
Chapter 4

FINITE-ST ATE MARK OV
CHAINS

4.1 In tro duction

The counting processes { N(t); t > 0} described in Section 2.1.1 have the property that N(t)
changesat discrete instants of time, but is deÞned for all real t > 0. The Markov chains
to be discussed in this chapter are stochastic processes deÞned only at integer values of
time, n = 0, 1, At each integer time n ! 0, there is an integer-valued random variable
(rv) Xn, called the state at time n, and the process is the family of rv’s { Xn; n ! 0} . We
refer to these processes as integer-time processes. An integer-time process { Xn; n ! 0} can
also be viewed as a process { X(t); t ! 0} defined for all real t by taking X(t) = Xn for
n " t < n + 1, but since changes occur only at integer times, it is usually simpler to view
the process only at those integer times.

In general, for Markov chains, the set of possible values for each rv Xn is a countable set S.
If S is countably infinite, it is usually taken to be S = { 0, 1, 2, . . . } , whereas if S is finite,
it is usually taken to be S = { 1, . . . ,M} . In this chapter (except for Theorems 4.2.2 and
4.2.3), we restrict attention to the case in which S is finite, i.e., processes whose sample
functions are sequences of integers, each between 1 and M. There is no special significance
to using integer labels for states, and no compelling reason to include 0 for the countably
infinite case and not for the finite case. For the countably infinite case, the most common
applications come from queueing theory, where the state often represents the number of
waiting customers, which might be zero. For the finite case, we often use vectors and
matrices, where positive integer labels simplify the notation. In some examples, it will be
more convenient to use more illustrative labels for states.

Definition 4.1.1. A Markov chain is an integer-time process, { Xn, n ! 0} for which the
samplevaluesfor each rv Xn, n ! 1, lie in a countable set S and depend on the past only
through the most recent rv Xn�1. More speciÞcally, for all positive integers n, and for all
i, j, k . . . ,m in S,

Pr{ Xn=j | Xn�1=i,Xn�2=k, . . . ,X0=m} = Pr{ Xn=j | Xn�1=i} . (4.1)

160

4.1. INTR ODUCTION 161

Furthermore, Pr{ Xn=j | Xn�1=i} dependsonly on i and j (not n) and is denoted by

Pr{ Xn=j | Xn�1=i} = Pij . (4.2)

The initial state X0 has an arbitrary probability distribution. A Þnite-state Markov chain
is a Markov chain in which S is Þnite.

Equations such as (4.1) are often easier to read if they are abbreviated as

Pr{ Xn | Xn�1,Xn�2, . . . ,X0} = Pr{ Xn | Xn�1} .

This abbreviation means that equality holds for all sample values of each of the rv’s. i.e.,
it means the same thing as (4.1).

The rv Xn is called the state of the chain at time n. The possible values for the state at
time n, namely { 1, . . . ,M} or { 0, 1, . . . } are also generally called states, usually without
too much confusion. Thus Pij is the probability of going to state j given that the previous
state is i; the new state, given the previous state, is independent of all earlier states. The
use of the word state here conforms to the usual idea of the state of a system — the state
at a given time summarizes everything about the past that is relevant to the future.

Definition 4.1.1 is used by some people as the definition of a homogeneous Markov chain.
For them, Markov chains include more general cases where the transition probabilities can
vary with n. Thus they replace (4.1) and (4.2) by

Pr{ Xn=j | Xn�1=i,Xn�2=k, . . . ,X0=m} = Pr{ Xn=j | Xn�1=i} = Pij(n). (4.3)

We will call a process that obeys (4.3), with a dependence on n, a non-homogeneousMarkov
chain. We will discuss only the homogeneous case, with no dependence on n, and thus
restrict the definition to that case. Not much of general interest can be said about non-
homogeneous chains.1

An initial probability distribution for X0, combined with the transition probabilities { Pij}
(or { Pij(n)} for the non-homogeneous case), define the probabilities for all events in the
Markov chain.

Markov chains can be used to model an enormous variety of physical phenomena and can be
used to approximate many other kinds of stochastic processes such as the following example:

Example 4.1.1. Consider an integer-time process { Zn; n ! 0} where the Zn are finite
integer-valued rv’s as in a Markov chain, but each Zn depends probabilistically on the
previous k rv’s, Zn�1, Zn�2, . . . , Zn�k. In other words, using abbreviated notation,

Pr{ Zn | Zn�1, Zn�2, . . . , Z0} = Pr{ Zn | Zn�1, . . . Zn�k} . (4.4)

1On the other hand, we frequently find situations where a small set of rv’s, say W, X, Y, Z satisfy the
Markov condition that Pr{Z | Y, X, W} = Pr{Z | Y } and Pr{Y | X, W} = Pr{Y | X} but where the condi-
tional distributions Pr{Z | Y } and Pr{Y | X} are unrelated. In other words, Markov chains imply homoge-
niety here, whereas the Markov condition does not.

162 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

We now show how to view the condition on the right side of (4.4), i.e., (Zn�1, Zn�2, . . . , Zn�k)
as the state of the process at time n # 1. We can rewrite (4.4) as

Pr{ Zn, Zn�1, . . . , Zn�k+1 | Zn�1, . . . , Z0} = Pr{ Zn, . . . , Zn�k+1 | Zn�1, . . . Zn�k} ,

since, for each side of the equation, any given set of values for Zn�1, . . . , Zn�k+1 on the
right side of the conditioning sign specifies those values on the left side. Thus if we define
Xn�1 = (Zn�1, . . . , Zn�k) for each n, this simplifies to

Pr{ Xn | Xn�1, . . . ,Xk�1} = Pr{ Xn | Xn�1} .

We see that by expanding the state space to include k-tuples of the rv’s Zn, we have
converted the k dependence over time to a unit dependence over time, i.e., a Markov
process is defined using the expanded state space.

Note that in this new Markov chain, the initial state is Xk�1 = (Zk�1, . . . , Z0), so one
might want to shift the time axis to start with X0.

Markov chains are often described by a directed graph (see Figure 4.1 a). In this graphical
representation, there is one node for each state and a directed arc for each non-zero transition
probability. If Pij = 0, then the arc from node i to node j is omitted, so the di↵erence
between zero and non-zero transition probabilities stands out clearly in the graph. The
classification of states, as discussed in Section 4.2, is determined by the set of transitions
with non-zero probabilities, and thus the graphical representation is ideal for that topic.

A finite-state Markov chain is also often described by a matrix [P] (see Figure 4.1 b). If
the chain has M states, then [P] is an M by M matrix with elements Pij . The matrix
representation is ideally suited for studying algebraic and computational issues.

!1
"
#

! !
""#

P11

!5
$
%!!$

""
P55

!2 !3

!

a) Graphical b) Matrix

4

P44

%

!6

& & & & & &&'

P12

((((((()

P41

!!*
P23

!!$
P32

+P45

, P63

-
-

-
-

-
--.

P65 [P] =

!

"
"
"
#

P11 P12 ááá P16

P21 P22 ááá P26
...

...
...
...
...

...
P61 P62 ááá P66

$

%
%
%
&

Figure 4.1: Graphical and matrix representation of a 6 state Markov chain; a directed
arc from i to j is included in the graph if and only if (i↵) Pij > 0.

4.2 ClassiÞcation of states

This section, except where indicated otherwise, applies to Markov chains with both finite
and countable state spaces. We start with several definitions.

4.2. CLASSIFICATION OF STATES 163

Definition 4.2.1. An (n-step) walk is an ordered string of nodes, (i0, i1, . . . , in), n ! 1,
in which there is a directed arc from im�1 to im for each m, 1 " m " n. A path is a walk
in which no nodesare repeated. A cycle is a walk in which the Þrst and last nodesare the
sameand no other node is repeated.

Note that a walk can start and end on the same node, whereas a path cannot. Also the
number of steps in a walk can be arbitrarily large, whereas a path can have at most M # 1
steps and a cycle at most M steps for a finite-state Markov chain with |S| = M.

Definition 4.2.2. A state j is accessible from i (abbreviated as i $ j) if there is a walk
in the graph from i to j.

For example, in Figure 4.1(a), there is a walk from node 1 to node 3 (passing through
node 2), so state 3 is accessible from 1. There is no walk from node 5 to 3, so state 3 is
not accessible from 5. State 2 is accessible from itself, but state 6 is not accessible from
itself. To see the probabilistic meaning of accessibility, suppose that a walk i0, i1, . . . , in
exists from node i0 to in. Then, conditional on X0 = i0, there is a positive probability,
Pi0i1 , that X1 = i1, and consequently (since Pi1i2 > 0), there is a positive probability that
X2 = i2. Continuing this argument, there is a positive probability that Xn = in, so that
Pr{ Xn=in | X0=i0} > 0. Similarly, if Pr{ Xn=in | X0=i0} > 0, then an n-step walk from
i0 to in must exist. Summarizing, i $ j if and only if (i↵) Pr{ Xn=j | X0=i} > 0 for some
n ! 1. We denote Pr{ Xn=j | X0=i} by Pn

ij . Thus, for n ! 1, Pn
ij > 0 if and only if the

graph has an n step walk from i to j (perhaps visiting the same node more than once). For
the example in Figure 4.1(a), P 2

13 = P12P23 > 0. On the other hand, Pn
53 = 0 for all n ! 1.

An important relation that we use often in what follows is that if there is an n-step walk
from state i to j and an m-step walk from state j to k, then there is a walk of m + n steps
from i to k. Thus

Pn
ij > 0 and Pm

jk > 0 imply Pn+m
ik > 0. (4.5)

This also shows that

i $ j and j $ k imply i $ k. (4.6)

Definition 4.2.3. Two distinct states i and j communicate (abbreviated i % j) if i is
accessiblefrom j and j is accessiblefrom i.

An important fact about communicating states is that if i % j and m % j then i % m. To
see this, note that i % j and m % j imply that i $ j and j $ m, so that i $ m. Similarly,
m $ i, so i % m.

Definition 4.2.4. A class C of states is a non-empty set of states such that each i & C
communicates with every other state j & C and communicates with no j /& C.

For the example of Figure 4.1(a), { 2, 3} is one class of states, { 1} , { 4} , { 5} , and { 6} are
the other classes. Note that state 6 does not communicate with any other state, and is not
even accessible from itself, but the set consisting of { 6} alone is still a class. The entire set
of states in a given Markov chain is partitioned into one or more disjoint classes in this way.

164 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

Definition 4.2.5. For Þnite-state Markov chains, a recurrent state is a state i that is
accessiblefrom all states that are accessiblefrom i (i is recurrent if i $ j implies that
j $ i). A transient state is a state that is not recurrent.

Recurrent and transient states for Markov chains with a countably-infinite state space will
be defined in Chapter 6.

According to the definition, a state i in a finite-state Markov chain is recurrent if there
is no possibility of going to a state j from which there can be no return. As we shall see
later, if a Markov chain ever enters a recurrent state, it returns to that state eventually
with probability 1, and thus keeps returning infinitely often (in fact, this property serves as
the definition of recurrence for Markov chains without the finite-state restriction). A state
i is transient if there is some j that is accessible from i but from which there is no possible
return. Each time the system returns to i, there is a possibility of going to j; eventually
this possibility will occur with no further returns to i.

Theorem 4.2.1. For Þnite-state Markov chains, either all states in a class are transient
or all are recurrent.2

Proof: Assume that state i is transient (i.e., for some j, i $ j but j '$ i) and suppose
that i and m are in the same class (i.e., i % m). Then m $ i and i $ j, so m $ j. Now
if j $ m, then the walk from j to m could be extended to i; this is a contradiction, and
therefore there is no walk from j to m, and m is transient. Since we have just shown that
all nodes in a class are transient if any are, it follows that the states in a class are either all
recurrent or all transient.

For the example of Figure 4.1(a), { 2, 3} and { 5} are recurrent classes and the other classes
are transient. In terms of the graph of a Markov chain, a class is transient if there are any
directed arcs going from a node in the class to a node outside the class. Every finite-state
Markov chain must have at least one recurrent class of states (see Exercise 4.2), and can
have arbitrarily many additional classes of recurrent states and transient states.

States can also be classified according to their periods (see Figure 4.2). For X0 = 2 in
Figure 4.2(a), Xn must be 2 or 4 for n even and 1 or 3 for n odd. On the other hand, if X0

is 1 or 3, then Xn is 2 or 4 for n odd and 1 or 3 for n even. Thus the e↵ect of the starting
state never dies out. Figure 4.2(b) illustrates another example in which the memory of the
starting state never dies out. The states in both of these Markov chains are said to be
periodic with period 2. Another example of periodic states are states 2 and 3 in Figure
4.1(a).

Definition 4.2.6. The period of a state i, denoted d(i), is the greatest common divisor
(gcd) of those valuesof n for which Pn

ii > 0. If the period is 1, the state is aperiodic, and
if the period is 2 or more, the state is periodic.

2As shown in Chapter 6, this theorem is also true for Markov chains with a countably infinite state
space, but the proof given here is inadequate. Also recurrent classes with a countably infinite state space
are further classified into either positive-recurrent or null-recurrent, a distinction that does not appear in
the finite-state case.

4.2. CLASSIFICATION OF STATES 165

&1 &2

&3&4

&7

&8 &9

&4

&1

&3

&2

&5&6

!*
!$

!*
!$

/0

/% /%

/0 1
12

1
123

34
3

34

1
15

1
15 3

36
3

36

+

,

(a) (b)

Figure 4.2: Periodic Markov chains

For example, in Figure 4.2(a), Pn
11 > 0 for n = 2, 4, 6, Thus d(1), the period of state 1,

is two. Similarly, d(i) = 2 for the other states in Figure 4.2(a). For Figure 4.2(b), we have
Pn

11 > 0 for n = 4, 8, 10, 12, . . . ; thus d(1) = 2, and it can be seen that d(i) = 2 for all the
states. These examples suggest the following theorem.

Theorem 4.2.2. For any Markov chain (with either a Þnite or countably inÞnite number
of states), all states in the sameclasshave the sameperiod.

Proof: Let i and j be any distinct pair of states in a class C. Then i % j and there is some
r such that P r

ij > 0 and some s such that P s
ji > 0. Since there is a walk of length r + s

going from i to j and back to i, r + s must be divisible by d(i). Let t be any integer such
that P t

jj > 0. Since there is a walk of length r + t + s from i to j, then back to j, and then
to i, r + t + s is divisible by d(i), and thus t is divisible by d(i). Since this is true for any t
such that P t

jj > 0, d(j) is divisible by d(i). Reversing the roles of i and j, d(i) is divisible
by d(j), so d(i) = d(j).

Since the states in a class C all have the same period and are either all recurrent or all
transient, we refer to C itself as having the period of its states and as being recurrent or
transient. Similarly if a Markov chain has a single class of states, we refer to the chain as
having the corresponding period.

Theorem 4.2.3. If a recurrent class C in a Þnite-state Markov chain has period d, then
the states in C can be partitioned into d subsets,S1, S2, . . . , Sd, in such a way that all
transitions from S1 go to S2, all from S2 go to S3, and so forth up to Sd�1 to Sd. Final ly,
all transitions from Sd go to S1.

Proof: See Figure 4.3 for an illustration of the theorem. For a given state in C, say state
1, define the sets S1, . . . , Sd by

Sm = { j : Pnd+m
1j > 0 for some n ! 0} ; 1 " m " d. (4.7)

For each j & C, we first show that there is one and only one value of m such that j & Sm.
Since 1 % j, there is some r for which P r

1j > 0 and some s for which P s
j1 > 0. Thus there

is a walk from 1 to 1 (through j) of length r + s, so r + s is divisible by d. For the given r,

166 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

let m, 1 " m " d, satisfy r = m + nd, where n is an integer. From (4.7), j & Sm. Now let
r0 be any other integer such that P r!

1j > 0. Then r0 + s is also divisible by d, so that r0 # r
is divisible by d. Thus r0 = m + n0d for some integer n0 and that same m. Since r0 is any
integer such that P r!

1j > 0, j is in Sm for only that one value of m. Since j is arbitrary, this
shows that the sets Sm are disjoint and partition C.

Finally, suppose j & Sm and Pjk > 0. Given a walk of length r = nd + m from state 1 to
j, there is a walk of length nd + m + 1 from state 1 to k. It follows that if m < d, then
k & Sm+1 and if m = d, then k & S1, completing the proof.

'

'

' '

'

'7
7

7
7

7
7

778

9
9

9
9

99:

;
< < < < < < < < < < < < < < <<=

! ! ! ! ! ! ! ! ! ! ! ! ! !*

< < < < < < < < <<=

((((((((((((((>
??@,

S1

S2

S3

Figure 4.3: Structure of a periodic Markov chain with d = 3. Note that transitions
only go from one subset Sm to the next subset Sm +1 (or from Sd to S1).

We have seen that each class of states (for a finite-state chain) can be classified both in
terms of its period and in terms of whether or not it is recurrent. The most important case
is that in which a class is both recurrent and aperiodic.

Definition 4.2.7. For a Þnite-state Markov chain, an ergodic classof statesis a classthat
is both recurrent and aperiodic3. A Markov chain consisting entirely of one ergodic classis
called an ergodic chain.

We shall see later that these chains have the desirable property that Pn
ij becomes indepen-

dent of the starting state i as n $ (. The next theorem establishes the first part of this
by showing that Pn

ij > 0 for all i and j when n is su�ciently large. A guided proof is given
in Exercise 4.5.

Theorem 4.2.4. For an ergodic M state Markov chain, Pm
ij > 0 for all i, j, and all m !

(M # 1)2 + 1.

Figure 4.4 illustrates a situation where the bound (M # 1)2 + 1 is met with equality. Note
that there is one cycle of length M # 1 and the single node not on this cycle, node 1, is the
unique starting node at which the bound is met with equality.

