B. Power Spectra and Linear Systems

An important result for applications is the transformation of
the autocorrelation when a process with autocorrelation

passes through a linear, time invariant filter. The filter is
characterized by its impulse response and corresponding
frequency response which is the Fourier transform of

The output of the system is given by convolution

(6)

Using this relation it can be shown [36] that the process
has a well defined autocorrelation, given by (4), and that its
power spectrum is

(7)

This relation can be used in our setting to evaluate the power
spectrum of any waveform related to the switching waveform

through a convolution, once the power spectrum
of is known. The relation (7) holds whenever the integral
of the right-hand side over all frequencies is finite; although
bounded-input bounded-output (BIBO) stability of the filter
suffices for this, BIBO stability is not necessary [36, pp.
487–490].

Let denote the Fourier transform of the symmetri-
cally truncatedversion of extending from to
in time. An important result of the Fourier theory [5], [18] due
to the Einstein–Wiener–Khintchine theorem, shows that

(8)

The quantity is called theperiodogram
of For nonstationary processes that have a well-defined
autocorrelation via (4) the equality in (8) is in the sense of
distributions [5], [20], [36].

IV. V ERIFICATION ISSUES

The formulas that will be developed shortly for power
spectra of different randomized modulation schemes are rather
involved, and a need arises to verify and explore them through
simulation. (We also provide experimental verification in some
cases.) The power spectrum of a (Monte Carlo) simulation of
a randomized switching waveform is obtained through an
estimation procedure. Power spectrum estimation is one of the
most important problems in signal processing and has a very
rich history [20], [21], [24], [26], [33].

The discussion in this section deals primarily with direct
estimation methods that yield the power spectrum
without estimating the autocorrelation. We concentrate on
nonparametric, classical estimation methods, which are well
understood and for which software is readily available [26].

Classical direct estimation methods may be thought of as
approximate implementations of the operations specified in the
Einstein–Wiener–Khintchine theorem (8). Typically, a single
realization of the process of length is divided into

sections, and the (discrete-time) periodogram is computed
for each section (from closely spaced time samples of the
signal). The availability of the fast Fourier transform (FFT) to
calculate the Fourier transforms involved is a major advantage.
The expectation operation in (8) is then approximated by
averaging the individual periodograms. This approach is
referred to as Bartlett’s method. Under appropriate conditions
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(related to ergodicity of the stochastic process, which permits
time averages to be substituted for ensemble averages) this
computation produces a consistent, asymptotically unbiased
estimate of the power spectrum [10], [26], so the estimate
converges to the true spectrum as We shall
assume that the switching functions of interest to us satisfy
the conditions required for validity of such an estimation
procedure. The close match that will be demonstrated between
our analytical formulas and the Monte Carlo verifications
suggest that this is indeed a good assumption.

Although the above estimation procedure is asymptotically
unbiased, in practice and are finite, so there is inevitable
bias. The use of appropriate windows in the time domain con-
tributes to bias reduction. An unpleasant effect of windowing
is known as leakage and has its source in the side-lobes (in
the frequency domain) of the windows used. Leakage results
in loss of resolution in the estimates. Welch’s modification
of Bartlett’s method, [26], allows data segments to overlap in
addition to windowing data in the time domain. This method is
widely used and is available in the Matlab software package. A
more detailed discussion of verification problems is presented
in [28].

V. MODULATION BASED ON MARKOV CHAINS

A. Switching Governed by Markov Chains

In this section we consider the class of randomized mod-
ulation schemes introduced via the example in Section II.
A switching waveform segment of length is associated
with the Markov chain being in theth state,
Concatenation of these segments yields a continuous-time
switching (0–1) waveform that is associated with the
evolution of the chain. The first task is to establish relations
linking the discrete-time Markov chain with the continuous-
time switching function This connection is complicated
by the fact that the durations of switching cycles corre-
sponding to individual states of the chain could be different.
If the he lengths of the cycles are equal for all states, (i.e.,

for all the chain is calledsynchronous(i.e.,
for all otherwise, the chain is denoted asasynchronous.

