Vertical Junction Silicon Microdisk Modulator with Integrated Thermal Tuner

Erman Timurdogan¹, Cheryl M. Sorace-Agaskar¹, Ehsan S. Hosseini¹, Gerald Leake², Douglas D. Coolbaugh² and Michael R. Watts¹

¹Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
²College of Nanoscale Science & Engineering, University at Albany, 1400 Washington Avenue, Albany, New York 12222, USA

ermant@mit.edu

Abstract: We demonstrate an approach to integrate the most efficient thermal tuner (4.9-µW/GHz) into a microdisk modulator without sacrificing junction area for the first time. The 6-µm diameter modulator achieves low-power (11-fJ/bit) and high-speed (13-Gb/s) operation.

©2013 Optical Society of America

OCIS codes: (130.3120) Integrated optics devices; (230.5750) Resonators; (230.7370) Waveguides

1. Introduction

Low power and high speed vertical cavity surface emitting lasers (VCSELs) and CMOS electronics are currently used to enable high performance computing (HPC) and communication applications. HPC machines, in the exascale range, will require a significant number of fibers, reduction in power and increase in data rates per cable/fiber. Silicon photonics, because it enables wavelength division multiplexed (WDM) systems, will help to minimize the number of fibers required in HPC systems. It also promises to do so with low power and high speed resonant devices. Resonant electro-optic modulators will likely be used to transmit data in the WDM links, and have been demonstrated to have energies as low as 3fJ/bit at a data rate of 12.5Gb/s [1] and 13fJ/bit at a data rate of 25Gb/s [2]. However, resonance drifts, induced by process/wafer variations and dynamic temperature fluctuations, distort the alignment between the modulators and the desired WDM channels. Electro-optic tuning can be used for temperature variations of ±2.5°C. However, processor core activity on chip yields temperature fluctuations on the order of ±10°C. Therefore, thermo-optic control of the resonators is necessary [3]. The integration of heaters within microring filters and modulators achieves the best optimization of thermal tuning power (4.4 µW/GHz) and speed (1 µs) [4]. Unfortunately, heaters are usually integrated within resonant modulators at the expense of area and/or performance. A large ridge microring modulator (400µm²) with ~42µW/GHz tuning efficiency and ~67% junction area coverage around the periphery [5] and a compact microdisk modulator (50µm²) with 7µW/GHz tuning efficiency and 50% junction area coverage around the periphery [6] have been demonstrated in the literature. Junction area coverage limits the modulation efficiency and leads to an insertion loss of >5dB [5] and >3db [6]. For a normal distribution of ±10°C temperature fluctuations and a ~100GHz resonance frequency offset due to fabrication/wafer variations, the total modulation and heater energy was >322fJ/bit [5] and >200fJ/bit [6]. Here, we propose a ~6-µm diameter (footprint ~ 28 µm²) microdisk modulator with a CMOS compatible integrated heater in the center that allows for high performance modulation and minimum thermal capacitance. The hard outer walls of the microdisk modulator enable minimum bend radii and high-Q operation [1,2,6]. High-speed modulation is enabled by a vertical p-n junction near to the edge of the microdisk modulator and low resistance interior contacts. The proposed microdisk modulator is measured to have a 4.9µW/GHz thermal tuning efficiency and ~11dB/bit performance at a data rate of 13 Gb/s, a 5.8dB extinction ratio and a 1.22dB insertion loss. This is the most efficient heater integration yet with total modulation and heater energy predicted to be less than <50fJ/bit.

2. Device Characterization and Experimental Results

The microdisk modulator, coupled to a bus waveguide, has an integrated vertical p-n junction around the edge of the microdisk with p and n type doping concentrations of 1x10¹⁸ cm⁻³ and interior p+ and n+ contacts with doping concentrations at a level of 1x10²⁰ cm⁻³ (Fig. 1, left). The integrated heater is formed in the center of the microdisk.

Figure 1 – 3D sketch of the microdisk modulator showing size, doping and contacts (left), and measured DC spectral response of the integrated heater inside the microdisk modulator with an applied bias voltage to heater pins (right).
using the same p and p^+ type doping levels to minimize the number of necessary mask layers and fabrication cost (Fig. 1, left). This design allows, for the first time, almost full peripheral junction area coverage (~90%) of the vertical junction around the edge of the microdisk without compromising high speed operation. The polarity of the heater bias is chosen to minimize electrical crosstalk with the diode. The silicon waveguide thickness is 220 nm and the bus waveguide width is 400 nm.

Thermal tuning of the microdisk modulator is achieved by applying a DC bias voltage across the heater contacts. Spectral response is measured with a CW tunable laser for an applied heater DC voltage for 0V, 1V, and 2V, as shown in Fig. 1, right. Wavelength shifts of 3 nm (~360 GHz) and 10 nm (~1.2 THz) are observed at heater power consumptions of 1.75 mW (1V) and 7.42 mW (2V). These values correspond to a heater efficiency of 4.9 μW/GHz and 6.2 μW/GHz, respectively.

The microdisk modulator is characterized with a DC bias voltage applied across modulator pins from -3V to 0.5V as shown in Fig. 2, right. For a probe wavelength ~1581 nm, a DC extinction ratio of 6 dB is measured between -1V and 0.5V bias. The DC insertion loss is 1.2 dB. In order to demonstrate high speed performance, the microdisk modulator is initially tuned to a frequency offset of 1.2 THz by applying 2V to the heater. The modulator contacts are driven electrically with a terminated probe and an AC coupled 5 V$_{pp}$ non-return-to-zero-on-off-keying (NRZ-OOK) signal encoded with a pseudo-random-bit-sequence (PRBS) at a pattern length of 2^{31}-1. The optical eye diagram is obtained by a digital sampling oscilloscope at a data rate of 13 Gb/s, as illustrated in Fig. 2, left. The dynamic extinction ratio is 5.8 dB and insertion loss of 1.22 dB, in good agreement with the DC characterization (Fig. 2, right). Modulator capacitance is calculated to be 20 fF based on Sentaurus simulations and the energy of the modulator is estimated to be ~11 fJ/bit for a voltage swing of 1.5 Vpp similar to [2]. The modulator is PRBS source limited to 13 Gb/s and experiments to achieve higher data rate operation are ongoing.

If the proposed microdisk modulator has a frequency offset of ~100 GHz due to fabrication variation and is on a processor chip with ±10°C temperature variation, the required heater power for compensation is ~1.5 mW. Combined with an electro-optic modulation power of 0.22 mW at a data rate of 20 Gb/s, the microdisk modulator will have a realistic energy performance of 85 fJ/bit when one includes both heater and modulator power. If the necessary tuning variations of the multiple microdisks in a WDM link obey a Gaussian distribution, then the required thermal compensation can be halved, and a more realistic performance estimate would be 48 fJ/bit at a data rate of 20 Gb/s.

3. Conclusions

A silicon heater is integrated into a vertical junction silicon microdisk modulator without affecting modulator performance or size. Low-power modulation (11 fJ/bit) at a data rate of 13 Gb/s, a 5.8-dB extinction ratio, a 1.22-dB insertion loss, a record-low thermal tuning (4.9 μW/GHz) of a high-speed modulator is achieved. A record low total energy of 48 fJ/bit is predicted at a data rate of 20 Gb/s for a frequency offset of ~100 GHz and ±10°C temperature variation.

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) Microsystems Technology Office’s (MTO) POEM and EPH program, grant no. HR0011-12-0007 and Cheryl Sorace-Agaskar acknowledges support from NSF/GRP, No. 0645960.

4. References