3For Markov chains with a countably infinite state space, ergodic means that the states are positive-
recurrent and aperiodic (see Chapter 6, Section 6.1).

4.3. THE MATRIX REPRESENTATION 167

1
112 3

334

1
1153

336

+

,
A

()

* +
4

()

* +
5

()

* +
6

()

* +
1

()

* +
2

()

* +
3

Figure 4.4: An ergodic chain with M = 6 states in which P m
ij > 0 for all m > (M # 1)2

and all i, j but P (M�1) 2

11 = 0 The figure also illustrates that an M state ergodic Markov
chain with M ! 2 must have a cycle with M # 1 or fewer nodes. To see this, note
that an ergodic chain must have cycles, since each node must have a walk to itself, and
subcycles of repeated nodes can be omitted from that walk, converting it into a cycle.
Such a cycle might have M nodes, but a chain with only an M node cycle would be
periodic. Thus some nodes must be on smaller cycles, such as the cycle of length 5 in
the figure.

4.3 The matrix represen tation

The matrix [P] of transition probabilities of a Markov chain is called a stochastic matrix;
that is, a stochastic matrix is a square matrix of nonnegative terms in which the elements
in each row sum to 1. We first consider the n step transition probabilities Pn

ij in terms of
[P]. The probability, starting in state i, of going to state j in two steps is the sum over k of
the probability of going first to k and then to j. Using the Markov condition in (4.1),

P 2
ij =

M'

k=1

PikPkj .

It can be seen that this is just the ij term of the product of the matrix [P] with itself;
denoting [P][P] as [P 2], this means that P 2

ij is the (i, j) element of the matrix [P 2]. Similarly,
Pn

ij is the ij element of the nth power of the matrix [P]. Since [Pm+n] = [Pm][Pn], this
means that

Pm+n
ij =

M'

k=1

Pm
ik Pn

kj . (4.8)

This is known as the Chapman-Kolmogorov equation. An e�cient approach to compute
[Pn] (and thus Pn

ij) for large n, is to multiply [P 2] by [P 2], then [P 4] by [P 4] and so forth.
Then [P], [P 2], [P 4], . . . can be multiplied as needed to get [Pn].

168 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

4.3.1 Steady state and [P n] for large n

The matrix [Pn] (i.e., the matrix of transition probabilities raised to the nth power) is im-
portant for a number of reasons. The i, j element of this matrix is Pn

ij = Pr{ Xn=j | X0=i} .
If memory of the past dies out with increasing n, then we would expect the dependence of
Pn

ij on both n and i to disappear as n $ (. This means, first, that [Pn] should converge
to a limit as n $ (, and, second, that for each column j, the elements in that column,
Pn

1j , P
n
2j , . . . , Pn

Mj should all tend toward the same value, say ⇡j , as n $ (. If this type
of convergence occurs, (and we later determine the circumstances under which it occurs),
then Pn

ij $ ⇡j and each row of the limiting matrix will be (⇡1, . . . ,⇡M), i.e., each row is
the same as each other row.

If we now look at the equation Pn+1
ij =

(
k Pn

ikPkj , and assume the above type of convergence
as n $ (, then the limiting equation becomes ⇡j =

(
k ⇡kPkj . In vector form, this equation

is ⇡⇡⇡ = ⇡⇡⇡[P]. We will do this more carefully later, but what it says is that if Pn
ij approaches

a limit denoted ⇡j as n $ (, then ⇡⇡⇡ = (⇡1, . . . ,⇡M) satisfies ⇡⇡⇡ = ⇡⇡⇡[P]. If nothing else,
it is easier to solve the linear equations ⇡⇡⇡ = ⇡⇡⇡[P] than to multiply [P] by itself an infinite
number of times.

Definition 4.3.1. A steady-state vector (or a steady-state distribution) for an M state
Markov chain with transition matrix [P] is a row vector ⇡⇡⇡ that satisÞes

⇡⇡⇡ = ⇡⇡⇡[P] ; where
'

i

⇡i = 1 and ⇡i ! 0 , 1 " i " M. (4.9)

If ⇡⇡⇡ satisfies (4.9), then the last half of the equation says that it must be a probability
vector. If ⇡⇡⇡ is taken as the initial PMF of the chain at time 0, then that PMF is maintained
forever. That is, post-multiplyng both sides of (4.9) by [P], we get ⇡⇡⇡[P] = ⇡⇡⇡[P 2], and
iterating this, ⇡⇡⇡ = ⇡⇡⇡[P 2] = ⇡⇡⇡[P 3] = ááá.

It is important to recognize that we have shown that if [Pn] converges to a matrix all of
whose rows are ⇡⇡⇡, then ⇡⇡⇡ is a steady-state vector, i.e., it satisfies (4.9). However, finding
a ⇡⇡⇡ that satisfies (4.9) does not imply that [Pn] converges as n $ (. For the example of
Figure 4.1, it can be seen that if we choose ⇡2 = ⇡3 = 1/2 with ⇡i = 0 otherwise, then ⇡⇡⇡ is
a steady-state vector. Reasoning more physically, we see that if the chain is in either state
2 or 3, it simply oscillates between those states for all time. If it starts at time 0 being
in states 2 or 3 with equal probability, then it persists forever being in states 2 or 3 with
equal probability. Although this choice of ⇡⇡⇡ satisfies the definition in (4.9) and also is a
steady-state distribution in the sense of not changing over time, it is not a very satisfying
form of steady state, and almost seems to be concealing the fact that we are dealing with
a simple oscillation between states.

This example raises one of a number of questions that should be answered concerning
steady-state distributions and the convergence of [Pn]:

1. Under what conditions does ⇡⇡⇡ = ⇡⇡⇡[P] have a probability vector solution?

2. Under what conditions does ⇡⇡⇡ = ⇡⇡⇡[P] have a unique probability vector solution?

4.3. THE MATRIX REPRESENTATION 169

3. Under what conditions does each row of [Pn] converge to a probability vector solution
of ⇡⇡⇡ = ⇡⇡⇡[P]?

We first give the answers to these questions for finite-state Markov chains and then derive
them. First, (4.9) always has a solution (although this is not necessarily true for infinite-
state chains). The answers to the second and third questions are simplified if we use the
following definition:

Definition 4.3.2. A unichain is a Þnite-stateMarkov chain that contains a singlerecurrent
classplus, perhaps, sometransient states. An ergodic unichain is a unichain for which the
recurrent class is ergodic.

A unichain, as we shall see, is the natural generalization of a recurrent chain to allow for
some initial transient behavior without disturbing the long term aymptotic behavior of the
underlying recurrent chain.

The answer to the second question above is that the solution to (4.9) is unique if and only
if [P] is the transition matrix of a unichain. If there are c recurrent classes, then (4.9) has
c linearly independent solutions, each nonzero only over the elements of the corresponding
recurrent class. For the third question, each row of [Pn] converges to the unique solution of
(4.9) if and only if [P] is the transition matrix of an ergodic unichain. If there are multiple
recurrent classes, and each one is aperiodic, then [Pn] still converges, but to a matrix with
non-identical rows. If the Markov chain has one or more periodic recurrent classes, then
[Pn] does not converge.

We first look at these answers from the standpoint of the transition matrices of finite-state
Markov chains, and then proceed in Chapter 6 to look at the more general problem of
Markov chains with a countably infinite number of states. There we use renewal theory to
answer these same questions (and to discover the di↵erences that occur for infinite-state
Markov chains).

The matrix approach is useful computationally and also has the advantage of telling us
something about rates of convergence. The approach using renewal theory is very simple
(given an understanding of renewal processes), but is more abstract.

In answering the above questions (plus a few more) for finite-state Markov chains, it is
simplest to first consider the third question,4 i.e., the convergence of each row of [Pn] to
the solution of (4.9). The simplest approach to this, for each column j of [Pn], is to study the
di↵erence between the largest and smallest element of that column and how this di↵erence
changes with n. The following almost trivial lemma starts this study, and is valid for all
finite-state Markov chains.

Lemma 4.3.1. Let [P] be the transition matrix of a Þnite-state Markov chain and let [Pn]
be the nth power of [P] i.e., the matrix of nth order transition probabilities, Pn

ij . Then for
each state j and each integer n ! 1

max
i

Pn+1
ij " max

`
Pn

`j min
i

Pn+1
ij ! min

`
Pn

`j . (4.10)

4One might naively try to show that a steady-state vector exists by first noting that each row of P sums
to 1. The column vector e = (1, 1, . . . , 1)T then satisfies the eigenvector equation e = [P]e. Thus there must
also be a left eigenvector satisfying ⇡⇡⇡[P] = ⇡⇡⇡. The problem here is showing that ⇡⇡⇡ is real and non-negative.

170 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

Discussion The lemma says that for each column j, the maximum over the elements of the
column is non-increasing with n and the minimum is non-decreasing with n. The elements
in a column that constitute the maximum and minimum can change with n, but the range
covered by those elements is nested in n, either shrinking or staying the same as n $ (.

Proof: For each i, j, n, we use the Chapman-Kolmogorov equation, (4.8), followed by the
fact that Pn

kj " max` Pn
`j , to see that

Pn+1
ij =

'

k

PikP
n
kj "

'

k

Pik max
`

Pn
`j = max

`
Pn

`j . (4.11)

Since this holds for all states i, and thus for the maximizing i, the first half of (4.10) follows.
The second half of (4.10) is the same, with minima replacing maxima, i.e.,

Pn+1
ij =

'

k

PikP
n
kj !

'

k

Pik min
`

Pn
`j = min

`
Pn

`j . (4.12)

For some Markov chains, the maximizing elements in each column decrease with n and
reach a limit equal to the increasing sequence of minimizing elements. For these chains,
[Pn] converges to a matrix where each column is constant, i.e., each row is the same.
For others, the maximizing elements converge to some value strictly above the limit of
the minimizing elements, Then [Pn] does not converge to a matrix where each column is
constant, and might not converge at all since the location of the maximizing and minimizing
elements in each column can vary with n.

The following three subsections establish the above kind of convergence (and a number of
subsidiary results) for three cases of increasing complexity. The first assumes that Pij > 0
for all i, j. This is denoted as [P] > 0 and is not of great interest in its own right, but
provides a needed step for the other cases. The second case is where the Markov chain is
ergodic, and the third is where the Markov chain is an ergodic unichain.

4.3.2 Steady state assuming [P] > 0

Lemma 4.3.2. Let the transition matrix of a Þnite-stateMarkov chain satisfy [P] > 0 (i.e.,
Pij > 0 for all i, j), and let ↵ = mini,j Pij . Then for all states j and all n ! 1:

max
i

Pn+1
ij # min

i
Pn+1

ij "
)

max
`

Pn
`j # min

`
Pn

`j

*
(1 # 2↵). (4.13)

)
max

`
Pn

`j # min
`

Pn
`j

*
" (1 # 2↵)n. (4.14)

lim
n!1

max
`

Pn
`j = lim

n!1
min

`
Pn

`j > 0. (4.15)

Discussion: Since Pij > 0 for all i, j, we must have ↵ > 0. Thus the theorem says that
for each j, the elements Pn

ij in column j of [Pn] approach equality over both i and n as

4.3. THE MATRIX REPRESENTATION 171

n $ (, i.e., the state at time n becomes independent of the state at time 0 as n $ (.
The approach is exponential in n.

Proof: We first slightly tighten the inequality in (4.11). For a given j and n, let `min be a
value of ` that minimizes Pn

`j . Then

Pn+1
ij =

'

k

PikP
n
kj

"
'

k 6=`min

Pik max
`

Pn
`j + Pi`min min

`
Pn

`j

= max
`

Pn
`j # Pi`min

)
max

`
Pn

`j # min
`

Pn
`j

*

" max
`

Pn
`j # ↵

)
max

`
Pn

`j # min
`

Pn
`j

*
,

where in the third step, we added and subtracted Pi`min max` Pn
`j to the right hand side,

and in the fourth step, we used ↵ " Pi`min in conjuction with the fact that the term in
parentheses must be nonnegative.

Repeating the same argument with the roles of max and min reversed,

Pn+1
ij ! min

`
Pn

`j + ↵

)
max

`
Pn

`j # min
`

Pn
`j

*
.

The upper bound above applies to maxi P
n+1
ij and the lower bound to mini P

n+1
ij . Thus,

subtracting the lower bound from the upper bound, we get (4.13).

Finally, note that

min
`

P`j ! ↵ > 0 max
`

P`j " 1 # ↵.

Thus max` P`j # min` P`j " 1 # 2↵. Using this as the base for iterating (4.13) over n, we
get (4.14). This, in conjuction with (4.10), shows not only that the limits in (4.10) exist
and are positive and equal, but that the limits are approached exponentially in n.

4.3.3 Ergo dic Mark ov chains

Lemma 4.3.2 extends quite easily to arbitrary ergodic finite-state Markov chains. The key
to this comes from Theorem 4.2.4, which shows that if [P] is the matrix for an M state
ergodic Markov chain, then the matrix [P h] is positive for any h ! (M # 1)2 + 1. Thus,
choosing h = (M # 1)2 + 1, we can apply Lemma 4.3.2 to [P h] > 0. For each integer ⌫ ! 1,

max
i

P h(⌫+1)
ij # min

i
P h(⌫+1)

ij "
+
max

m
P h⌫

mj # min
m

P h⌫
mj

,
(1 # 2�) (4.16)

+
max

m
P h⌫

mj # min
m

P h⌫
mj

,
" (1 # 2�)⌫

lim
⌫!1

max
m

P h⌫
mj = lim

⌫!1
min

m
P h⌫

mj > 0, (4.17)

172 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

where � = mini,j P h
ij . Lemma 4.3.1 states that maxi P

n+1
ij is nondecreasing in n, so that

the limit on the left in (4.17) can be replaced with a limit in n. Similarly, the limit on the
right can be replaced with a limit on n, getting

+
max

m
Pn

mj # min
m

Pn
mj

,
" (1 # 2�)bn/hc (4.18)

lim
n!1

max
m

Pn
mj = lim

n!1
min

m
Pn

mj > 0. (4.19)

Now define ⇡⇡⇡ > 0 by

⇡j = lim
n!1

max
m

Pn
mj = lim

n!1
min

m
Pn

mj > 0. (4.20)

Since ⇡j lies between the minimum and maximum Pn
ij for each n,

-
-Pn

ij # ⇡j

-
- " (1 # 2�)bn/hc. (4.21)

In the limit, then,

lim
n!1

Pn
ij = ⇡j for each i, j. (4.22)

This says that the matrix [Pn] has a limit as n $ (and the i, j term of that matrix is ⇡j

for all i, j. In other words, each row of this limiting matrix is the same and is the vector ⇡⇡⇡.
This is represented most compactly by

lim
n!1

[Pn] = e⇡⇡⇡ where e = (1, 1, . . . , 1)T . (4.23)

The following theorem5 summarizes these results and adds one small additional result.

Theorem 4.3.1. Let [P] be the matrix of an ergodic Þnite-state Markov chain. Then there
is a unique steady-statevector ⇡⇡⇡, that vector is positive and satisÞes(4.22) and (4.23). The
convergence in n is exponential, satisfying (4.18).

Proof: We need to show that ⇡⇡⇡ as defined in (4.20) is the unique steady-state vector. Let
µµµ be any steady state vector, i.e., any probability vector solution to µµµ[P] = µµµ. Then µµµ must
satisfy µµµ = µµµ[Pn] for all n > 1. Going to the limit,

µµµ = µµµ lim
n!1

[Pn] = µµµe⇡⇡⇡ = ⇡⇡⇡.

Thus ⇡⇡⇡ is a steady state vector and is unique.

4.3.4 Ergo dic Unic hains

Understanding how Pn
ij approaches a limit as n $ (for ergodic unichains is a straight-

forward extension of the results in Section 4.3.3, but the details require a little care. Let
T denote the set of transient states (which might contain several transient classes), and

4.3. THE MATRIX REPRESENTATION 173

[P] =

!

"
"
#

[PT] [PT R]

[0] [PR]

$

%
%
& where [PT] =

!

#
P11 ááá P1t

ááá ááá ááá
Pt 1 . . . Ptt

$

&

[PT R] =

!

#
P1,t + 1 ááá P1,t + r

ááá ááá ááá
Pt,t + 1 . . . Pt,t + r

$

& [PR] =

!

#
Pt + 1,t + 1 ááá Pt + r ,t + 1

ááá ááá ááá
Pt + r ,t + 1 . . . Pt + r ,t + r

$

&

Figure 4.5: The transition matrix of a unichain. The block of zeroes in the lower left
corresponds to the absence of transitions from recurrent to transient states.

assume the states of T are numbered 1, 2, . . . , t. Let R denote the recurrent class, assumed
to be numbered t+1, . . . , t+r (see Figure 4.5).

If i and j are both recurrent states, then there is no possibility of leaving the recurrent class
in going from i to j. Assuming this class to be ergodic, the transition matrix [PR] as shown
in Figure 4.5 has been analyzed in Section 4.3.3.

If the initial state is a transient state, then eventually the recurrent class is entered, and
eventually after that, the distribution approaches steady state within the recurrent class.
This suggests (and we next show) that there is a steady-state vector ⇡⇡⇡ for [P] itself such
that ⇡j = 0 for j & T and ⇡j is as given in Section 4.3.3 for each j & R .

Initially we will show that Pn
ij converges to 0 for i, j & T . The exact nature of how and

when the recurrent class is entered starting in a transient state is an interesting problem in
its own right, and is discussed more later. For now, a crude bound will su�ce.

For each transient state, there must be a walk to some recurrent state, and since there are
only t transient states, there must be some such path of length at most t. Each such path
has positive probability, and thus for each i & T ,

(
j2R P t

ij > 0. It follows that for each
i & T ,

(
j2T P t

ij < 1. Let � < 1 be the maximum of these probabilities over i & T , i.e.,

� = max
i2T

'

j2T
P t

ij < 1.