We briefly review some definitions and results from the field
of Markov chain analysis. For a complete review, see, for
example, [9], [14], and [18]. A slightly different nomenclature
is used in [12]. A Markov chain isirreducible if every state
can be reached from every other state. The stateis recurrent
(or essential) if the chain can eventually return tofrom every
state that may be reached fromevery state in an irreducible
chain is therefore recurrent. A recurrent state to which the
chain can return only after an integer multiple oftransitions

is called a periodic state, with period The property
of irreducibility, which is assumed in this paper, implies that
all periodic states have the same period.

A Markov chain with finitely many states is classified as
ergodic if it is irreducible and aperiodic (i.e., has no periodic
states) [14]. In this case limiting state probabilities exist, the
limiting state probability of the state being the probability
that the chain is in state after a great many state transitions.

Fig. 5. Measured power spectrum ofq(t) for the Markov chain example.

This quantity is independent of the initial state under ergodicity
assumptions.

Some analysis results for waveforms generated in the fash-
ion described here have been provided by communication
theorists [6], [37], but applications in power electronics have
not been suggested before. The case of inverter (dc/ac) mod-
ulation based on Markov chains requires results that do not
seem to be in the communication theory literature either; our
results for this case were derived in [28], and are presented
later in this paper. A development relevant for dc/ac converters
is the study of a particular category of periodic (but possibly
asynchronous) Markov chains. Thestates are divided into

classes, and state transitions of the underlying discrete-time
Markov chain are constrained to occur from one class to the
next and from the th class to the
first). In this case, limiting state probabilities as defined earlier
do not exist (they do exist, however, conditioned on knowledge
the class in which the chain is located). This setup represents a
generalization of the block-stationary independent randomized
modulation analyzed in [28]–[30]. One can think of each class
having approximately the local average needed in a part of the
the ac waveform (e.g., pulsewidth modulated approximation of
a sinusoid), while the switching cycles within a class differ in
other features (e.g., pulse position).

B. Power Spectra Generated by Ergodic Markov Chains

Ergodic Markov chains (i.e., irreducible and aperiodic
chains) are considered in this section. Our goal is to analyze
the continuous-time switching waveforms associated with
an -state discrete-time Markov chain. As in the example
in Section II, the chain is characterized by the state
transition matrix and by the corresponding steady-state
probabilities We allow switching cycles generated in
different states to have different lengths but require that
these be integer multiples of a greatest common divisor(i.e.,

We also define
and Note that is the expected

time between transitions. Let the 0–1 waveform in the
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Fig. 6. Calculated power spectrum ofq(t) for the randomized PWM example.

switching cycle of duration associated with the state
be and let be an -vector with entries

The main task is to find the autocorrelation of the
continuous-time waveform generated by the Markov chain,
using the formula (4). We shall assume (without loss of
generality) that a particular realization of contains
whole pulses in a window of duration The contribution
of the fractional pieces within to will tend to zero
as so (4) becomes

(9)

where the average pulse length is[22].
Due to its technical nature, the detailed derivation of our

spectral formulas is given in the Appendix. To present the
results here, let us introduce the following notation:
is the Fourier transform of the-vector of waveforms

associated with various states;
(where defined). The

end result for the continuous power spectrum is

(10)

while the final result for the intensities of the impulses (“lines”
in the discrete spectrum) is

(11)

Fig. 7. Measured power spectrum ofq(t) for the randomized PWM example.

1) Example of Switching Governed by Ergodic Markov
Chain: Next we evaluate the preceding expressions for power
spectra on the four-state example introduced in Section II.
The theoretical discrete and continuous spectra corresponding
to our example are shown in Fig. 4, where unit frequency
corresponds to the switching frequency. The measured power
spectrum in the same case is shown in Fig. 5. The circuit used
for experimental verification was a modified buck converter
(without the output capacitor), and the nominal switching
frequency was 10 kHz. We focus on the switching function,
and it is not influenced by details of the circuit topology
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(related waveforms such as input and output voltages and
currents do depend, however, on the circuit topology). Our
experiments suggest that randomized modulation schemes
based on Markov chains are not more difficult to implement
than the schemes reported in the literature for stationary
randomized modulation. For example, one only needs a two-
bit random number generator and a state counter to implement
the Markov chain of this example.

