CMOS-Compatible Tunable Vernier Ring Laser using 
Erbium Doped Waveguide on a Silicon Photonics Platform 

Nanxi Li1,2*, Diedrik Vermeulen1,3,*, Zhan Su1,3, E. Salih Magden1, Alfonso Ruocco1, Neetesh Singh1, Jelena Notaros1, Ming Xin1, Christopher V. Poulton1,3, Erman Timurdogan1,3, Christopher Baiocco4, and Michael R. Watts1 
1Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 
2John A. Paulson School of Engineering and Applied Science, 29 Oxford Street, Harvard University, Cambridge, MA 02138, USA 
3Current address: Analog Photonics, 1 Marina Park Drive, Boston, MA 02210, USA 
4College of Nanoscale Science and Engineering, University at Albany, 1400 Washington Avenue, Albany, NY 12203, USA 
*These authors contributed equally to the work 
nanxili@mit.edu, diedrikv@analog photonics.com 

Abstract: We demonstrate the first silicon photonic tunable laser with integrated erbium-doped 
Al2O3 waveguides. The laser is designed to have Vernier ring structure for wide tuning operation. It 
has a 0.23cm² footprint and 1.6mW output power. © 2018 The Author(s) 

OCIS codes: (130.3120) Integrated optics devices; (140.3500) Lasers, erbium; (140.3600) Lasers, tunable. 

Silicon photonics is a promising technology for integrated optical circuits [1, 2]. The high refractive index contrast 
between silicon and a silicon dioxide cladding enables compact devices. The compatibility with mature CMOS 
fabrication technology can lead to low-cost and high-volume production of silicon photonics devices. In an integrated photonics circuit, a tunable laser source is a key component for a variety of applications. Wide tunability is commonly 
obtained by utilizing the Vernier effect based on two cavities with slightly different free spectral ranges (FSR) [3-4]. 
Compared to lasers using III-V semiconductor gain medium, lasers based on erbium-doped gain medium have a wide 
gain bandwidth across the C- and L-bands. Additionally, erbium-doped lasers can achieve narrow linewidths with 
large side mode suppression ratios (SMSR) due to homogeneously-broadened gain. Since erbium can be co-sputtered 
with its hosts (e.g. silica, alumina, or phosphate glass), integration into a CMOS-compatible silicon photonics platform 
is straightforward as a back-end step. Monolithically integrated erbium-doped waveguide lasers have been 
demonstrated using erbium co-sputtered with Al2O3 as a host [5-6]. However, previously demonstrated lasers could 
not be actively tuned. Lasers using erbium-doped fiber as gain medium instead of an integrated gain medium 
with integrated silicon microdisk cavities have been demonstrated with passive [7] and active [8] wavelength tuning. 
However, these demonstrations were not compact since they are mostly fiber based and not fully integrated on-chip. 
In this paper, we present a fully integrated erbium-doped laser on a CMOS-compatible silicon photonics platform. 
Wavelength tunability is achieved by utilizing a Vernier structure formed by two Si3N4 micro-ring resonators. Erbium-
doped Al2O3 is used as the gain medium, and metal layers are deposited as heaters and contacts. Wavelength tuning 
over 46 nm (from 1527 to 1573 nm) with more than 40 dB SMSR is achieved. With 100 mW 980nm pump power on 
chip, up to 1.6 mW output lasing power is obtained, with a 2.2% slope efficiency. The fine-tuning capability of the 
lasing wavelength is demonstrated by tuning the gain cavity longitudinal mode phase shifter. In addition, the laser 
linewidth is measured to be 340 kHz by using the self-delay heterodyne method. 

Fig. 1(a) 3D illustration of integrated tunable laser, showing different material layers, heaters for microring and gain cavity phase shifters (not to scale); (b) Fabricated device on the test setup, showing Erbium green color fluorescence under 980 nm pump; (c) SEM image of the tunable laser gain waveguide cross section; (d) The transverse electric (TE) field intensity of the fundamental mode for different bend radii along the Euler bend.
A schematic perspective view of the tunable laser design is shown in Fig. 1(a). The rings are made of 200 nm thick and 1.6 μm wide Si3N4 with a bending radius of 100 μm and 104.6 μm, thereby giving a FSR of 2.23 nm and 2.13 nm, respectively. The length of each gain cavity phase shifter is 500 μm and 2π phase shift can be readily achieved. The gain waveguide is formed by a 1.1 μm thick Al2O3:Er3+ film deposited in a 4 μm deep and 5 μm wide trench. The green color fluorescence due to the upconversion in Er3+ under pump is shown in Fig. 1(b). Fig. 1(c) shows an SEM image of the gain waveguide cross-section. The gain waveguide is bent to allow for a >4 cm long waveguide to provide sufficient gain. Fig. 1(d) shows the mode profile for several bending radii. The large bend mode mismatch between these modes is resolved by using an adiabatic Euler bend [9].

Both ring heaters are tuned for Vernier operation. The lasing wavelength tuning over the C-band from 1527 nm to 1573 nm is shown in Fig. 2(a). Wavelength tuning up to 46 nm with more than 40 dB SMSR is achieved. Fig. 2(b) shows the laser cavity resonance wavelength tuning by heating two microrings simultaneously. The laser output power at 1561 nm as a function of pump power is shown in Fig. 2(c). Lasing power up to 1.6 mW is collected from the output port when 107 mW is used for the 980 nm pump. A slope efficiency of 2.2% with respect to on-chip pump power at 980 nm is obtained. To characterize the fine-tuning capability of the Er integrated tunable laser, a reference laser at a fixed wavelength is used to beat with the tunable laser through an optical combiner, as shown in Fig. 2(d). The gain cavity phase shifter is used for the fine tuning. The beat signals under different electrical powers supplied to the gain cavity phase shifter are shown in Fig. 2(e). As we increase the heater power, the beat signal shifts continuously to higher frequencies, without mode hopping. In order to measure the linewidth of the Er integrated tunable laser, a delayed self-heterodyne detection method [10] is used. A stable and narrow linewidth of 340 kHz is observed.

In conclusion, we have demonstrated a fully-integrated erbium-doped tunable laser on a silicon photonics platform. Two Si3N4 microring resonators are used to form a Vernier cavity. The tuning range is from 1527 nm to 1573 nm with >40 dB SMSR. A slope efficiency of 2.2% is reported, with 1.6 mW maximum output power. Fine tuning of the signal is demonstrated by tuning the gain cavity phase shifter. The laser linewidth is measured to be 340 kHz.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) under the DODOS (program manager: Dr. Gordon Keeler) projects. Nanxi Li acknowledges a fellowship from Agency of Science, Technology and Research (A*STAR), Singapore.