Lemma 4.3.3. Let [P] be a unichain with a set T of t transient states. Then

max
`2T

'

j2T
Pn

`j " �bn/tc. (4.24)

5This is essentially the Frobenius theorem for non-negative irreducible matrices, specialized to Markov
chains. A non-negative matrix [P] is irreducible if its graph (containing an edge from node i to j if Pij > 0)
is the graph of a recurrent Markov chain. There is no constraint that each row of [P] sums to 1. The proof
of the Frobenius theorem requires some fairly intricate analysis and seems to be far more complex than the
simple proof here for Markov chains. A proof of the general Frobenius theorem can be found in [11].

174 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

Proof: For each integer multiple ⌫t of t and each i & T ,
'

j2T
P (⌫+1)t

ij =
'

k2T
P t

ik

'

j2T
P ⌫t

kj "
'

k2T
P t

ik max
`2T

'

j2T
P ⌫t

`j " � max
`2T

'

j2T
P ⌫t

`j .

Recognizing that this applies to all i & T , and thus to the maximum over i, we can iterate
this equation, getting

max
`2T

'

j2T
P ⌫t

`j " �⌫ .

Since this maximum is nonincreasing in n, (4.24) follows.

We now proceed to the case where the initial state is i & T and the final state is j & R .
Let m =)n/2*. For each i & T and j & R , the Chapman-Kolmogorov equation, says that

Pn
ij =

'

k2T
Pm

ik Pn�m
kj +

'

k2R
Pm

ik Pn�m
kj .

Let ⇡j be the steady-state probability of state j & R in the recurrent Markov chain with
states R , i.e., ⇡j = limn!1 Pn

kj . Then for each i & T ,

-
-Pn

ij # ⇡j

-
- =

-
-
-
-
-

'

k2T
Pm

ik

+
Pn�m

kj # ⇡j

,
+

'

k2R
Pm

ik

+
Pn�m

kj # ⇡j

,
-
-
-
-
-

"
'

k2T
Pm

ik

-
-
-Pn�m

kj # ⇡j

-
-
- +

'

k2R
Pm

ik

-
-
-Pn�m

kj # ⇡j

-
-
-

"
'

k2T
Pm

ik +
'

k2R
Pm

ik

-
-
-Pn�m

kj # ⇡j

-
-
- (4.25)

" �bm/tc + (1 # 2�)b(n�m)/hc, (4.26)

where the first step upper bounded the absolute value of a sum by the sum of the absolute
values. In the last step, (4.24) was used in the first half of (4.25) and (4.21) (with h =
(r # 1)2 + 1 and � = mini,j2R P h

ij > 0) was used in the second half.

This is summarized in the following theorem.

Theorem 4.3.2. Let [P] be the matrix of an ergodic Þnite-stateunichain. Then limn!1[Pn] =
e⇡⇡⇡ where e = (1, 1, . . . , 1)T and ⇡⇡⇡ is the steady-state vector of the recurrent classof states,
expanded by 0Õsfor each transient state of the unichain. The convergence is exponential in
n for all i, j.

4.3.5 Arbitrary Þnite-state Mark ov chains

The asymptotic behavior of [Pn] as n $ (for arbitrary finite-state Markov chains can
mostly be deduced from the ergodic unichain case by simple extensions and common sense.

4.4. THE EIGENVALUES AND EIGENVECTORS OF STOCHASTIC MATRICES 175

First consider the case of m > 1 aperiodic classes plus a set of transient states. If the initial
state is in the th of the recurrent classes, say R then the chain remains in R and there
is a unique finite-state vector ⇡⇡⇡ that is non-zero only in R that can be found by viewing
class in isolation.

If the initial state i is transient, then, for each R, there is a certain probability that R

is eventually reached, and once it is reached there is no exit, so the steady state over that
recurrent class is approached. The question of finding the probability of entering each
recurrent class from a given transient class will be discussed in the next section.

Next consider a recurrent Markov chain that is periodic with period d. The dth order
transition probability matrix, [P d], is then constrained by the fact that P d

ij = 0 for all j

not in the same periodic subset as i. In other words, [P d] is the matrix of a chain with d
recurrent classes. We will obtain greater facility in working with this in the next section
when eigenvalues and eigenvectors are discussed.

4.4 The eigenvalues and eigenvectors of stochastic matrices

For ergodic unichains, the previous section showed that the dependence of a state on the
distant past disappears with increasing n, i.e., Pn

ij $ ⇡j . In this section we look more
carefully at the eigenvalues and eigenvectors of [P] to sharpen our understanding of how
fast [Pn] converges for ergodic unichains and what happens for other finite-state Markov
chains.

Definition 4.4.1. A row6 vector ⇡⇡⇡ is a left eigenvector of [P] of eigenvalue� if ⇡⇡⇡ '= 0
and ⇡⇡⇡[P] = �⇡⇡⇡, i.e.,

(
i ⇡iPij = �⇡j for all j. A column vector ⌫⌫⌫ is a right eigenvector of

eigenvalue� if ⌫⌫⌫ '= 0 and [P]⌫⌫⌫ = �⌫⌫⌫, i.e.,
(

j Pij⌫j = �⌫i for all i.

We showed that for an ergodic unichain, there is a unique steady-state vector ⇡⇡⇡ that is a left
eigenvector with � = 1 and (within a scale factor) a unique right eigenvector e = (1, . . . , 1)T .
In this section we look at the other eigenvalues and eigenvectors and also look at Markov
chains other than ergodic unichains. We start by limiting the number of states to M = 2.
This provides insight without requiring much linear algebra. After that, the general case
with arbitrary M < (is analyzed.

6Students of linear algebra usually work primarily with right eigenvectors (and in abstract linear algebra
often ignore matrices and concrete M-tuples altogether). Here a more concrete view is desirable because
of the direct connection of [P n] with transition probabilities. Also, although left eigenvectors could be
converted to right eigenvectors by taking the transpose of [P], this would be awkward when Markov chains
with rewards are considered and both row and column vectors play important roles.

176 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

4.4.1 Eigen values and eigenvectors for M = 2 states

The eigenvalues and eigenvectors can be found by elementary (but slightly tedious) algebra.
The left and right eigenvector equations can be written out as

⇡1P11 + ⇡2P21 = �⇡1

⇡1P12 + ⇡2P22 = �⇡2
(left)

P11⌫1 + P12⌫2 = �⌫1

P21⌫1 + P22⌫2 = �⌫2
(right). (4.27)

Each set of equations have a non-zero solution if and only if the matrix [P # �I], where [I]
is the identity matrix, is singular (i.e., there must be a non-zero ⌫⌫⌫ for which [P # �I]⌫⌫⌫ = 0).
Thus � must be such that the determinant of [P # �I], namely (P11 # �)(P22 # �) # P12P21,
is equal to 0. Solving this quadratic equation in �, we find that � has two solutions,

�1 = 1 �2 = 1 # P12 # P21.

Assuming initially that P12 and P21 are not both 0, the solution for the left and right
eigenvectors, ⇡⇡⇡(1) and ⌫⌫⌫(1), of �1 and ⇡⇡⇡(2) and ⌫⌫⌫(2) of �2, are given by

⇡(1)
1 = P21

P12+P21
⇡(1)

2 = P12
P12+P21

⌫(1)
1 = 1 ⌫(1)

2 = 1

⇡(2)
1 = 1 ⇡(2)

2 = # 1 ⌫(2)
1 = P12

P12+P21
⌫(2)
2 = �P21

P12+P21

.

These solutions contain arbitrarily chosen normalization factors. That for ⇡⇡⇡(1) = (⇡(1)
1 , ⇡(1)

2)
has been chosen so that ⇡⇡⇡(1) is a steady-state vector (i.e., the components sum to 1). The
solutions have also been normalized so that ⇡⇡⇡i⌫⌫⌫i = 1 for i = 1, 2. Now define

[⇤] =
.

�1 0
0 �2

/
and [U] =

0
⌫(1)
1 ⌫(2)

1

⌫(1)
2 ⌫(2)

2

1

,

i.e., [U] is a matrix whose columns are the eigenvectors ⌫⌫⌫(1) and ⌫⌫⌫(2). Then the two right
eigenvector equations in (4.27) can be combined compactly as [P][U] = [U][⇤]. It turns out
(for the given normalization of the eigenvectors) that the inverse of [U] is just the matrix
whose rows are the left eigenvectors of [P] (this can be verified by noting that ⇡⇡⇡1⌫⌫⌫2 = ⇡⇡⇡2⌫⌫⌫1 =
0. We then see that [P] = [U][⇤][U�1] and consequently [Pn] = [U][⇤]n[U�1]. Multiplying
this out, we get

[Pn] =
.

⇡1 + ⇡2�n
2 ⇡2 # ⇡2�n

2
⇡1 # ⇡1�n

2 ⇡2 + ⇡1�n
2

/
, (4.28)

where ⇡⇡⇡ = (⇡1,⇡2) is the steady state vector ⇡⇡⇡(1). Recalling that �2 = 1 # P12 # P21, we
see that |�2| " 1. There are 2 trivial cases where |�2| = 1. In the first, P12 = P21 = 0,
so that [P] is just the identity matrix. The Markov chain then has 2 recurrent classes and
stays forever where it starts. In the other trivial case, P12 = P21 = 1. Then �2 = # 1 so
that [Pn] alternates between the identity matrix for n even and [P] for n odd. In all other
cases, |�2| < 1 and [Pn] approaches the steady state matrix limn!1[Pn] = e⇡⇡⇡.

What we have learned from this is the exact way in which [Pn] approaches e⇡⇡⇡. Each term
in [Pn] approaches the steady state value exponentially in n as �n

2 . Thus, in place of the
upper bound in (4.21), we have an exact expression, which in this case is simpler than the
bound. As we see shortly, this result is representative of the general case, but the simplicity
is lost.

4.4. THE EIGENVALUES AND EIGENVECTORS OF STOCHASTIC MATRICES 177

4.4.2 Eigen values and eigenvectors for M > 2 states

For the general case of a stochastic matrix, we start with the fact that the set of eigenvalues
is given by the set of (possibly complex) values of � that satisfy the determinant equation
det[P # �I] = 0. Since det[P # �I] can be expressed as a polynomial of degree M in �, this
equation has M roots (i.e., M eigenvalues), not all of which need be distinct.7

Case with M distinct eigenvalues: We start with the simplest case in which the M
eigenvalues, say �1, . . . ,�M , are all distinct. The matrix [P # �iI] is singular for each i,
so there must be a right eigenvector ⌫⌫⌫(i) and a left eigenvector ⇡⇡⇡(i) for each eigenvalue
�i. The right eigenvectors span M dimensional space and thus the matrix U with columns
(⌫⌫⌫(1), . . . ,⌫⌫⌫(M)) is nonsingular. The left eigenvectors, if normalized to satisfy ⇡⇡⇡(i)⌫⌫⌫(i) = 1
for each i, then turn out to be the rows of [U�1] (see Exercise 4.11). As in the two state
case, we can then express [Pn] as

[Pn] = [U)[⇤n][U�1], (4.29)

where ⇤ is the diagonal matrix with terms �1, . . . ,�M .

If ⇤ is broken into the sum of M diagonal matrices,8 each with only a single nonzero element,
then (see Exercise 4.11) [Pn] can be expressed as

[Pn] =
M'

i=1

�n
i ⌫⌫⌫

(i)⇡⇡⇡(i). (4.30)

Note that this is the same form as (4.28), where in (4.28), the eigenvalue �1 = 1 simply
appears as the value 1. Since each row of [P] sums to 1, the vector e = (1, 1, . . . , 1)T is a
right eigenvector of eigenvalue 1, so there must also be a left eigenvector ⇡⇡⇡ of eigenvalue 1.
The other eigenvalues and eigenvectors can be complex, but it is almost self evident from
the fact that [Pn] is a stochastic matrix that

-
-�i

-
- " 1. A simple guided proof of this is given

in Exercise 4.12.

We have seen that limn!1[Pn] = e⇡⇡⇡ for ergodic unichains. This implies that all terms
except i = 1 in (4.30) die out with n, which further implies that

-
-�i

-
- < 1 for all eigenvalues

except � = 1. In this case, we see that the rate at which [Pn] approaches steady state is
given by the second largest eigenvalue in magnitude, i.e., maxi:|�i|<1 |�i|.

If a recurrent chain is periodic with period d, it turns out that there are d eigenvalues of
magnitude 1, and these are uniformly spaced around the unit circle in the complex plane.
Exercise 4.19 contains a guided proof of this.

Case with repeated eigenvalues and M linearly independent eigenvectors: If some
of the M eigenvalues of [P] are not distinct, the question arises as to how many linearly
independent left (or right) eigenvectors exist for an eigenvalue �i of a given multiplicity
ki, i.e., a �i that is an kith order root of det[P # �I]. Perhaps the ugliest part of linear
algebra is the fact that an eigenvalue of multiplicity k need not have k linearly independent

7Readers with little exposure to linear algebra can either accept the linear algebra results in this section
(without a great deal of lost insight) or can find them in Strang [22] or many other linear algebra texts.

8If 0 is one of the M eigenvalues, then only M� 1 such matrices are required.

178 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

eigenvectors. An example of a very simple Markov chain with M = 3 but only two linearly
independent eigenvectors is given in Exercise 4.14. These eigenvectors do not span M-space,
and thus the expansion in (4.30) cannot be used.

Before looking at this ugly case, we look at the case where the right eigenvectors, say,
span the space, i.e., where each distinct eigenvalue has a number of linearly independent
eigenvectors equal to its multiplicity. We can again form a matrix [U] whose columns are
the M linearly independent right eigenvectors, and again [U�1] is a matrix whose rows
are the corresponding left eigenvectors of [P]. We then get (4.30) again. Thus, so long
as the eigenvectors span the space, the asymptotic expression for the limiting transition
probabilities can be found in the same way.

The most important situation where these repeated eigenvalues make a major di↵erence is
for Markov chains with > 1 recurrent classes. In this case, is the multiplicity of the
eigenvalue 1. It is easy to see that there are di↵erent steady-state vectors. The steady-
state vector for recurrent class `, 1 " ` " , is strictly positive for each state of the `th
recurrent class and is zero for all other states.

The eigenvalues for [P] in this case can be found by finding the eigenvalues separately
for each recurrent class. If class j contains rj states, then rj of the eigenvalues (counting
repetitions) of [P] are the eigenvalues of the rj by rj matrix for the states in that recurrent
class. Thus the rate of convergence of [Pn] within that submatrix is determined by the
second largest eigenvalue (in magnitude) in that class.

What this means is that this general theory using eigenvalues says exactly what common
sense says: if there are recurrent classes, look at each one separately, since they have
nothing to do with each other. This also lets us see that for any recurrent class that is
aperiodic, all the other eigenvalues for that class are strictly less than 1 in magnitude.

The situation is less obvious if there are recurrent classes plus a set of t transient states.
All but t of the eigenvalues (counting repetitions) are associated with the recurrent classes,
and the remaining t eigenvalues are the eigenvalues of the t by t matrix, say [Pt], between the
transient states. Each of these t eigenvalues are strictly less than 1 (as seen in Section 4.3.4)
and neither these eigenvalues nor their eigenvectors depend on the transition probabilities
from the transient to recurrent states. The left eigenvectors for the recurrent classes also
do not depend on these transient to recurrent states. The right eigenvector for � = 1 for
each recurrent class R ` is very interesting however. Its value is 1 for each state in R `, is 0
for each state in the other recurrent classes, and is equal to limn!1 Pr{ Xn & R ` | X0 = i}
for each transient state i (see Exercise 4.13).

The Jordan form case: As mentioned before, there are cases in which one or more
eigenvalues of [P] are repeated (as roots of det[P # �I]) but where the number of linearly
independent right eigenvectors for a given eigenvalue is less than the multiplicity of that
eigenvalue. In this case, there are not enough eigenvectors to span the space, so there is
no M by M matrix whose columns are linearly independent eigenvectors. Thus [P] can not
be expressed as [U][⇤][U�1] where ⇤ is the diagonal matrix of the eigenvalues, repeated
according to their multiplicity.

The Jordan form is the cure for this unfortunate situation. The Jordan form for a given

4.5. MARK OV CHAINS WITH REWARDS 179

[P] is the following modification of the diagonal matrix of eigenvalues: we start with the
diagonal matrix of eigenvalues, with the repeated eigenvalues as neighboring elements. Then
for each missing eigenvector for a given eigenvalue, a 1 is placed immediately to the right
and above a neighboring pair of appearances of that eigenvalue, as seen by example9 below:

[J] =

!

"
"
#

�1 1 0 0 0
0 �1 0 0 0
0 0 �2 1 0
0 0 0 �2 1
0 0 0 0 �2

$

%
%
& .

There is a theorem in linear algebra that says that an invertible matrix [U] exists and
a Jordan form exists such that [P] = [U][J][U�1]. The major value to us of this result
is that it makes it relatively easy to calculate [Jn] for large n (see Exercise 4.15). This
exercise also shows that for all stochastic matrices, each eigenvalue of magnitude 1 has
precisely one associated eigenvector. This is usually expressed by the statement that all the
eigenvalues of magnitude 1 are simple, meaning that their multiplicity equals their number
of linearly independent eigenvectors. Finally the exercise shows that [Pn] for an aperiodic
recurrent chain converges as a polynomial10 in n times �n

s where �s is the eigenvalue of
largest magnitude less than 1.

The most important results of this section on eigenvalues and eigenvectors can be summa-
rized in the following theorem.