The results can be compared with deterministic switching
at a constant duty ratio of 0.5, in which case only the discrete
spectrum exists, with a first harmonic of
(and subsequent odd harmonics reduced by Another
meaningful comparison is with a randomized PWM scheme
in which a random choice is made at each trial between duty
ratios of 0.25 and 0.75, independently of previous outcomes.
Results for randomized PWM can be found in [22], [28]. For-
mulas (10) and (11) can also be applied to the corresponding
two-state Markov chain in which all transition probabilities
are equal to 0.5. Calculated and measured spectra in this case
are shown in Figs. 6 and 7. The experimental setup was the
same as in the case of randomized switching governed by a
Markov chain.

While the two schemes are quite similar in terms of their
power spectra, their time-domain performance is very differ-
ent. As an example, let us consider the event “five successive
long (L) pulses” in both schemes. This event could be of
interest, since it is associated with a fairly large net buildup of
the local duty-ratio. In the case of independent randomized
PWM, the probability of “five L in a row” is

In the case of modulation based on the Markov
chain from the example, the probability of the same event
equals [28], i.e., it is reduced ten
times. These results have been verified both in simulations and
in an actual circuit implementation. This example illustrates
the power of Markov chain modulation, which achieves the
shaping of the power spectrum, while enabling control of the
time-domain waveforms. Other variations are possible. For
example, an S pulse could berequired after an LL pair has
been observed in the last two pulses (and symmetrically for
an SS pair), thus altogether preventing the occurrence of more
than two pulses of the same sort.

C. Periodic Markov Chains

The case of pulse trains specified by a class ofperiodic
Markov chains is considered in this section. This class is
denoted asergodic cyclicin some places [12]. A related result
for the special case of synchronous Markov chains is given
in [6]. We assume that the state of the chain goes through
a sequence of classes of states occupying a state in
each class for an average time In the power
electronic setup, periodic Markov chains are of interest in
randomized modulation for dc/ac applications, where the basic
(reference) single-cycle on-off pattern changes from one cycle
to the next in a deterministic fashion. This pattern is further
dithered in each cycle using a set of dependent (Markovian)
trials in order to satisfy time-domain constraints (for example
to control the “ripple” of waveforms of interest).

Fig. 8. Periodic Markov chain with eight states and four classes.

The conditioning used in the derivation of the power spec-
trum formula in the previous subsection (and detailed in the
Appendix) has to be adjusted in the following way. The
contribution that states of the Markov chain belonging to the
class make to the time-averaged autocorrelation (4) is
scaled by where is the expected time spent
in the class before a transition into the class (we
evaluate these quantities later).

It can be shown (e.g., in [1]) that after a possible renumber-
ing of the states, the matrix (and see the appendix) for a
periodic Markov chain can be written in a block-cyclic form

Let denote the product of submatrices of in the
following order: and let denote
the vector of the steady-state probabilities, conditional on the
system being in class Then

(12)

and the average time spent in class is
where the summation is taken over all states in class

Let and let The conditioning
procedure used in the Appendix, based on the number of
transitions between and will be used again, with
the following modification. If the first pulse belongs to the
class then the pulse straddling belongs to the class

When we add the contributions of all classes
to the average power spectrum (scaled by the relative average
duration of each class, as illustrated in the Appendix), the
result can be written in the following compact form:

(13)
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Fig. 9. Estimated and calculated spectrum for the periodic Markov chain in Fig. 8 with eight states and four classes.

where is the greatest common divisor of all waveform
durations, is an vector of ones and is the vector
of Fourier transforms of waveforms assigned to states in class

A circular indexing scheme (i.e., modulo is used in
this subsection.