Theorem 4.4.1. The transition matrix of a Þnite state unichain has a single eigenvalue
� = 1 with an accompanying left eigenvector ⇡⇡⇡ satisfying (4.9) and a left eigenvector e =
(1, 1, . . . , 1)T . The other eigenvalues�i all satisfy |�i| " 1. The inequality is strict unless
the unichain is periodic, say with period d, and then there are d eigenvaluesof magnitude
1 spaced equally around the unit circle. If the unichain is ergodic, then [Pn] convergesto
steady state e⇡⇡⇡ with an error in each term bounded by a Þxed polynomial in n times |�s|n,
where �s is the eigenvalueof largestmagnitude lessthan 1.

Arbitrary Markov chains can be split into their recurrent classes, and this theorem can be
applied separately to each class.

4.5 Mark ov chains with rewards

Suppose that each state i in a Markov chain is associated with a reward, ri. As the Markov
chain proceeds from state to state, there is an associated sequence of rewards that are not
independent, but are related by the statistics of the Markov chain. The concept of a reward
in each state11 is quite graphic for modeling corporate profits or portfolio performance, and

9See Strang [22], for example, for a more complete description of how to construct a Jordan form
10This polynomial is equal to 1 if these eigenvalues are simple.
11Occasionally it is more natural to associate rewards with transitions rather than states. If rij denotes

a reward associated with a transition from i to j and Pij denotes the corresponding transition probability,
then defining ri =

!
j Pijrij essentially simplifies these transition rewards to rewards over the initial state

for the transition. These transition rewards are ignored here, since the details add complexity to a topic
that is complex enough for a first treatment.

180 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

is also useful for studying queueing delay, the time until some given state is entered, and
many other phenomena. The reward ri associated with a state could equally well be veiwed
as a cost or any given real-valued function of the state.

In Section 4.6, we study dynamic programming and Markov decision theory. These topics
include a “decision maker,” “policy maker,” or “control” that modify both the transition
probabilities and the rewards at each trial of the ‘Markov chain.’ The decision maker at-
tempts to maximize the expected reward, but is typically faced with compromising between
immediate reward and the longer-term reward arising from the choice of transition proba-
bilities that lead to ‘high reward’ states. This is a much more challenging problem than the
current study of Markov chains with rewards, but a thorough understanding of the current
problem provides the machinery to understand Markov decision theory also.

The steady-state expected reward per unit time, assuming a single recurrent class of states,
is defined to be the gain, expressed as g =

(
i ⇡iri where ⇡i is the steady-state probability

of being in state i.

4.5.1 Examples of Mark ov chains with rewards

The following examples demonstrate that it is important to understand the transient be-
havior of rewards as well as the long-term averages. This transient behavior will turn out to
be even more important when we study Markov decision theory and dynamic programming.

Example 4.5.1 (Expected first-passage time). First-passage times, i.e., the number
of steps taken in going from one given state, say i, to another, say 1, are frequently of
interest for Markov chains, and here we solve for the expected value of this random variable.

Since the first-passage time is independent of the transitions after the first entry to state
1, we can modify the chain to convert the final state, say state 1, into a trapping state (a
trapping state i is a state from which there is no exit, i.e., for which Pii = 1). That is, we
modify P11 to 1 and P1j to 0 for all j '= 1. We leave Pij unchanged for all i '= 1 and all
j (see Figure 4.6). This modification of the chain will not change the probability of any
sequence of states up to the point that state 1 is first entered.

&B

()

&'
(>

/0

/%

&'

(>

&B
()"# !$, ,

,

,

1 3

4

2

&B

()

&'
(>

/0

/%

C
C

CD

E
E

EF
"# !$, ,

,

,

1 3

4

2

Figure 4.6: The conversion of a recurrent Markov chain with M = 4 into a chain for
which state 1 is a trapping state, i.e., the outgoing arcs from node 1 have been removed.

Let vi be the expected number of steps to first reach state 1 starting in state i '= 1. This
number of steps includes the first step plus the expected number of remaining steps to reach
state 1 starting from whatever state is entered next (if state 1 is the next state entered, this

4.5. MARK OV CHAINS WITH REWARDS 181

remaining number is 0). Thus, for the chain in Figure 4.6, we have the equations

v2 = 1 + P23v3 + P24v4.

v3 = 1 + P32v2 + P33v3 + P34v4.

v4 = 1 + P42v2 + P43v3.

For an arbitrary chain of M states where 1 is a trapping state and all other states are
transient, this set of equations becomes

vi = 1 +
'

j 6=1

Pijvj ; i '= 1. (4.31)

If we define ri = 1 for i '= 1 and ri = 0 for i = 1, then ri is a unit reward for not yet entering
the trapping state, and vi is the expected aggregate reward before entering the trapping
state. Thus by taking r1 = 0, the reward ceases upon entering the trapping state, and vi

is the expected transient reward, i.e., the expected first-passage time from state i to state
1. Note that in this example, rewards occur only in transient states. Since transient states
have zero steady-state probabilities, the steady-state gain per unit time, g =

(
i ⇡iri, is 0.

If we define v1 = 0, then (4.31), along with v1 = 0, has the vector form

v = r + [P]v ; v1 = 0. (4.32)

For a Markov chain with M states, (4.31) is a set of M # 1 equations in the M # 1 variables
v2 to vM . The equation v = r + [P]v is a set of M linear equations, of which the first is the
vacuous equation v1 = 0 + v1, and, with v1 = 0, the last M # 1 correspond to (4.31). It is
not hard to show that (4.32) has a unique solution for v under the condition that states 2
to M are all transient and 1 is a trapping state, but we prove this later, in Theorem 4.5.1,
under more general circumstances.

Example 4.5.2. Assume that a Markov chain has M states, { 0, 1, . . . ,M # 1} , and that
the state represents the number of customers in an integer-time queueing system. Suppose
we wish to find the expected sum of the customer waiting times, starting with i customers
in the system at some given time t and ending at the first instant when the system becomes
idle. That is, for each of the i customers in the system at time t, the waiting time is counted
from t until that customer exits the system. For each new customer entering before the
system next becomes idle, the waiting time is counted from entry to exit.

When we discuss Little’s theorem in Section 5.5.4, it will be seen that this sum of waiting
times is equal to the sum over ⌧ of the state X⌧ at time ⌧ , taken from ⌧ = t to the first
subsequent time the system is empty.

As in the previous example, we modify the Markov chain to make state 0 a trapping state
and assume the other states are then all transient. We take ri = i as the “reward” in state i,
and vi as the expected aggregate reward until the trapping state is entered. Using the same
reasoning as in the previous example, vi is equal to the immediate reward ri = i plus the
expected aggregate reward from whatever state is entered next. Thus vi = ri +

(
j�1 Pijvj .

With v0 = 0, this is v = r + [P]v . This has a unique solution for v , as will be shown later

182 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

in Theorem 4.5.1. This same analysis is valid for any choice of reward ri for each transient
state i; the reward in the trapping state must be 0 so as to keep the expected aggregate
reward finite.

In the above examples, the Markov chain is converted into a trapping state with zero gain,
and thus the expected reward is a transient phenomena with no reward after entering the
trapping state. We now look at the more general case of a unichain. In this more general
case, there can be some gain per unit time, along with some transient expected reward
depending on the initial state. We first look at the aggregate gain over a finite number of
time units, thus providing a clean way of going to the limit.

Example 4.5.3. The example in Figure 4.7 provides some intuitive appreciation for the
general problem. Note that the chain tends to persist in whatever state it is in. Thus if the
chain starts in state 2, not only is an immediate reward of 1 achieved, but there is a high
probability of additional unit rewards on many successive transitions. Thus the aggregate
value of starting in state 2 is considerably more than the immediate reward of 1. On the
other hand, we see from symmetry that the gain per unit time, over a long time period,
must be one half.

1 2
0.01 0.99

0.01r1=0 r2=1

0.99
!$"# , !*

!$,

Figure 4.7: Markov chain with rewards and nonzero steady-state gain.

4.5.2 The exp ected aggregate reward over multiple transitions

Returning to the general case, let Xm be the state at time m and let Rm = R(Xm) be
the reward at that m, i.e., if the sample value of Xm is i, then ri is the sample value of
Rm. Conditional on Xm = i, the aggregate expected reward vi(n) over n trials from Xm to
Xm+n�1 is

vi(n) = E [R(Xm) + R(Xm+1) + ááá+ R(Xm+n�1) | Xm = i]

= ri +
'

j

Pijrj + ááá+
'

j

Pn�1
ij rj .

This expression does not depend on the starting time m because of the homogeneity of the
Markov chain. Since it gives the expected reward for each initial state i, it can be combined
into the following vector expression v(n) = (v1(n), v2(n), . . . , vM(n))T ,

v(n) = r + [P]r + ááá+ [Pn�1]r =
n�1'

h=0

[P h]r , (4.33)

where r = (r1, . . . , rM)T and P 0 is the identity matrix. Now assume that the Markov
chain is an ergodic unichain. Then limn!1[Pn] = e⇡⇡⇡ and limn!1[Pn]r = e⇡⇡⇡r = ge

4.5. MARK OV CHAINS WITH REWARDS 183

where g = ⇡⇡⇡r is the steady-state reward per unit time. If g '= 0, then v(n) changes by
approximately ge for each unit increase in n, so v(n) does not have a limit as n $ (. As
shown below, however, v(n) # nge does have a limit, given by

lim
n!1

(v(n) # nge) = lim
n!1

n�1'

h=0

[P h # e⇡⇡⇡]r . (4.34)

To see that this limit exists, note from (4.26) that ✏ > 0 can be chosen small enough that
Pn

ij # ⇡j = o(exp(# n✏)) for all states i, j and all n ! 1. Thus
(1

h=n(P h
ij # ⇡j) = o(exp(# n✏))

also. This shows that the limits on each side of (4.34) must exist for an ergodic unichain.

The limit in (4.34) is a vector over the states of the Markov chain. This vector gives the
asymptotic relative expected advantage of starting the chain in one state relative to another.
This is an important quantity in both the next section and the remainder of this one. It is
called the relative-gain vector and denoted by w ,

w = lim
n!1

n�1'

h=0

[P h # e⇡⇡⇡]r (4.35)

= lim
n!1

(v(n) # nge) . (4.36)

Note from (4.36) that if g > 0, then nge increases linearly with n and and v(n) must
asymptotically increase linearly with n. Thus the relative-gain vector w becomes small
relative to both nge and v(n) for large n. As we will see, w is still important, particularly
in the next section on Markov decisions.

We can get some feel for w and how vi(n) # n⇡i converges to wi from Example 4.5.3
(as described in Figure 4.7). Since this chain has only two states, [Pn] and vi(n) can be
calculated easily from (4.28). The result is tabulated in Figure 4.8, and it is seen numerically
that w = (# 25,+25)T . The rather significant advantage of starting in state 2 rather than
1, however, requires hundreds of transitions before the gain is fully apparent.

n ⇡⇡⇡v(n) v1(n) v2(n)
1 0.5 0 1
2 1 0.01 1.99
4 2 0.0592 3.9408

10 5 0.4268 9.5732
40 20 6.1425 33.8575

100 50 28.3155 71.6845
400 200 175.007 224.9923

Figure 4.8: The expected aggregate reward, as a function of starting state and stage,
for the example of figure 4.7. Note that w = (# 25,+25)T , but the convergence is quite
slow.

This example also shows that it is somewhat inconvenient to calculate w from (4.35), and
this inconvenience grows rapidly with the number of states. Fortunately, as shown in the
following theorem, w can also be calculated simply by solving a set of linear equations.

184 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

Theorem 4.5.1. Let [P] be the transition matrix for an ergodic unichain. Then the relative-
gain vector w given in (4.35) satisÞesthe following linear vector equation.

w + ge = [P]w + r and ⇡⇡⇡w = 0. (4.37)

Furthermore (4.37) has a unique solution if [P] is the transition matrix for a unichain
(either ergodic or periodic).

Discussion: For an ergodic unichain, the interpretation of w as an asymptotic relative gain
comes from (4.35) and (4.36). For a periodic unichain, (4.37) still has a unique solution, but
(4.35) no longer converges, so the solution to (4.37) no longer has a clean interpretation as
an asymptotic limit of relative gain. This solution is still called a relative-gain vector, and
can be interpreted as an asymptotic relative gain over a period, but the important thing is
that this equation has a unique solution for arbitrary unichains.

Definition 4.5.1. The relative-gain vector w of a unichain is the unique vector that satis-
Þes(4.37).

Proof: Premultiplying both sides of (4.35) by [P],

[P]w = lim
n!1

n�1'

h=0

[P h+1 # e⇡⇡⇡]r

= lim
n!1

n'

h=1

[P h # e⇡⇡⇡]r

= lim
n!1

2
n'

h=0

[P h # e⇡⇡⇡]r

3

[P 0 # e⇡⇡⇡]r

= w # [P 0]r + e⇡⇡⇡r = w # r + ge.

Rearranging terms, we get (4.37). For a unichain, the eigenvalue 1 of [P] has multiplicity 1,
and the existence and uniqueness of the solution to (4.37) is then a simple result in linear
algebra (see Exercise 4.23).

The above manipulations conceal the intuitive nature of (4.37). To see the intuition, consider
the first-passage-time example again. Since all states are transient except state 1, ⇡1 = 1.
Since r1 = 0, we see that the steady-state gain is g = 0. Also, in the more general model
of the theorem, vi(n) is the expected reward over n transitions starting in state i, which
for the first-passage-time example is the expected number of transient states visited up to
the nth transition. In other words, the quantity vi in the first-passage-time example is
limn!1 vi(n). This means that the v in (4.32) is the same as w here, and it is seen that
the formulas are the same with g set to 0 in (4.37).

The reason that the derivation of aggregate reward was so simple for first-passage time is
that there was no steady-state gain in that example, and thus no need to separate the gain
per transition g from the relative gain w between starting states.

4.5. MARK OV CHAINS WITH REWARDS 185

One way to apply the intuition of the g = 0 case to the general case is as follows: given
a reward vector r , find the steady-state gain g = ⇡⇡⇡r , and then define a modified reward
vector r 0 = r # ge. Changing the reward vector from r to r 0 in this way does not change
w , but the modified limiting aggregate gain, say v 0(n) then has a limit, which is in fact w .
The intuitive derivation used in (4.32) again gives us w = [P]w + r 0. This is equivalent to
(4.37) since r 0 = r # ge.

There are many generalizations of the first-passage-time example in which the reward in
each recurrent state of a unichain is 0. Thus reward is accumulated only until a recurrent
state is entered. The following corollary provides a monotonicity result about the relative-
gain vector for these circumstances that might seem obvious12. Thus we simply state it and
give a guided proof in Exercise 4.25.

Corollary 4.5.1. Let [P] be the transition matrix of a unichain with the recurrent classR.
Let r ! 0 be a reward vector for [P] with ri = 0 for i & R. Then the relative-gain vector
w satisÞesw ! 0 with wi = 0 for i & R and wi > 0 for ri > 0. Furthermore, if r0 and r00

are di!er ent reward vectors for [P] and r0 ! r00 with r0i = r00i for i & R, then w0 ! w00 with
w0i = w00i for i & R and w0i > w00i for r0i > r00i .

4.5.3 The exp ected aggregate reward with an additional Þnal reward

Frequently when a reward is aggregated over n transitions of a Markov chain, it is appro-
priate to assign some added reward, say ui, as a function of the final state i. For example,
it might be particularly advantageous to end in some particular state. Also, if we wish to
view the aggregate reward over n + ` transitions as the reward over the first n transitions
plus that over the following ` transitions, we can model the expected reward over the final
` transitions as a final reward at the end of the first n transitions. Note that this final
expected reward depends only on the state at the end of the first n transitions.

As before, let R(Xm+h) be the reward at time m + h for 0 " h " n # 1 and U(Xm+n) be
the final reward at time m + n, where U(X) = ui for X = i. Let vi(n,u) be the expected
reward from time m to m + n, using the reward r from time m to m + n # 1 and using the
final reward u at time m+n. The expected reward is then the following simple modification
of (4.33):

v(n,u) = r + [P]r + ááá+ [Pn�1]r + [Pn]u =
n�1'

h=0

[P h]r + [Pn]u . (4.38)

This simplifies considerably if u is taken to be the relative-gain vector w .

Theorem 4.5.2. Let [P] be the transition matrix of a unichain and let w be the corre-
sponding relative-gain vector. Then for each n ! 1,

v(n,w) = nge + w. (4.39)

12An obvious counterexample if we omit the condition ri = 0 for i 2 R is given by Figure 4.7 where
r = (0, 1)T and w = (�25, 25)T .

186 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

Also, for an arbitrary Þnal reward vector u,

v(n,u) = nge + w + [Pn](u # w). (4.40)

Discussion: An important special case of (4.40) arises from setting the final reward u to
0, thus yielding the following expression for v(n):

v(n) = nge + w # [Pn]w . (4.41)

For an ergodic unichain, limn!1[Pn] = e⇡⇡⇡. Since ⇡⇡⇡w = 0 by definition of w , the limit of
(4.41) as n $ (is

lim
n!1

(v(n) # nge) = w ,

which agrees with (4.36). The advantage of (4.41) over (4.36) is that it provides an explicit
expression for v(n) for each n and also that it continues to hold for a periodic unichain.

Proof: For n = 1, we see from (4.38) that

v(1,w) = r + [P]w = ge + w ,

so the theorem is satisfied for n = 1. For n > 1,

v(n,w) =
n�1'

h=0

[P h]r + [Pn]w

=
n�2'

h=0

[P h]r + [Pn�1] (r + [P]w)

=
n�2'

h=0

[P h]r + [Pn�1] (ge + w)

= v(n# 1,w) + ge.

Using induction, this implies (4.39).

To establish (4.40), note from (4.38) that

v(n,u) # v(n,w) = [Pn](u # w).

Then (4.40) follows by using (4.39) for the value of v(n,w).

4.6 Mark ov decision theory and dynamic programming

In the previous section, we analyzed the behavior of a Markov chain with rewards. In this
section, we consider a much more elaborate structure in which a decision maker can choose

4.6. MARK OV DECISION THEORY AND DYNAMIC PROGRAMMING 187

among various possible rewards and transition probabilities. In place of the reward ri and
the transition probabilities { Pij ; 1 " j " M} associated with a given state i, there is a choice
between some number Ki of di↵erent rewards, say r(1)

i , r(2)
i , . . . , r(Ki)

i and a corresponding
choice between Ki di↵erent sets of transition probabilities, say { P (1)

ij ; 1 " j " M} , { P (2)
ij , 1 "

j " M} , . . . { P (Ki)
ij ; 1 " j " M} . At each time m, a decision maker, given Xm = i, selects

one of the Ki possible choices for state i. Note that if decision k is chosen in state i, then
the reward is r(k)

i and the transition probabilities from i are { P (k)
ij ; 1 " j " M} ; it is not

permissable to choose r(k)
i for one k and { P (k)

ij ; 1 " j " M} for another k. We also assume
that if decision k is selected at time m, the probability of entering state j at time m + 1 is
P (k)

ij , independent of earlier states and decisions.

Figure 4.9 shows an example of this situation in which the decision maker can choose be-
tween two possible decisions in state 2 (K2 = 2), and has no freedom of choice in state 1
(K1 = 1). This figure illustrates the familiar tradeo↵ between instant gratification (alter-
native 2) and long term gratification (alternative 1).

1 2 1 2
0.01 0.99

0.01r1=0 r(1)
2 =1

Decision 1

0.99 0.01

1r1=0 r(2)
2 =50

Decision 2

0.99
!$"# , !*

!$, !*
!$, ,"#

Figure 4.9: A Markov decision problem with two alternatives in state 2.

The set of rules used by the decision maker in selecting an alternative at each time is
called a policy. We want to consider the expected aggregate reward over n steps of the
“Markov chain” as a function of the policy used by the decision maker. If for each state
i, the policy uses the same decision, say ki, at each occurrence of i, then that policy
corresponds to a homogeneous Markov chain with transition probabilities P (ki)

ij . We denote
the matrix of these transition probabilities as [Pkkk], where k = (k1, . . . , kM). Such a policy,
i.e., mapping each state i into a fixed decision ki, independent of time and past, is called
a stationary policy. The aggregate gain for any such stationary policy was found in the
previous section. Since both rewards and transition probabilities depend only on the state
and the corresponding decision, and not on time, one feels intuitively that stationary policies
make a certain amount of sense over a long period of time. On the other hand, if we look
at the example of Figure 4.9, it is clear that decision 2 is the best choice in state 2 at the
nth of n trials, but it is less obvious what to do at earlier trials.

In what follows, we first derive the optimal policy for maximizing expected aggregate reward
over an arbitrary number n of trials, say at times m to m + n # 1. We shall see that the
decision at time m + h, 0 " h < n, for the optimal policy can in fact depend on h and
n (but not m). It turns out to simplify matters considerably if we include a final reward
{ ui; 1 " i " M} at time m + n. This final reward u is considered as a fixed vector, to be
chosen as appropriate, rather than as part of the choice of policy.

This optimized strategy, as a function of the number of steps n and the final reward u ,
is called an optimal dynamic policy for that u . This policy is found from the dynamic

188 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

programming algorithm, which, as we shall see, is conceptually very simple. We then go on
to find the relationship between optimal dynamic policies and optimal stationary policies.
We shall find that, under fairly general conditions, each has the same long-term gain per
trial.

4.6.1 Dynamic programming algorithm

As in our development of Markov chains with rewards, we consider the expected aggregate
reward over n time periods, say m to m + n # 1, with a final reward at time m + n.
First consider the optimal decision with n = 1. Given Xm = i, a decision k is made with
immediate reward r(k)

i . With probability P (k)
ij the next state Xm+1 is state j and the final

reward is then uj . The expected aggregate reward over times m and m+1, maximized over
the decision k, is then

v⇤i (1,u) = max
k

{ r(k)
i +

'

j

P (k)
ij uj} . (4.42)

Being explicit about the maximizing decision k0, (4.42) becomes

v⇤i (1,u) = r(k!)
i +

'

j

P (k!)
ij uj for k0 such that

r(k!)
i +

'

j

P (k!)
ij uj = max

k
{ r(k)

i +
'

j

P (k)
ij uj} . (4.43)

Note that a decision is made only at time m, but that there are two rewards, one at time m
and the other, the final reward, at time m+1. We use the notation v⇤i (n,u) to represent the
maximum expected aggregate reward from times m to m+n starting at Xm = i. Decisions
(with the reward vector r) are made at the n times m to m + n # 1, and this is followed by
a final reward vector u (without any decision) at time m + n. It often simplifies notation
to define the vector of maximal expected aggregate rewards

v⇤(n,u) = (v⇤1(n,u), v⇤2(n,u), . . . , v⇤M(1,u))T .

With this notation, (4.42) and (4.43) become

v⇤(1,u) = max
k

{ rk + [P k]u} where k = (k1, . . . , kM)T , rk = (rk1
1 , . . . , rkM

M)T . (4.44)

v⇤(1,u) = rk !
+ [P k !

]u where rk !
+ [P k !

]u = max
k

rk + [P k]u . (4.45)

Now consider v⇤i (2,u), i.e., the maximal expected aggregate reward starting at Xm = i
with decisions made at times m and m + 1 and a final reward at time m + 2. The key to
dynamic programming is that an optimal decision at time m+1 can be selected based only

4.6. MARK OV DECISION THEORY AND DYNAMIC PROGRAMMING 189

on the state j at time m + 1; this decision (given Xm+1 = j) is optimal independent of the
decision at time m. That is, whatever decision is made at time m, the maximal expected
reward at times m + 1 and m + 2, given Xm+1 = j, is maxk

+
r(k)
j +

(
` P (k)

j` u`

,
. Note that

this maximum is v⇤j (1,u), as found in (4.42).

Using this optimized decision at time m+1, it is seen that if Xm = i and decision k is made
at time m, then the sum of expected rewards at times m + 1 and m + 2 is

(
j P (k)

ij v⇤j (1,u).
Adding the expected reward at time m and maximizing over decisions at time m,

v⇤i (2,u) = max
k

+
r(k)
i +

'

j
P (k)

ij v⇤j (1,u)
,

. (4.46)

In other words, the maximum aggregate gain over times m to m+2 (using the final reward
u at m+2) is the maximum over choices at time m of the sum of the reward at m plus the
maximum aggregate expected reward for m + 1 and m + 2. The simple expression of (4.46)
results from the fact that the maximization over the choice at time m + 1 depends on the
state at m + 1 but, given that state, is independent of the policy chosen at time m.

This same argument can be used for all larger numbers of trials. To find the maximum
expected aggregate reward from time m to m + n, we first find the maximum expected
aggregate reward from m + 1 to m + n, conditional on Xm+1 = j for each state j. This is
the same as the maximum expected aggregate reward from time m to m + n # 1, which is
v⇤j (n # 1,u). This gives us the general expression for n ! 2,

v⇤i (n,u) = max
k

+
r(k)
i +

'

j
P (k)

ij v⇤j (n # 1,u)
,

. (4.47)

We can also write this in vector form as

v⇤(n,u) = max
kkk

+
rkkk + [Pkkk]v⇤(n # 1,u)

,
. (4.48)

Here k is a set (or vector) of decisions, k = (k1, k2, . . . , kM)T , where ki is the decision for
state i. [Pkkk] denotes a matrix whose (i, j) element is P (ki)

ij , and rkkk denotes a vector whose
ith element is r(ki)

i . The maximization over k in (4.48) is really M separate and independent
maximizations, one for each state, i.e., (4.48) is simply a vector form of (4.47). Another
frequently useful way to rewrite (4.48) is as follows:

v⇤(n,u) = rkkk!
+ [Pkkk!

]v⇤(n# 1,u) for k 0 such that

rkkk!
+ [Pkkk!

]v⇤(n# 1,u) = max
kkk

+
rkkk + [Pkkk]v⇤(n# 1,u)

,
. (4.49)

If k 0 satisfies (4.49), then k 0 is an optimal decision at an arbitrary time m given, first, that
the objective is to maximize the aggregate gain from time m to m+n, second, that optimal
decisions for this objective are to be made at times m + 1 to m + n # 1, and, third, that u
is the final reward vector at m + n. In the same way, v⇤(n,u) is the maximum expected
reward over this finite sequence of n decisions from m to m + n # 1 with the final reward
u at m + n.

190 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

Note that (4.47), (4.48), and (4.49) are valid with no restrictions (such as recurrent or
aperiodic states) on the possible transition probabilities [Pkkk]. These equations are also
valid in principle if the size of the state space is infinite. However, the optimization for each
n can then depend on an infinite number of optimizations at n# 1, which is often infeasible.

The dynamic programming algorithm is just the calculation of (4.47), (4.48), or (4.49),
performed iteratively for n = 1, 2, 3, The development of this algorithm, as a systematic
tool for solving this class of problems, is due to Bellman [Bel57]. Note that the algorithm
is independent of the starting time m; the parameter n, usually referred to as stage n, is
the number of decisions over which the aggregate gain is being optimized. This algorithm
yields the optimal dynamic policy for any fixed final reward vector u and any given number
of trials. Along with the calculation of v⇤(n,u) for each n, the algorithm also yields the
optimal decision at each stage (under the assumption that the optimal policy is to be used
for each lower numbered stage, i.e., for each later trial of the process).

The surprising simplicity of the algorithm is due to the Markov property. That is, v⇤i (n,u)
is the aggregate present and future reward conditional on the present state. Since it is
conditioned on the present state, it is independent of the past (i.e., how the process arrived
at state i from previous transitions and choices).

Although dynamic programming is computationally straightforward and convenient13, the
asymptotic behavior of v⇤(n,u) as n $ (is not evident from the algorithm. After working
out some simple examples, we look at the general question of asymptotic behavior.

Example 4.6.1. Consider Figure 4.9, repeated below, with the final rewards u2 = u1 = 0.

1 2 1 2
0.01 0.99

0.01r1=0 r(1)
2 =1

0.99 0.01

1r1=0 r(2)
2 =50

0.99
!$"# , !*

!$, !*
!$, ,"#

Since r1 = 0 and u1 = u2 = 0, the aggregate gain in state 1 at stage 1 is

v⇤1(1,u) = r1 +
'

j

P1juj = 0.

Similarly, since policy 1 has an immediate reward r(1)
2 = 1 in state 2, and policy 2 has an

immediate reward r(2)
2 = 50,

v⇤2(1,u) = max
4 5

r(1)
2 +

'

j

P (1)
2j uj

6
,

5
r(2)
2 +

'

j

P (2)
2j uj

67
= max{ 1, 50} = 50.

13Unfortunately, many dynamic programming problems of interest have enormous numbers of states and
possible choices of decision (the so called curse of dimensionality), and thus, even though the equations are
simple, the computational requirements might be beyond the range of practical feasibility.

4.6. MARK OV DECISION THEORY AND DYNAMIC PROGRAMMING 191

We can now go on to stage 2, using the results above for v⇤j (1,u). From (4.46),

v⇤1(2,u) = r1 + P11v
⇤
1(1,u) + P12v

⇤
2(1,u) = P12v

⇤
2(1,u) = 0.5

v⇤2(2,u) = max
4 5

r(1)
2 +

'

j

P (1)
2j v⇤j (1,u)

6
,

5
r(2)
2 + P (2)

21 v⇤1(1,u)
67

= max
8
[1 + P (1)

22 v⇤2(1,u)], 50
9

= max{ 50.5, 50} = 50.5.

Thus for two trials, decision 1 is optimal in state 2 for the first trial (stage 2), and decision
2 is optimal in state 2 for the second trial (stage 1). What is happening is that the choice of
decision 2 at stage 1 has made it very profitable to be in state 2 at stage 1. Thus if the chain
is in state 2 at stage 2, it is preferable to choose decision 1 (i.e., the small unit gain) at stage
2 with the corresponding high probability of remaining in state 2 at stage 1. Continuing
this computation for larger n, one finds that v⇤1(n,u) = n/2 and v⇤2(n,u) = 50 + n/2. The
optimum dynamic policy (for u = 0) is decision 2 for stage 1 (i.e., for the last decision to
be made) and decision 1 for all stages n > 1 (i.e., for all decisions before the last).

This example also illustrates that the maximization of expected gain is not necessarily
what is most desirable in all applications. For example, risk-averse people might well prefer
decision 2 at the next to final decision (stage 2). This guarantees a reward of 50, rather
than taking a small chance of losing that reward.

Example 4.6.2 (Shortest Path Problems). The problem of finding the shortest paths
between nodes in a directed graph arises in many situations, from routing in communication
networks to calculating the time to complete complex tasks. The problem is quite similar
to the expected first-passage time of example 4.5.1. In that problem, arcs in a directed
graph were selected according to a probability distribution, whereas here decisions must be
made about which arcs to take. Although this is not a probabilistic problem, the decisions
can be posed as choosing a given arc with probability one, thus viewing the problem as a
special case of dynamic programming.

Consider finding the shortest path from each node in a directed graph to some particular
node, say node 1 (see Figure 4.10). Each arc (except the special arc (1, 1)) has a positive
link length associated with it that might reflect physical distance or an arbitrary type of
cost. The special arc (1, 1) has 0 link length. The length of a path is the sum of the lengths
of the arcs on that path. In terms of dynamic programming, a policy is a choice of arc out of
each node (state). Here we want to minimize cost (i.e., path length) rather than maximizing
reward, so we simply replace the maximum in the dynamic programming algorithm with a
minimum (or, if one wishes, all costs can be replaced with negative rewards).

We start the dynamic programming algorithm with a final cost vector that is 0 for node 1
and infinite for all other nodes. In stage 1, the minimal cost decision for node (state) 2 is
arc (2, 1) with a cost equal to 4. The minimal cost decision for node 4 is (4, 1) with unit
cost. The cost from node 3 (at stage 1) is infinite whichever decision is made. The stage 1
costs are then

v⇤1(1,u) = 0, v⇤2(1,u) = 4, v⇤3(1,u) = (, v⇤4(1,u) = 1.

192 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

&B

()

&'
(>

/0

/%

C
C

CD

E
E

EF
"# !$, ,

,

,

1 3

4

2
2

4

4
0

Figure 4.10: A shortest path problem. The arcs are marked with their lengths. Un-
marked arcs have unit length.

In stage 2, the cost v⇤3(2,u), for example, is

v⇤3(2,u) = min
5
2 + v⇤2(1,u), 4 + v⇤4(1,u)

6
= 5.

The set of costs at stage 2 are

v⇤1(2,u) = 0, v⇤2(2,u) = 2, v⇤3(2,u) = 5, v⇤4(2,u) = 1.

The decision at stage 2 is for node 2 to go to 4, node 3 to 4, and 4 to 1. At stage 3, node 3
switches to node 2, reducing its path length to 4, and nodes 2 and 4 are unchanged. Further
iterations yield no change, and the resulting policy is also the optimal stationary policy.

The above results at each stage n can be interpreted as the shortest paths constrained to
at most n hops. As n is increased, this constraint is successively relaxed, reaching the true
shortest paths in less than M stages.

It can be seen without too much di�culty that these final aggregate costs (path lengths)
also result no matter what final cost vector u (with u1 = 0) is used. This is a useful feature
for many types of networks where link lengths change very slowly with time and a shortest
path algorithm is desired that can track the corresponding changes in the shortest paths.

4.6.2 Optimal stationary policies

In Example 4.6.1, we saw that there was a final transient (at stage 1) in which decision 1
was taken, and in all other stages, decision 2 was taken. Thus, the optimal dynamic policy
consisted of a long-term stationary policy, followed by a transient period (for a single stage
in this case) over which a di↵erent policy was used. It turns out that this final transient can
be avoided by choosing an appropriate final reward vector u for the dynamic programming
algorithm. If one has very good intuition, one would guess that the appropriate choice of
final reward u is the relative-gain vector w associated with the long-term optimal policy.

It seems reasonable to expect this same type of behavior for typical but more complex
Markov decision problems. In order to understand this, we start by considering an arbitrary
stationary policy k 0 = (k01, . . . , k0M) and denote the transition matrix of the associated
Markov chain as [Pkkk!]. We assume that he associated Markov chain is a unichain, or,
abbrevating terminology, that k 0 is a unichain. Let w 0 be the unique relative-gain vector

4.6. MARK OV DECISION THEORY AND DYNAMIC PROGRAMMING 193

for k 0. We then find some necessary conditions for k 0 to be the optimal dynamic policy at
each stage using w 0 as the final reward vector.

First, from (4.45) k 0 is an optimal dynamic decision (with the final reward vector w 0 for
[P k !]) at stage 1 if

rk !
+ [P k !

]w 0 = max
k

{ rk + [P k]w 0} . (4.50)

Note that this is more than a simple statement that k 0 can be found by maximizing rk +
[P k]w 0 over k . It also involves the fact that w 0 is the relative-gain vector for k 0, so there
is no immediately obvious way to find a k 0 that satisfies (4.50), and no a priori assurance
that this equation even has a solution. The following theorem, however, says that this is
the only condition required to ensure that k 0 is the optimal dynamic policy at every stage
(again using w 0 as the final reward vector).