The matrix has a Toeplitz structure, with th entry

(14)

where is a product of matrices

and

with no repetitions allowed in so that the number of
matrices forming is Also, the th entry
of

(15)

The result (13) appears to be novel [28], and it is will be now
verified via an example.
1) Example of Switching Governed by a Periodic Markov
Chain: In this example we consider a simplification of a
switching scheme applicable to dc/ac converters. The goal is
to generate a switching function in which blocks of pulses
have nominal (deterministic) duty ratios

This may correspond to a (very crude) approximation of a
sinusoid. When randomizing this pattern, it is desirable to
prevent large deviations from the values in the corresponding
deterministic pulse train (i.e., the one with the above duty
ratios and all blocks of the fixed shape). The periodic Markov
chain shown in Fig. 8, with eight states divided into four
classes, is an example of a solution to such a design problem.
In this case a short (duration 3/4) and a long (duration 5/4)
cycle is available in each of the four classes; in classes 1
and 2 the transition patter favors patterns in which the two
types alternate. We analyze this chain using (13), and in Fig. 9
we compare the theoretical predictions for the continuous
spectrum (solid line) with estimates of the total spectrum
obtained via Monte Carlo simulations (circles). The agreement
between the two is quite satisfactory; the theoretical prediction
for the impulse strength at is 0.0036, which agrees well
with the estimated value of 0.0037. In Fig. 10 we show the
experimentally observed power spectrum for the same periodic
Markov chain. An application of (13) for Markov chains with
many more classes of states could become computationally
intensive. This is not a major drawback, however, due to the
off-line character of the calculation. Our experience suggests
that a real-time implementation of switching based on a
Markov chain is not necessarily more complicated than con-
ventional “programmed” switching, especially if the transition
probabilities are of the form where is the number of
(random) bits needed for the Markov chain implementation.

VI. SYNTHESIS PROBLEMS

In this section the goal is to explore how effective random-
ized modulation is in achieving various performance specifica-
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TABLE I
NARROW-BAND OPTIMIZATION, CRITERION VALUES (�10�4)

TABLE II
WIDE-BAND OPTIMIZATION, CRITERION VALUES (�10�4)

Fig. 10. Measured power spectrum for the periodic Markov chain of Fig. 8.

tions in the frequency domain. Desirable properties of power
spectra are dependent on the particular application. Require-
ments of particular interest in practice are the following.

• Minimization of one or multiple, possibly weighted, dis-
crete harmonics. This criterion corresponds to cases where
the narrow-band characteristics corresponding to discrete
harmonics are particularly harmful, as for example in
acoustic noise, or in narrow-band interference in com-
munication systems.

• Minimization of signal power (integral of the power
spectrum) in a frequency segment that is of the order
of an integral multiple of the switching frequency. This
criterion corresponds to wide-band constraints in mili-
tary specifications, and it could be of interest for EMI
problems.

A typical narrow-band optimization criterion is a weighted
sum of discrete harmonic intensities between theth and th
harmonics, and is denoted as A reasonable wide-band
optimization criterion, used for illustration in this section,
corresponds to the minimization of the signal power in the
frequency segment [0, 1.5], where the average switching
frequency is one.

The optimization process has to address two related issues:

1) Design of an -state Markov chain (possibly periodic),
which reduces to the specification of a stochastic matrix

2) Choice of 0–1 functions, each supported on
that correspond to distinct cycles of the switching func-
tion.

While the criterion functions are defined in the frequency
domain, the design is performed in the time-domain. This
makes the optimization problem difficult, and we present and
comment on numerical results. A complete parameterization
in the frequency domain of all candidate functions is not
known, even for the much simpler case of stationary random
modulation [28]–[30].