Theorem 4.6.1. Assumethat (4.50) is satisÞed for somepolicy k0 where the Markov chain
for k0 is a unichain and w0 is the relative-gainvector of k0. Then the optimal dynamic policy,
usingw0 as the Þnal reward vector, is the stationary policy k0. Furthermore the optimal gain
at each stagen is given by

v⇤(n,w0) = w0 + ng0e, (4.51)

where g0 = ⇡⇡⇡0rk!
and ⇡⇡⇡0 is the steady-statevector for k0.

Proof: We have seen from (4.45) that k 0 is an optimal dynamic decision at stage 1. Also,
since w 0 is the relative-gain vector for k 0, Theorem 4.5.2 asserts that if decision k 0 is used
at each stage, then the aggregate gain satisfies v(n,w 0) = ng0e + w 0. Since k 0 is optimal
at stage 1, it follows that (4.51) is satisfied for n = 1.

We now use induction on n, with n = 1 as a basis, to verify (4.51) and the optimality of
this same k 0 at each stage n. Thus, assume that (4.51) is satisfied for n. Then, from (4.48),

v⇤(n + 1,w 0) = max
kkk

{ rkkk + [Pkkk]v⇤(n,w 0)} (4.52)

= max
kkk

8
rkkk + [Pkkk]{w 0 + ng0e}

9
(4.53)

= ng0e + max
kkk

{ rkkk + [Pkkk]w 0} (4.54)

= ng0e + rkkk!
+ [Pkkk!

]w 0} (4.55)

= (n + 1)g0e + w 0. (4.56)

Eqn (4.53) follows from the inductive hypothesis of (4.51), (4.54) follows because [Pkkk]e = e
for all k , (4.55) follows from (4.50), and (4.56) follows from the definition of w 0 as the
relative-gain vector for k 0. This verifies (4.51) for n + 1. Also, since k 0 maximizes (4.54),
it also maximizes (4.52), showing that k 0 is the optimal dynamic decision at stage n + 1.
This completes the inductive step.

194 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

Since our major interest in stationary policies is to help understand the relationship between
the optimal dynamic policy and stationary policies, we define an optimal stationary policy
as follows:

Definition 4.6.1. A unichain stationary policy k0 is optimal if the optimal dynamic policy
with w0 as the Þnal reward usesk0 at each stage.

This definition side-steps several important issues. First, we might be interested in dynamic
programming for some other final reward vector. Is it possible that dynamic programming
performs much better in some sense with a di↵erent final reward vector. Is it possible that
there is another stationary policy, especially one with a larger gain per stage? We answer
these questions later and find that stationary policies that are optimal according to the
definition do have maximal gain per stage compared with dynamic policies with arbitrary
final reward vectors.

From Theorem 4.6.1, we see that if there is a policy k 0 which is a unichain with relative-gain
vector w 0, and if that k 0 is a solution to (4.50), then k 0 is an optimal stationary policy.

It is easy to imagine Markov decision models for which each policy corresponds to a Markov
chain with multiple recurrent classes. There are many special cases of such situations, and
their detailed study is inappropriate in an introductory treatment. The essential problem
with such models is that it is possible to get into various sets of states from which there
is no exit, no matter what decisions are used. These sets might have di↵erent gains, so
that there is no meaningful overall gain per stage. We avoid these situations by a modeling
assumption called inherent reachability, which assumes, for each pair (i, j) of states, that
there is some decision vector k containing a path from i to j.

The concept of inherent reachability is a little tricky, since it does not say the same k can
be used for all pairs of states (i.e., that there is some k for which the Markov chain is
recurrent). As shown in Exercise 4.31, however, inherent reachability does imply that for
any state j, there is a k for which j is accessible from all other states. As we have seen
a number of times, this implies that the Markov chain for k is a unichain in which j is a
recurrent state.

Any desired model can be modified to satisfy inherent reachability by creating some new
decisions with very large negative rewards; these allow for such paths but very much dis-
courage them. This will allow us to construct optimal unichain policies, but also to use the
appearance of these large negative rewards to signal that there was something questionable
in the original model.

4.6.3 Policy impro vement and the seach for optimal stationary policies

The general idea of policy improvement is to start with an arbitrary unichain stationary
policy k 0 with a relative gain vector w 0 (as given by (4.37)). We assume inherent reachability
throughout this section, so such unichains must exist. We then check whether (4.50), is
satisfied, and if so, we know from Theorem 4.6.1 that k 0 is an optimal stationary policy. If
not, we find another stationary policy k that is ‘better’ than k 0 in a sense to be described

4.6. MARK OV DECISION THEORY AND DYNAMIC PROGRAMMING 195

later. Unfortunately, the ‘better’ policy that we find might not be a unichain, so it will
also be necessary to convert this new policy into an equally ‘good’ unichain policy. This is
where the assumption of of inherent reachability is needed. The algorithm then iteratively
finds better and better unichain stationary policies, until eventually one of them satisfies
(4.50) and is thus optimal.

We now state the policy-improvement algorithm for inherently reachable Markov decision
problems. This algorithm is a generalization of Howard’s policy-improvement algorithm,
[How60].

Policy-improvement Algorithm

1. Choose an arbitrary unichain policy k 0

2. For policy k 0, calculate w 0 and g0 from w 0 + g0e = rkkk! + [Pkkk!]w 0 and ⇡⇡⇡0w 0 = 0

3. If rk ! + [P k !]w 0 = maxkkk{ rkkk + [Pkkk]w 0} , then stop; k 0 is optimal.

4. Otherwise, choose ` and k` so that r
(k!

`)
` +

(
j P

(k!
`)

`j w0j < r(k`)
` +

(
j P (k`)

`j w0j . For i '= `,
let ki = k0i.

5. If k = (k1, . . . kM) is not a unichain, then let R be the recurrent class in k that contains
state `, and let k̃ be a unichain policy for which k̃i = ki for each i & R . Alternatively,
if k is already a unichain, let k̃ = k .

6. Update k 0 to the value of k̃ and return to step 2.

If the stopping test in step 3 fails, there must be an ` and k` for which r
(k!

`)
` +

(
j P

(k!
`)

`j w0j <

r(k`)
` +

(
j P (k`)

`j w0j . Thus step 4 can always be executed if the algorithm does not stop in
step 3, and since the decision is changed only for the single state `, the resulting policy k
satisfies

rk !
+ [pk !

]w 0 " rkkk + [Pkkk]w 0 with strict inequality for component `. (4.57)

The next three lemmas consider the di↵erent cases for the state ` whose decision is changed
in step 4 of the algorithm. Taken together, they show that each iteration of the algorithm
either increases the gain per stage or keeps the gain per stage constant while increasing
the relative gain vector. After proving these lemmas, we return to show that the algorithm
must converge and explain the sense in which the resulting stationary algorithm is optimal.

For each of the lemmas, let k 0 be the decision vector in step 1 of a given iteration of the
policy improvement algorithm and assume that the Markov chain for k 0 is a unichain. Let
g0,w 0, and R 0 respectively be the gain per stage, the relative gain vector, and the recurrent
set of states for k 0. Assume that the stopping condition in step 3 is not satisfied and that
` denotes the state whose decision is changed. Let k` be the new decision in step 4 and let
k be the new decision vector.

Lemma 4.6.1. Assumethat ` & R 0. Then the Markov chain for k is a unichain and ` is
recurrent in k. The gain per stageg for k satisÞesg > g0.

196 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

Proof: The Markov chain for k is the same as that for k 0 except for the transitions out of
state `. Thus every path into ` in k 0 is still a path into ` in k . Since ` is recurrent in the
unichain k 0, it is accessible from all states in k 0 and thus in k . It follows (see Exercise 4.3)
that ` is recurrent in k and k is a unichain. Since rk ! + [P k !]w 0 = w 0 + g0e (see (4.37)), we
can rewrite (4.57) as

w 0 + g0e " rk + [Pkkk]w 0 with strict inequality for component `. (4.58)

Premultiplying both sides of (4.58) by the steady-state vector ⇡⇡⇡ of the Markov chain k and
using the fact that ` is recurent and thus ⇡` > 0,

⇡⇡⇡w 0 + g0 < ⇡⇡⇡rk + ⇡⇡⇡[P k]w 0.

Since ⇡⇡⇡[P k] = ⇡⇡⇡, this simplifies to

g0 < ⇡⇡⇡rk . (4.59)

The gain per stage g for k is ⇡⇡⇡rk , so we have g0 < g.

Lemma 4.6.2. Assumethat ` /& R 0 (i.e., ` is transient in k0) and that the statesof R 0 are
not accessiblefrom ` in k. Then k is not a unichain and ` is recurrent in k. A decision
vector k̃ exists that is a unichain for which k̃i = ki for i & R, and its gain per stage g̃
satisÞesg̃ > g.

Proof: Since ` /& R 0, the transition probabilities from the states of R 0 are unchanged in
going from k 0 to k . Thus the set of states accessible from R 0 remains unchanged, and R 0

is a recurrent set of k . Since R 0 is not accessible from `, there must be another recurrent
set, R , in k , and thus k is not a unichain. The states accessible from R no longer include
R 0, and since ` is the only state whose transition probabilities have changed, all states in
R have paths to ` in k . It follows that ` & R .

Now let ⇡⇡⇡ be the steady-state vector for R in the Markov chain for k . Since ⇡` > 0, (4.58)
and (4.59) are still valid for this situation. Let k̃ be a decision vector for which k̃i = ki for
each i & R . Using inherent reachability, we can also choose k̃i for each i /& R so that ` is
reachable from i (see Exercise 4.31). Thus k̃ is a unichain with the recurrent class R . Since
k̃ has the same transition probabilities and rewards in R as k , we see that g̃ = ⇡rk and
thus g̃ > g0.

The final lemma now includes all cases not in Lemmas 4.6.1 and 4.6.2

Lemma 4.6.3. Assume that ` /& R 0 and that R 0 is accessiblefrom ` in k. Then k is a
unichain with the samerecurrent set R 0 as k0. The gain per stageg is equal to g0 and the
relative-gain vector w of k satisÞes

w0 " w with w0` < w` and w0i = wi for i & R 0. (4.60)

Proof: Since k 0 is a unichain, k 0 contains a path from each state to R 0. If such a path does
not go through state `, then k also contains that path. If such a path does go through `,

4.6. MARK OV DECISION THEORY AND DYNAMIC PROGRAMMING 197

then that path can be replaced in k by the same path to ` followed by a path in k from `
to R 0. Thus R 0 is accessible from all states in k . Since the states accessible from R 0 are
unchanged from k 0 to k , k is still a unichain with the recurrent set R 0 and state ` is still
transient.

If we write out the defining equation (4.37) for w 0 component by component, we get

w0i + g0 = r
k!

i
i +

'

j

P
k!

i
ij w0j . (4.61)

Consider the set of these equations for which i & R 0. Since P
k!

i
ij = 0 for all transient j

in k 0, these are the same relative-gain equations as for the Markov chain restricted to R 0.
Therefore w 0 is uniquely defined for i & R 0

i by this restricted set of equations. These
equations are not changed in going from k 0 to k , so it follows that wi = w0i for i & R 0.
We have also seen that the steady-state vector ⇡⇡⇡0 is determined solely by the transition
probabilities in the recurrent class, so ⇡⇡⇡0 is unchanged from k 0 to k , and g = g0.

Finally, consider the di↵erence between the relative-gain equations for k 0 in 4.61 and those
for k . Since g0 = g,

wi # w0i = rki
i # r

k!
i

i +
'

j

+
P ki

ij wj # P
k!

i
ij w0j

,
. (4.62)

For all i '= `, this simplifies to

wi # w0i =
'

j

P ki
ij (wj # w0j). (4.63)

For i = `, (4.62) can be rewritten as

w` # w0` =
'

j

P k`
`j (wj # w0j) +

!

#rk`
` # r

k!
`

` +
'

j

+
P k`

`j w0j # P
k!

`
`j w0j

,
$

& . (4.64)

The quantity in brackets must be positive because of step 4 of the algorithm, and we denote
it as r̂` # r̂0`. If we also define r̂i = r̂0i for i '= `, then we can apply the last part of Corollary
4.5.1 (using r̂ and r̂ 0 as reward vectors) to conclude that w ! w 0 with w` > w0`.

We now see that each iteration of the algorithm either increases the gain per stage or holds
the gain per stage the same and increases the relative-gain vector w . Thus the sequence
of policies found by the algorithm can never repeat. Since there are a finite number of
stationary policies, the algorithm must eventually terminate at step 3. This means that the
optimal dynamic policy using the final reward vector w 0 for the terminating decision vector
k 0 must in fact be the stationary policy k 0.

The question now arises whether the optimal dynamic policy using some other final reward
vector can be substantially better than that using w 0. The answer is quite simple and is
developed in Exercise 4.30. It is shown there that if u and u 0 are arbitrary final reward
vectors used on the dynamic programming algorithm, then v⇤(n,u) and v⇤(n,u 0) are related
by

v⇤(n,u) " v⇤(n,u 0) + ↵e,

198 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

where ↵ = maxi(ui # u0i). Using w 0 for u 0, it is seen that the gain per stage of dynamic
programming, with any final reward vector, is at most the gain g0 of the stationary policy
at the termination of the policy-improvement algorithm.

The above results are summarized in the following theorem.

Theorem 4.6.2. For any inherently reachableÞnite-state Markov decision problem, the
policy-improvementalgorithm terminates with a stationary policy k0 that is the sameas the
solution to the dynamic programming algorithm using w0 as the Þnal reward vector. The
gain per stageg0 of this stationary policy maximizes the gain per stageover all stationary
policies and over all Þnal-reward vectors for the dynamic programming algorithm.

One remaining issue is the question whether the relative-gain vector found by the policy-
improvement algorithm is in any sense optimal. The example in Figure 4.11 illustrates two
di↵erent solutions terminating the policy-improvement algorithm. They each have the same
gain (as guaranteed by Theorem 4.6.2) but their relative-gain vectors are not ordered.

1 2 3
P (1)

11 = 1

P (1)
21 = 1 P (1)

32 = 1r(1)
1 =0

r(2)
1 =� 20

r(1)
2 =2

r(2)
2 =1

r(1)
2 =0

r(2)
2 =� 20

P (2)
12 = 1 P (2)

23 = 1

P (2)
33 = 1

"# , !*
!$!$,, !*

!$

Figure 4.11: A Markov decision problem in which there are two unichain decision
vectors (one left-going, and the other right-going). For each, (4.50) is satisfied and the
gain per stage is 0. The dynamic programming algorithm (with no final reward) is
stationary but has two recurrent classes, one of which is { 3} , using decision 2 and the
other of which is { 1, 2} , using decision 1 in each state.

In many applications such as variations on the shortest path problem, the interesting issue
is what happens before the recurrent class is entered, and there is often only one recurrent
class and one set of decisions within that class of interest. The following corollary shows that
in this case, the relative-gain vector for the stationary policy that terminates the algorithm
is maximal not only among the policies visited by the algorithm but among all policies with
the same recurrent class and the same decisions within that class. The proof is almost the
same as that of Lemma 4.6.3 and is carried out in Exercise 4.33.

Corollary 4.6.1. Assumethe policy improvementalgorithm terminates with the recurrent
class R 0, the decision vector k0, and the relative-gain vector w0. Then for any stationary
policy that hasthe recurrent classR 0 and a decision vector k satisfying ki = k0i for all i & R 0,
the relative gain vector w satisÞesw " w0.

4.7 Summary

This chapter has developed the basic results about finite-state Markov chains. It was shown
that the states of any finite-state chain can be partitioned into classes, where each class is
either transient or recurrent, and each class is periodic or aperiodic. If a recurrent class is

4.7. SUMMARY 199

periodic of period d, then the states in that class can be partitioned into d subsets where
each subset has transitions only into the next subset.

The transition probabilities in the Markov chain can be represented as a matrix [P], and the
n-step transition probabilities are given by the matrix product [Pn]. If the chain is ergodic,
i.e., one aperiodic recurrent class, then the limit of the n-step transition probabilities become
independent of the initial state, i.e., limn!1 Pn

ij = ⇡j where ⇡⇡⇡ = (⇡1, . . . ,⇡M) is called the
steady-state probability. Thus the limiting value of [Pn] is an M by M matrix whose rows
are all the same, i.e., the limiting matrix is the product e⇡⇡⇡. The steady state probabilities
are uniquely specified by

(
j ⇡iPij = ⇡j and

(
i ⇡i = 1. That unique solution must satisfy

⇡i > 0 for all i. The same result holds (see Theorem 4.3.2) for aperidodic unichains with
the exception that ⇡i = 0 for all transient states.

The eigenvalues and eigenvectors of [P] are useful in many ways, but in particular provide
precise results about how Pn

ij approaches ⇡j with increasing n. An eigenvalue equal to 1
always exists, and its multiplicity is equal to the number of recurrent classes. For each
recurrent class, there is a left eigenvector ⇡⇡⇡ of eigenvalue 1. It is the steady-state vector
for the given recurrent class. If a recurrent class is periodic with period d, then there are
d corresponding eigenvalues of magnitude 1 uniformly spaced around the unit circle. The
left eigenvector corresponding to each is nonzero only on that periodic recurrent class.

All other eigenvalues of [P] are less than 1 in magnitude. If the eigenvectors of the entire
set of eigenvalues span M dimensional space, then [Pn] can be represented by (4.30) which
shows explicitly how steady state is approached for aperiodic recurrent classes of states. If
the eigenvectors do not span M-space, then (4.30) can be replaced by a Jordan form.

For an arbitrary finite-state Markov chain, if the initial state is transient, then the Markov
chain will eventually enter a recurrent state, and the probability that this takes more than
n steps approaches zero geometrically in n; Exercise 4.18 shows how to find the probability
that each recurrent class is entered. Given an entry into a particular recurrent class, the
results about recurrent chains can be used to analyze the behavior within that class.