Synthesis problems for randomized modulation governed
by Markov chains will be illustrated on the example from
Section IV-B1. The transition probabilities from state 1 to
state 2, and from state 2 to state 3 will be optimized, while
the symmetry of the chain is preserved. Thus the transition
matrix is

(16)

The duty ratios of the short and long pulses are also made
variable, with the same average value as in the origi-
nal example. The optimized narrow-band criteria are shown in
Table I. Thus a considerable improvement in criterion value is
attained as a consequence of optimization.

It is evident from Table II that switching based on a Markov
chain is not particularly effective in reducing wide-band signal
power. The purpose of our optimization procedures is to point
out salient capabilities of randomized modulation governed by
Markov chains, and consequently our searches were performed
over granular grids. In the numerical experiments reported
here, as well as in examples with average duty ratios different
from 0.5, the duty ratio variations seem to be most effective
in dealing with narrow-band constraints. This fact is expected
from the performance analysis of stationary schemes [28].
Also, transition matrix variations have effects mostly on wide-
band criteria, but their overall effectiveness is limited. The true
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importance of the transition matrix optimization is in the time
domain, where it influences the ripple.

These results suggest a decomposition of the Markov chain
optimization problem into two subproblems. The first subprob-
lem is the transition matrix optimization, and it is concerned
mostly with time domain requirements (ripple control), and
to a certain extent with the wide-band constraints in the
frequency domain. The second subproblem is the optimization
of the waveforms at each state, and its primary effects are
in satisfying the narrow-band requirements. The proposed
decomposition could significantly improve the tractability of
the optimization of Markov chains with many states.

VII. CONCLUSIONS

In this paper we have presented analysis and synthesis
results for randomized modulation strategies governed by
Markov chains, suitable for different classes of power con-
verters. Randomized modulation switching schemes governed
by Markov chains that are applicable to dc/dc and dc/ac
converters have been described and analyzed. Our spectral
formulas for periodic Markov chains are believed to be novel.
Synthesis problems in randomized modulation have also been
considered, where both optimization criteria and numerical
results are described. It is shown that randomized pulse
modulation can be very efficient in reducing the size of discrete
harmonics and in satisfying narrow-band constraints, but is
much less effective in dealing with wide-band requirements.

APPENDIX

In this section we provide a derivation of spectral formulas
for ergodic Markov chains. A synopsis is as follows: after
introducing some notation, the proof outline contains five
main steps: in the first we derive an expression for the
autocorrelation conditioned on the number of state transitions
of the governing Markov chain; in the second step we obtain
a formula for the part of the power spectrum corresponding
to positive delay in the autocorrelation. At this point we
arrive at an expression involving an infinite matrix sum, and
we present relevant eigenvalue considerations in the third step.
In the fourth step we derive an expression for the continuous
part of the power spectrum, and in the fifth step we obtain a
formula for the discrete part.

Let denote the number of state transitions in our -
truncated realization (as noted before,
Note that due to the ergodicity of the Markov chain the
asymptotic behavior of is as
A typical waveform is shown in Fig. 11.

Step 1: For the integral in (9), ranges over cycles of
each of the types. We first separate this integral to display
the contribution due to lying in cycles of type for each

Next, we use the law of large numbers for
irreducible Markov chains [12, Th. 4.2.1, pp. 73–74] to obtain

(17)

Fig. 11. Notation for the switching waveform generated by a Markov chain.

where

(18)

We have used the symbol to denote the expectation
conditioned on thefirst pulse being of type and we use the
symbol to denote the epoch (point in time) relative to the
beginning of the first pulse (see Fig. 11—we assume in this
derivation that both pulses in Fig. 11 are within the window
of length which yields correct results in the limit). We
shall use to denote the epoch relative to the start of the
cycle straddling the instant Then

Given that for the
value of will not change if the integration is performed
from zero to (recall that This property
holds for all integrals involving integrands that are products
of with other functions.

Let us consider an experiment in which we fix and
we observe the number of state transitions between and

It is finite for any finite (since all are finite), and
moreover it forms an event space, as differentare mutually
exclusive and collectively exhaustive events. We will be using
this result to evaluate by using additivity of probabilities
of events conditioned on If

(19)

where denotes the contribution to the expec-
tation in the case when and can be chosen as

(recall that We shall consider
the first term, with later.