The results about Markov chains were extended to Markov chains with rewards. The use of
reward functions (or cost functions) provides a systematic way to approach a large class of
problems ranging from first-passage times to dynamic programming. For unichains, the key
result here is Theorem 4.5.2, which provides both an exact expression and an asymptotic
expression for the expected aggregate reward over n stages. Markov chains with rewards and
multiple recurrent classes are best handled by considering the individual recurrent classes
separately.

Finally, the results on Markov chains with rewards were used to understand Markov deci-
sion theory. The Bellman dynamic programming algorithm was developed, and the policy
improvement algorithm was discussed and analyzed. Theorem 4.6.2 demonstrated the re-
lationship between the optimal dynamic policy and the optimal stationary policy. This
section provided only an introduction to dynamic programming and omitted all discussion
of discounting (in which future gain is considered worth less than present gain because of
interest rates). The development was also restricted to finite-state spaces.

For a review of vectors, matrices, and linear algebra, see any introductory text on linear

200 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

algebra such as Strang [22]. For further reading on Markov decision theory and dynamic
programming, see Bertsekas, [3]. Bellman [1] is of historic interest and quite readable.

4.8 Exercises

Exercise 4.1. Let [P] be the transition matrix for a finite state Markov chain and let state
i be recurrent. Prove that i is aperiodic if Pii > 0.

Exercise 4.2. Show that every Markov chain with M < (states contains at least one
recurrent set of states. Explaining each of the following statements is su�cient.

a) If state i1 is transient, then there is some other state i2 such that i1 $ i2 and i2 '$ i1.

b) If the i2 of part a) is also transient, there is an i3 such that i2 $ i3, i3 '$ i2, and
consequently i1 $ i3, i3 '$ i1.

c) Continuing inductively, if ik is also transient, there is an ik+1 such that ij $ ik+1 and
ik+1 '$ ij for 1 " j " k.

d) Show that for some k " M, k is not transient, i.e., it is recurrent, so a recurrent class
exists.

Exercise 4.3. Consider a finite-state Markov chain in which some given state, say state 1,
is accessible from every other state. Show that the chain has at most one recurrent class
R of states and state 1 & R . (Note that, combined with Exercise 4.2, there is exactly one
recurrent class and the chain is then a unichain.)

Exercise 4.4. Show how to generalize the graph in Figure 4.4 to an arbitrary number of
states M ! 3 with one cycle of M nodes and one of M # 1 nodes. For M = 4, let node 1 be
the node not in the cycle of M # 1 nodes. List the set of states accessible from node 1 in
n steps for each n " 12 and show that the bound in Theorem 4.2.4 is met with equality.
Explain why the same result holds for all larger M.

Exercise 4.5. (Proof of Theorem 4.2.4)

a) Show that an ergodic Markov chain with M states must contain a cycle with ⌧ < M
states. Hint: Use ergodicity to show that the smallest cycle cannot contain M states.

b) Let ` be a fixed state on this cycle of length ⌧ . Let T (m) be the set of states accessible
from ` in m steps. Show that for each m ! 1, T (m) + T (m+ ⌧). Hint: For any given state
j & T (m), show how to construct a walk of m + ⌧ steps from ` to j from the assumed walk
of m steps.

c) Define T (0) to be the singleton set { i} and show that

T (0) + T (⌧) + T (2⌧) + ááá+ T (n⌧) + ááá.

4.8. EXERCISES 201

d) Show that if one of the inclusions above is satisfied with equality, then all subsequent
inclusions are satisifed with equality. Show from this that at most the first M # 1 inclusions
can be satisfied with strict inequality and that T (n⌧) = T ((M # 1)⌧) for all n ! M # 1.

e) Show that all states are included in T ((M # 1)⌧).

f) Show that P (M�1)2+1
ij > 0 for all i, j.

Exercise 4.6. Consider a Markov chain with one ergodic class of m states, say { 1, 2, . . . ,m}
and M # m other states that are all transient. Show that Pn

ij > 0 for all j " m and
n ! (m # 1)2 + 1 + M # m.

Exercise 4.7. a) Let ⌧ be the number of states in the smallest cycle of an arbitrary ergodic
Markov chain of M ! 3 states. Show that Pn

ij > 0 for all n ! (M # 2)⌧ + M. Hint: Look at
the proof of Theorem 4.2.4 in Exercise 4.5.

b) For ⌧ = 1, draw the graph of an ergodic Markov chain (generalized for arbitrary M ! 3)
for which there is an i, j for which Pn

ij = 0 for n = 2M # 3. Hint: Look at Figure 4.4.

c) For arbitrary ⌧ < M # 1, draw the graph of an ergodic Markov chain (generalized for
arbitrary M) for which there is an i, j for which Pn

ij = 0 for n = (M # 2)⌧ + M # 1.

Exercise 4.8. A transition probability matrix [P] is said to be doubly stochastic if
'

j

Pij = 1 for all i;
'

i

Pij = 1 for all j.

That is, the row sum and the column sum each equal 1. If a doubly stochastic chain has
M states and is ergodic (i.e., has a single class of states and is aperiodic), calculate its
steady-state probabilities.

Exercise 4.9. a) Find the steady-state probabilities ⇡0, . . . ,⇡k�1 for the Markov chain
below. Express your answer in terms of the ratio ⇢ = p/q. Pay particular attention to the
special case ⇢ = 1.

b) Sketch ⇡0, . . . ,⇡k�1. Give one sketch for ⇢ = 1/2, one for ⇢ = 1, and one for ⇢ = 2.

c) Find the limit of ⇡0 as k approaches (; give separate answers for ⇢ < 1, ⇢ = 1, and
⇢ > 1. Find limiting values of ⇡k�1 for the same cases.

0 1 2 k" 2 k" 1,
p p p p p

1# p 1# p 1# p 1# p

1# p
. . . !$"# , !*

!$, !*
!$, !*

!$, !*
!$

Exercise 4.10. a) Find the steady-state probabilities for each of the Markov chains in
Figure 4.2. Assume that all clockwise probabilities in the first graph are the same, say p,
and assume that P4,5 = P4,1 in the second graph.

b) Find the matrices [P 2] for the same chains. Draw the graphs for the Markov chains
represented by [P 2], i.e., the graph of two step transitions for the original chains. Find

202 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

the steady-state probabilities for these two step chains. Explain why your steady-state
probabilities are not unique.

c) Find limn!1[P 2n] for each of the chains.

Exercise 4.11. a) Assume that ⌫⌫⌫(i) is a right eigenvector and ⇡⇡⇡(j) is a left eigenvector of
an M by M stochastic matrix [P] where �i '= �j . Show that ⇡⇡⇡(j)⌫⌫⌫(i) = 0. Hint: Consider
two ways of finding ⇡⇡⇡(j)[P]⌫⌫⌫(i).

b) Assume that [P] has M distinct eigenvalues. The right eigenvectors of [P] then span M
space (see section 5.2 of Strang, [22]), so the matrix [U] with those eigenvectors as columns
is nonsingular. Show that U�1 is a matix whose rows are the M left eigenvectors of [P].
Hint: use part a).

c) For each i, let [⇤(i)] be a diagonal matrix with a single nonzero element, [⇤(i)
ii] = �i.

Assume that ⇡⇡⇡i⌫⌫⌫k = 0. Show that

⌫⌫⌫(j)[⇤(i)]⇡⇡⇡(k) = �i�ik�jk,

where �ik is 1 if i = k and 0 otherwise. Hint visualize straightforward vector/matrix
multiplication.

d) Verify (4.30).

Exercise 4.12. a) Let �k be an eigenvalue of a stochastic matrix [P] and let ⇡⇡⇡(k) be an
eigenvector for �k. Show that for each component ⇡(k)

j of ⇡⇡⇡(k) and each n that

�n
k ⇡(k)

j =
'

i

⇡(k)
i Pn

ij .

b) By taking magnitudes of each side and looking at the appropriate j, show that
-
-�k

-
-n " M.

c) Show that
-
-�k

-
- " 1.

Exercise 4.13. Consider a finite state Markov chain with matrix [P] which has aperiodic
recurrent classes, R 1, . . . , R and a set T of transient states. For any given recurrent class
`, consider a vector ⌫⌫⌫ such that ⌫i = 1 for each i & R `, ⌫i = limn!1 Pr{ Xn & R `|X0 = i}
for each i & T , and ⌫i = 0 otherwise. Show that ⌫⌫⌫ is a right eigenvector of [P] with
eigenvalue 1. Hint: Redraw Figure 4.5 for multiple recurrent classes and first show that ⌫⌫⌫
is an eigenvector of [Pn] in the limit.

Exercise 4.14. Answer the following questions for the following stochastic matrix [P]

[P] =

!

#
1/2 1/2 0
0 1/2 1/2
0 0 1

$

& .

4.8. EXERCISES 203

a) Find [Pn] in closed form for arbitrary n > 1.

b) Find all distinct eigenvalues and the multiplicity of each distinct eigenvalue for [P].

Solution: Use the following equation to find the determinant of [P # �I] and note that the
only permutation of the columns that gives a non-zero value is the main diagonal.

detA =
'

µ

±
M:

i=1

Ai,µ(i)

Thus det[P # ⇤I] = (1/2 # �)2(1 # �). It follows that � = 1 is an eigenvalue of multiplicity
1 and � = 1/2 is an eigenvalue of multiplicity 2.

c) Find a right eigenvector for each distinct eigenvalue, and show that the eigenvalue of
multiplicity 2 does not have 2 linearly independent eigenvectors.

Solution: The corresponding Markov chain is a unichain, and the right eigenvector of
� = 1 must be e = (1, 1, 1)T

d) Use (c) to show that there is no diagonal matrix [⇤] and no invertible matrix [U] for
which [P][U] = [U][⇤].

e) Rederive the result of part d) using the result of a) rather than c).

Exercise 4.15. a) Let [Ji] be a 3 by 3 block of a Jordan form, i.e.,

[Ji] =

!

#
�i 1 0
0 �i 1
0 0 �i

$

& .

Show that the nth power of [Ji] is given by

[Jn
i] =

!

#
�n

i n�n�1
i

; n
2

<
�n�2

i
0 �n

i n�n�1
i

0 0 �n
i

$

& .

Hint: Perhaps the easiest way is to calculate [J2
i] and [J3

i] and then use iteration.

b) Generalize a) to a k by k block of a Jordan form. Note that the nth power of an entire
Jordan form is composed of these blocks along the diagonal of the matrix.

c) Let [P] be a stochastic matrix represented by a Jordan form [J] as [P] = U�1[J][U] and
consider [U][P][U�1] = [J]. Show that any repeated eigenvalue of [P] (i.e., any eigenvalue
represented by a Jordan block of 2 by 2 or more) must be strictly less than 1. Hint: Upper
bound the elements of [U][Pn][U�1] by taking the magnitude of the elements of [U] and
[U�1] and upper bounding each element of a stochastic matrix by 1.

d) Let �s be the eigenvalue of largest magnitude less than 1. Assume that the Jordan
blocks for �s are at most of size k. Show that each ergodic class of [P] converges at least
as fast as nk�k

s .

204 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

Exercise 4.16. a) Let � be an eigenvalue of a matrix [A], and let ⌫⌫⌫ and ⇡⇡⇡ be right and
left eigenvectors respectively of �, normalized so that ⇡⇡⇡⌫⌫⌫ = 1. Show that

[[A] # �⌫⌫⌫⇡⇡⇡]2 = [A2] # �2⌫⌫⌫⇡⇡⇡.

b) Show that [[An] # �n⌫⌫⌫⇡⇡⇡][[A] # �⌫⌫⌫⇡⇡⇡] = [An+1] # �n+1⌫⌫⌫⇡⇡⇡.

c) Use induction to show that [[A] # �⌫⌫⌫⇡⇡⇡]n = [An] # �n⌫⌫⌫⇡⇡⇡.

Exercise 4.17. Let [P] be the transition matrix for an aperiodic Markov unichain with
the states numbered as in Figure 4.5.

a) Show that [Pn] can be partitioned as

[Pn] =
.

[PT
n] [Pn

x]
0 [Pn

R]

/
.

That is, the blocks on the diagonal are simply products of the corresponding blocks of [P],
and the upper right block is whatever it turns out to be.

b) Let qi be the probability that the chain will be in a recurrent state after t transitions,
starting from state i, i.e., qi =

(
t<jt+r P t

ij . Show that qi > 0 for all transient i.

c) Let q be the minimum qi over all transient i and show that Pnt
ij " (1 # q)n for all

transient i, j (i.e., show that [Pn
T] approaches the all zero matrix [0] with increasing n).

d) Let ⇡⇡⇡ = (⇡⇡⇡T ,⇡⇡⇡R) be a left eigenvector of [P] of eigenvalue 1. Show that ⇡⇡⇡T = 0 and
show that ⇡⇡⇡R must be positive and be a left eigenvector of [PR]. Thus show that ⇡⇡⇡ exists
and is unique (within a scale factor).

e) Show that e is the unique right eigenvector of [P] of eigenvalue 1 (within a scale factor).

Exercise 4.18. Generalize Exercise 4.17 to the case of a Markov chain [P] with m recurrent
classes and one or more transient classes. In particular,

a) Show that [P] has exactly linearly independent left eigenvectors, ⇡⇡⇡(1),⇡⇡⇡(2), . . . ,⇡⇡⇡()

of eigenvalue 1, and that the mth can be taken as a probability vector that is positive on
the mth recurrent class and zero elsewhere.

b) Show that [P] has exactly linearly independent right eigenvectors, ⌫⌫⌫(1),⌫⌫⌫(2), . . . ,⌫⌫⌫()

of eigenvalue 1, and that the mth can be taken as a vector with ⌫(m)
i equal to the probability

that recurrent class m will ever be entered starting from state i.

c) Show that

lim
n!1

[Pn] =
'

m

⌫⌫⌫(m)⇡⇡⇡(m).

4.8. EXERCISES 205

Exercise 4.19. Suppose a recurrent Markov chain has period d and let Sm, 1 " m " d,
be the mth subset in the sense of Theorem 4.2.3. Assume the states are numbered so that
the first s1 states are the states of S1, the next s2 are those of S2, and so forth. Thus the
matrix [P] for the chain has the block form given by

[P] =

!

"
"
"
"
"
"
"
"
#

0 [P1]
. 0

0 0 [P2]
.

.

0 0 [Pd�1]

[Pd] 0 0

$

%
%
%
%
%
%
%
%
&

,

where [Pm] has dimension sm by sm+1 for 1 " m " d, where d + 1 is interpreted as 1
throughout. In what follows it is usually more convenient to express [Pm] as an M by M
matrix [P 0

m] whose entries are 0 except for the rows of Sm and the columns of Sm+1, where
the entries are equal to those of [Pm]. In this view, [P] =

(d
m=1[P

0
m].

a) Show that [P d] has the form

[P d] =

!

"
"
"
#

[Q1] 0 . . . 0

0 [Q2]
.

0 0 . . . [Qd]

$

%
%
%
&

,

where [Qm] = [Pm][Pm+1] . . . [Pd][P1] . . . [Pm�1]. Expressing [Qm] as an M by M matrix [Q0
m]

whose entries are 0 except for the rows and columns of Sm where the entries are equal to
those of [Qm], this becomes [P d] =

(d
m=1[Q

0
m].

b) Show that [Qm] is the matrix of an ergodic Markov chain, so that with the eigenvectors
⇡̂⇡⇡m, ⌫̂⌫⌫m as defined in Exercise 4.18, limn!1[Pnd] =

(d
m=1 ⌫̂⌫⌫(m)⇡̂⇡⇡(m).

c) Show that ⇡̂⇡⇡(m)[P 0
m] = ⇡̂⇡⇡(m+1). Note that ⇡̂⇡⇡(m) is an M-tuple that is nonzero only on

the components of Sm.

d) Let � = 2⇡⇡⇡
p
�1

d and let ⇡⇡⇡(k) =
(d

m=1 ⇡̂⇡⇡(m)emk�. Show that ⇡⇡⇡(k) is a left eigenvector of
[P] of eigenvalue e��k.

Exercise 4.20. (continuation of Exercise 4.19). a) Show that, with the eigenvectors
defined in Exercises 4.19,

lim
n!1

[Pnd][P] =
d'

i=1

⌫⌫⌫(i)⇡⇡⇡(i+1),

where, as before, d + 1 is taken to be 1.

b) Show that, for 1 " j < d,

lim
n!1

[Pnd][P j] =
d'

i=1

⌫⌫⌫(i)⇡⇡⇡(i+j).

206 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

c) Show that

lim
n!1

[Pnd]
8
I + [P] + . . . , [P d�1]

9
=

2
d'

i=1

⌫⌫⌫(i)

3 2
d'

i=1

⇡⇡⇡(i+j)

3

.

d) Show that

lim
n!1

1
d

+
[Pn] + [Pn+1] + ááá+ [Pn+d�1]

,
= e⇡⇡⇡,

where ⇡⇡⇡ is the steady-state probability vector for [P]. Hint: Show that e =
(

m ⌫⌫⌫(m) and
⇡⇡⇡ = (1/d)

(
m ⇡⇡⇡(m).

e) Show that the above result is also valid for periodic unichains.

Exercise 4.21. Suppose A and B are each ergodic Markov chains with transition probabil-
ities { PAi,Aj } and { PBi,Bj } respectively. Denote the steady-state probabilities of A and B
by { ⇡Ai} and { ⇡Bi} respectively. The chains are now connected and modified as shown be-
low. In particular, states A1 and B1 are now connected and the new transition probabilities
P 0 for the combined chain are given by

P 0
A1,B1

= ", P 0
A1,Aj

= (1 # ")PA1,Aj for all Aj

P 0
B1,A1

= �, P 0
B1,Bj

= (1 # �)PB1,Bj for all Bj .