Observe that the main difficulty in our calculation of
is the calculation of the ensemble average

due to the Markovian dependence of successive pulses.
Referring to Fig. 11, given and the number of state tran-
sitions during only certain epochs are possible for
the pulse that straddles the instant Note that is
a discrete random variable that satisfies and
whose probability mass function depends on the trajectory of
the chain. To keep track of both the possible range ofand
of the associated probabilities of the pulse that straddles
being of type we will introduce an matrix whose
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th entry is We can thus write

In the example from Section II,
The expectation (remembering that
the first pulse is of type can now be evaluated as theth
entry of the vector

In this equation denotes the -fold convolution of
with itself.

At this point we note that the conditioning on enters
in calculations of for all in the same manner, what
can be used for a direct evaluation of Let us define

to denote conditioned on the knowledge
of Now recalling (17), we get (in a convenient matrix
notation)

(20)

where
Step 2: Let be the Fourier transform of
for and be the Fourier transform of the same

autocorrelation for For any we have
we define to be the Fourier

transform of Given that our conditioning on
forms an event space

Next we write

(21)

We define and recognize that for
Observe that the limit of

the integral over is not influenced by this change, since
the integrand for similarly, the limit
of that integral is not changed by the addition of finite
to the upper limit of integration. Thus, we can set the order
of integration as we can also multiply and divide the
previous equation by in order to extract the
Fourier transform of (and its conjugate transpose);
the integrals over and are unaffected if the upper limit of
integration is set to since integrands are identically zero.
Thus (21) becomes

(22)

Since the integral converges to the Fourier transform of
(since the integrand is zero for we write

(23)

where is the Fourier transform of the matrix
Step 3: From the construction,

Recall that has the eigenvalue
with the corresponding right eigenvector

and with the left eigenvector
other eigenvalues have moduli

strictly less than 1, and corresponding right eigenvectors
and left eigenvectors Let denote the eigenvalue of

with the largest magnitude. In the case of a synchronous
chain, and clearly for all
frequencies. If the chain is asynchronous, then
for frequencies that satisfy the following condition: for each
ordered pair of and
(where is the the greatest common divisor of all there
exists an integer such that

Clearly, for the above equation is satisfied for
in all pairings of and

we denote such frequencies as class A. The frequencies that
satisfy the above condition for nonzeroare said to belong
to class B.

Step 4: The case when is straightforward, as
the geometric series involving converges, so we in-
troduce

(24)

that equals

(25)

To complete evaluation of the continuous power spectrum,
note that in the case of no transition duringa procedure
completely analogous to the one performed in the case of

transitions yields

(26)

Finally, by recalling we
arrive at the spectral formula

(27)

The subscript is used to emphasize that this is a continuous
spectrum, i.e., the signal power is spread over all frequencies.
By substituting in the above equation we recover
(10).
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Step 5: The case when is considered next;
note that this can happen only at frequencies when all entries
in the diagonal matrix (namely are the same.
We first decompose the matrix using its eigenvectors

Then

(28)

where

(29)

Then, given we get

(30)

In this case

(31)

and it will correspond to the continuous spectrum atas in
(27).

In the case of a synchronous chain all are equal to
and the Poisson’s equality establishes that

(32)

In the case of an asynchronous chain the frequencies of interest
are those yielding all the same, defined previously
as classes A and B. The frequencies in class B will have no
contribution to the discrete spectrum for reasons clear from the
Poisson equality
class B). For all frequencies in class A
the limit will be the same for all (as all summands are the
same), so we can write

(33)

where the constant will be determined next. Consider the
case—the impulse strength (or the “dc component”)

will be [cf. (22)]

so The final result for the intensities of the impulses
(“lines” in the discrete spectrum) equals (11), in agreement
with [37]

(34)
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