All other transition probabilities remain the same. Think intuitively of " and � as being
small, but do not make any approximations in what follows. Give your answers to the
following questions as functions of ", �, { ⇡Ai} and { ⇡Bi} .

, !*
!$A1 B1

,

,

,

,

C
C

C

E
E

E

E
E

E

C
C

C

,,

,,

E
E

E

C
C

C1
1

1
1

1 "

�

-

.

/

0

-

.

/

0
Chain A Chain B

a) Assume that ✏ > 0, � = 0 (i.e., that A is a set of transient states in the combined chain).
Starting in state A1, find the conditional expected time to return to A1 given that the first
transition is to some state in chain A.

b) Assume that ✏ > 0, � = 0. Find TA,B, the expected time to first reach state B1

starting from state A1. Your answer should be a function of ✏ and the original steady state
probabilities { ⇡Ai} in chain A.

c) Assume " > 0, � > 0, find TB,A, the expected time to first reach state A1, starting in
state B1. Your answer should depend only on � and { ⇡Bi} .

d) Assume " > 0 and � > 0. Find P 0(A), the steady-state probability that the combined
chain is in one of the states { Aj} of the original chain A.

4.8. EXERCISES 207

e) Assume " > 0, � = 0. For each state Aj '= A1 in A, find vAj , the expected number
of visits to state Aj , starting in state A1, before reaching state B1. Your answer should
depend only on " and { ⇡Ai} .

f) Assume " > 0, � > 0. For each state Aj in A, find ⇡0Aj
, the steady-state probability of

being in state Aj in the combined chain. Hint: Be careful in your treatment of state A1.

Exercise 4.22. Example 4.5.1 showed how to find the expected first passage times to a
fixed state, say 1, from all other nodes. It is often desirable to include the expected first
recurrence time from state 1 to return to state 1. This can be done by splitting state 1 into
2 states, first an initial state with no transitions coming into it but the original transitions
going out, and second, a final trapping state with the original transitions coming in.

a) For the chain on the left side of Figure 4.6, draw the graph for the modified chain with
5 states where state 1 has been split into 2 states.

b) Suppose one has found the expected first-passage-times vj for states j = 2 to 4 (or in
general from 2 to M). Find an expression for v1, the expected first recurrence time for state
1 in terms of v2, v3, . . . vM and P12, . . . , P1M .

Exercise 4.23. a) Assume throughout that [P] is the transition matrix of a unichain (and
thus the eigenvalue 1 has multiplicity 1). Show that a solution to the equation [P]w # w =
r # ge exists if and only if r # ge lies in the column space of [P # I] where [I] is the identity
matrix.

b) Show that this column space is the set of vectors x for which ⇡⇡⇡x = 0. Then show that
r # ge lies in this column space.

c) Show that, with the extra constraint that ⇡⇡⇡w = 0, the equation [P]w # w = r # ge has
a unique solution.

Exercise 4.24. For the Markov chain with rewards in Figure 4.7,

a) Find the solution to (4.5.1) and find the gain g.

b) Modify Figure 4.7 by letting P12 be an arbitrary probability. Find g and w again and
give an intuitive explanation of why P12 e↵ects w2.

Exercise 4.25. (Proof of Corollary 4.5.1) a) Show that the gain per stage g is 0. Hint:
Show that r is zero where the steady-state vector ⇡⇡⇡ is nonzero.

b) Let [PR] be the transition matrix for the recurrent states and let rR = 0 be the reward
vector and wR the relative-gain vector for [PR]. Show that wR = 0. Hint: Use Theorem
4.5.1.

c) Show that wi = 0 for all i & R . Hint: Compare the relative-gain equations for [P] to
those for [PR].

d) Show that for each n ! 0, [Pn]w = [Pn+1]w + [Pn]r . Hint: Start with the relative-gain
equation for [P].

208 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

e) Show that w = [Pn+1]w +
(n

m=0[P
m]r . Hint: Sum the result in b).

f) Show that limn!1[Pn+1]w = 0 and that limn!1
(n

m=0[P
m]r is finite, non-negative,

and has positive components for ri > 0. Hint: Use lemma 4.3.3.

g) Demonstrate the final result of the corollary by using the previous results on r = r 0# r 00.

Exercise 4.26. Consider the Markov chain below:

3

1

2

!

!

!

? ? ? ? ? ? ? ??G

< < < < < < < <<=
; 1/2

1/4

1/2 1

1/2

1/4

!$

"#

"#

a) Suppose the chain is started in state i and goes through n transitions; let vi(n) be the
expected number of transitions (out of the total of n) until the chain enters the trapping
state, state 1. Find an expression for v(n) = (v1(n), v2(n), v3(n))T in terms of v(n # 1)
(take v1(n) = 0 for all n). (Hint: view the system as a Markov reward system; what is the
value of r?)

b) Solve numerically for limn!1 v(n). Interpret the meaning of the elements vi in the
solution of (4.32).

c) Give a direct argument why (4.32) provides the solution directly to the expected time
from each state to enter the trapping state.

Exercise 4.27. a) Show that (4.48) can be rewritten in the more compact form

v⇤(n,u) = v⇤(1, v⇤(n# 1, u)).

b) Explain why it is also true that

v⇤(2n,u) = v⇤(n, v⇤(n, u)). (4.65)

c) One might guess that (4.65) could be used iteratively, finding v⇤(2n+1,u) from v⇤(2n,u).
Explain why this is not possible in any straighttforward way. Hint: Think through explicitly
how one might calculate v⇤(n, v⇤(n, u)) from v⇤(n, u).

Exercise 4.28. Consider a sequence of IID binary rv’s X1,X2, Assume that Pr{ Xi = 1} =
p1, Pr{ Xi = 0} = p0 = 1 # p1. A binary string (a1, a2, . . . , ak) occurs at time n if
Xn = ak,Xn�1 = ak�1, . . .Xn�k+1 = a1. For a given string (a1, a2, . . . , ak), consider a
Markov chain with k + 1 states { 0, 1, . . . , k} . State 0 is the initial state, state k is a fi-
nal trapping state where (a1, a2, . . . , ak) has already occurred, and each intervening state
i, 0 < i < k, has the property that if the subsequent k # i variables take on the values
ai+1, ai+2, . . . , ak, the Markov chain will move successively from state i to i+1 to i+2 and

4.8. EXERCISES 209

&0 !* &1 !* &2!$
1
2!$"

0

0

1

so forth to k. For example, if k = 2 and (a1, a2) = (0, 1), the corresponding chain is given
by

a) For the chain above, find the mean first-passage time from state 0 to state 2.

b) For parts b) to d), let (a1, a2, a3, . . . , ak) = (0, 1, 1, . . . , 1), i.e., zero followed by k # 1
ones. Draw the corresponding Markov chain for k = 4.

c) Let vi, 1 " i " k be the expected first-passage time from state i to state k. Note that
vk = 0. Show that v0 = 1/p0 + v1.

d) For each i, 1 " i < k, show that vi = ↵i + vi+1 and v0 = �i + vi+1 where ↵i and �i

are each a product of powers of p0 and p1. Hint: use induction, or iteration, starting with
i = 1, and establish both equalities together.

e) Let k = 3 and let (a1, a2, a3) = (1, 0, 1). Draw the corresponding Markov chain for this
string. Evaluate v0, the expected first-passage time for the string 1,0,1 to occur.

Exercise 4.29. a) Find limn!1[Pn] for the Markov chain below. Hint: Think in terms
of the long term transition probabilities. Recall that the edges in the graph for a Markov
chain correspond to the positive transition probabilities.

b) Let ⇡⇡⇡(1) and ⇡⇡⇡(2) denote the first two rows of limn!1[Pn] and let ⌫⌫⌫(1) and ⌫⌫⌫(2) denote the
first two columns of limn!1[Pn]. Show that ⇡⇡⇡(1) and ⇡⇡⇡(2) are independent left eigenvectors
of [P], and that ⌫⌫⌫(1) and ⌫⌫⌫(2) are independent right eigenvectors of [P]. Find the eigenvalue
for each eigenvector.

,1 ,3 ,2, +

HI

P31 P32

P33

11
!$"#

c) Let r be an arbitrary reward vector and consider the equation

w + g(1)⌫⌫⌫(1) + g(2)⌫⌫⌫(2) = r + [P]w . (4.66)

Determine what values g(1) and g(2) must have in order for (4.66) to have a solution. Argue
that with the additional constraints w1 = w2 = 0, (4.66) has a unique solution for w and
find that w .

Exercise 4.30. Let u and u 0 be arbitrary final reward vectors with u " u 0.

a) Let k be an arbitrary stationary policy and prove that vkkk(n,u) " vkkk(n,u 0) for each
n ! 1.

b) For the optimal dynamic policy, prove that v⇤(n,u) " v⇤(n,u 0) for each n ! 1. This is
known as the monotonicity theorem.

c) Now let u and u 0 be arbitrary. Let ↵ = maxi(ui # u0i). Show that

v⇤(n,u) " v⇤(n,u 0) + ↵e.

210 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

Exercise 4.31. Consider a Markov decision problem with M states in which some state,
say state 1, is inherently reachable from each other state.

a) Show that there must be some other state, say state 2, and some decision, k2, such that
P (k2)

21 > 0.

b) Show that there must be some other state, say state 3, and some decision, k3, such that
either P (k3)

31 > 0 or P (k3)
32 > 0.

c) Assume, for some i, and some set of decisions k2, . . . , ki that, for each j, 2 " j " i,
P

(kj)
jl > 0 for some l < j (i.e., that each state from 2 to j has a non-zero transition to a

lower numbered state). Show that there is some state (other than 1 to i), say i + 1 and
some decision ki+1 such that P (ki+1)

i+1,l > 0 for some l " i.

d) Use parts a), b), and c) to observe that there is a stationary policy k = k1, . . . , kM for
which state 1 is accessible from each other state.

Exercise 4.32. George drives his car to the theater, which is at the end of a one-way street.
There are parking places along the side of the street and a parking garage that costs $5 at
the theater. Each parking place is independently occupied or unoccupied with probability
1/2. If George parks n parking places away from the theater, it costs him n cents (in time
and shoe leather) to walk the rest of the way. George is myopic and can only see the parking
place he is currently passing. If George has not already parked by the time he reaches the
nth place, he first decides whether or not he will park if the place is unoccupied, and then
observes the place and acts according to his decision. George can never go back and must
park in the parking garage if he has not parked before.

a) Model the above problem as a 2 state dynamic programming problem. In the “driving”
state, state 2, there are two possible decisions: park if the current place is unoccupied or
drive on whether or not the current place is unoccupied.

b) Find v⇤i (n,u), the minimum expected aggregate cost for n stages (i.e., immediately
before observation of the nth parking place) starting in state i = 1 or 2; it is su�cient
to express v⇤i (n,u) in terms of v⇤i (n # 1). The final costs, in cents, at stage 0 should be
v2(0) = 500, v1(0) = 0.

c) For what values of n is the optimal decision the decision to drive on?

d) What is the probability that George will park in the garage, assuming that he follows
the optimal policy?

Exercise 4.33. (Proof of Corollary 4.6.1) a) Show that if two stationary policies k 0 and k
have the same recurrent class R 0 and if k0i = ki for all i & R 0, then w0i = wi for all i & R 0.
Hint: See the first part of the proof of Lemma 4.6.3.

b) Assume that k 0 satisfies 4.50 (i.e., that it satisfies the termination condition of the policy
improvement algorithm) and that k satisfies the conditions of part a). Show that (4.64) is
satisfied for all states `.

c) Show that w " w 0. Hint: Follow the reasoning at the end of the proof of Lemma 4.6.3.

4.8. EXERCISES 211

Exercise 4.34. Consider the dynamic programming problem below with two states and
two possible policies, denoted k and k 0. The policies di↵er only in state 2.

1 2 1 2
1/2 7/8

1/8r1=0 rkkk
2 = 5

1/2 1/2 3/4

1/4r1=0 rkkk!

2 =6

1/2
!$"# , !*

!$, !*
!$, , !$"#

a) Find the steady-state gain per stage, g and g0, for stationary policies k and k 0. Show
that g = g0.

b) Find the relative-gain vectors, w and w 0, for stationary policies k and k 0.

c) Suppose the final reward, at stage 0, is u1 = 0, u2 = u. For what range of u does the
dynamic programming algorithm use decision k in state 2 at stage 1?

d) For what range of u does the dynamic programming algorithm use decision k in state 2
at stage 2? at stage n? You should find that (for this example) the dynamic programming
algorithm uses the same decision at each stage n as it uses in stage 1.

e) Find the optimal gain v⇤2(n,u) and v⇤1(n,u) as a function of stage n assuming u = 10.

f) Find limn!1 v⇤(n,u) and show how it depends on u.

Exercise 4.35. Consider a Markov decision problem in which the stationary policies k and
k 0 each satisfy (4.50) and each correspond to ergodic Markov chains.

a) Show that if rkkk! + [Pkkk!]w 0 ! rkkk + [Pkkk]w 0 is not satisfied with equality, then g0 > g.

b) Show that rkkk! + [Pkkk!]w 0 = rkkk + [Pkkk]w 0 (Hint: use part a).

c) Find the relationship between the relative gain vector wkkk for policy k and the relative-
gain vector w 0 for policy k 0. (Hint: Show that rkkk + [Pkkk]w 0 = ge + w 0; what does this say
about w and w 0?)

e) Suppose that policy k uses decision 1 in state 1 and policy k 0 uses decision 2 in state
1 (i.e., k1 = 1 for policy k and k1 = 2 for policy k 0). What is the relationship between
r(k)
1 , P (k)

11 , P (k)
12 , . . . P (k)

1J for k equal to 1 and 2?

f) Now suppose that policy k uses decision 1 in each state and policy k 0 uses decision 2 in
each state. Is it possible that r(1)

i > r(2)
i for all i? Explain carefully.

g) Now assume that r(1)
i is the same for all i. Does this change your answer to part f)?

Explain.

Exercise 4.36. Consider a Markov decision problem with three states. Assume that each
stationary policy corresponds to an ergodic Markov chain. It is known that a particular
policy k 0 = (k1, k2, k3) = (2, 4, 1) is the unique optimal stationary policy (i.e., the gain per
stage in steady state is maximized by always using decision 2 in state 1, decision 4 in state
2, and decision 1 in state 3). As usual, r(k)

i denotes the reward in state i under decision k,
and P (k)

ij denotes the probability of a transition to state j given state i and given the use of

212 CHAPTER 4. FINITE-ST ATE MARK OV CHAINS

decision k in state i. Consider the e↵ect of changing the Markov decision problem in each
of the following ways (the changes in each part are to be considered in the absence of the
changes in the other parts):

a) r(1)
1 is replaced by r(1)

1 # 1.

b) r(2)
1 is replaced by r(2)

1 + 1.

c) r(k)
1 is replaced by r(k)

1 + 1 for all state 1 decisions k.

d) for all i, r(ki)
i is replaced by r(ki) + 1 for the decision ki of policy k 0.

For each of the above changes, answer the following questions; give explanations:

1) Is the gain per stage, g0, increased, decreased, or unchanged by the given change?

2) Is it possible that another policy, k '= k 0, is optimal after the given change?

Exercise 4.37. (The Odoni Bound) Let k 0 be the optimal stationary policy for a Markov
decision problem and let g0 and ⇡⇡⇡0 be the corresponding gain and steady-state probability
respectively. Let v⇤i (n,u) be the optimal dynamic expected reward for starting in state i at
stage n with final reward vector u .

a) Show that mini[v⇤i (n,u) # v⇤i (n # 1,u)] " g0 " maxi[v⇤i (n,u) # v⇤i (n # 1,u)] ; n ! 1.
Hint: Consider premultiplying v⇤(n,u) # v⇤(n # 1,u) by ⇡⇡⇡0 or ⇡⇡⇡ where k is the optimal
dynamic policy at stage n.

b) Show that the lower bound is non-decreasing in n and the upper bound is non-increasing
in n and both converge to g0 with increasing n.

Exercise 4.38. Consider an integer-time queueing system with a finite bu↵er of size 2. At
the beginning of the nth time interval, the queue contains at most two customers. There
is a cost of one unit for each customer in queue (i.e., the cost of delaying that customer).
If there is one customer in queue, that customer is served. If there are two customers, an
extra server is hired at a cost of 3 units and both customers are served. Thus the total
immediate cost for two customers in queue is 5, the cost for one customer is 1, and the cost
for 0 customers is 0. At the end of the nth time interval, either 0, 1, or 2 new customers
arrive (each with probability 1/3).

a) Assume that the system starts with 0 " i " 2 customers in queue at time # 1 (i.e., in
stage 1) and terminates at time 0 (stage 0) with a final cost u of 5 units for each customer
in queue (at the beginning of interval 0). Find the expected aggregate cost vi(1,u) for
0 " i " 2.

b) Assume now that the system starts with i customers in queue at time # 2 with the same
final cost at time 0. Find the expected aggregate cost vi(2,u) for 0 " i " 2.

c) For an arbitrary starting time # n, find the expected aggregate cost vi(n,u) for 0 " i " 2.

d) Find the cost per stage and find the relative cost (gain) vector.

4.8. EXERCISES 213

e) Now assume that there is a decision maker who can choose whether or not to hire the
extra server when there are two customers in queue. If the extra server is not hired, the
3 unit fee is saved, but only one of the customers is served. If there are two arrivals in
this case, assume that one is turned away at a cost of 5 units. Find the minimum dynamic
aggregate expected cost v⇤i (1), 0 " i " , for stage 1 with the same final cost as before.

f) Find the minimum dynamic aggregate expected cost v⇤i (n,u) for stage n, 0 " i " 2.

g) Now assume a final cost u of one unit per customer rather than 5, and find the new
minimum dynamic aggregate expected cost v⇤i (n,u), 0 " i " 2.

