6.973 Semiconductor Optoelectronics: Theory and Design

2-105          Monday, Wednesday, Friday 2-3 PM

prerequisites: quantum mechanics, solid-state devices, electromagnetic waves

 

Instructor:        Prof. Rajeev J. Ram (Rm. 36-487, email: rajeev@mit.edu

 

Text:                     “Diode Lasers and Photonic Integrated Circuits,” Coldren and Corzine

                              “Physics of Optoelectronic Devices,” S. L. Chuang

 

Course objective:

This class focuses on the physics of the interaction of photons with semiconductor materials.  The band theory of solids is used to calculate the absorption and gain of semiconductor media.  The rate equation formalism is used to develop the concepts of laser threshold, population inversion and modulation response.  Matrix methods and coupled mode theory are applied to resonator structures such as distributed feedback lasers, tunable lasers and microring devices.  Homework problems will be drawn from the current research literature.

 

Syllabus:

 

      Background 

Lecture 1         Course Overview

Lecture 2         Electronic States in AlxGa1-xAs                                                                     

Lecture 3         Semiconductor Statistics

Lecture 4         p-N Heterojunctions

Lecture 5         p-N Heterojunctions                                Tutorials-Statistical Mechanics

Photodetectors

Lecture 6         Diodes Under Illumination                             

Lecture 7         p-i-n Photodetectors                              

Lecture 8         Photodetectors & Photovoltaics

Lecture 9         Absorption in Semiconductors

Lecture 10       Absorption in Semiconductors

Lecture 11       Photodetector Overview      

Modulators

Lecture 12       Introduction to Modulators

Lecture 13       Quantum Confined Stark Effect        FD Example Code

Lecture 14       Electro-Absorption Modulators                                     

Optical Amplifiers

Lecture 15       Optical Gain in Semiconductors

Lecture 16       Carrier Density Rate Equation

Lecture 17       Recombination Processes in Semiconductors

Lecture 18       Semiconductor Optical Amplifiers

Lecture 19       Optical Noise                                  

Lecture 20       Waveguide Confinement

Lecture 21       Waveguide Confinement

Lecture 22       Overview of Waveguide Devices    

Lasers

Lecture 23       Semiconductor Lasers                  

Lecture 24       Lasing Threshold

Lecture 25       Lasing Threshold

Lecture 26       Semiconductor Laser Design

Lecture 27       High Speed Semiconductor Lasers      

Heterostructure Materials

Lecture 28       Introduction to Materials

Lecture 29       Introduction to Materials

Lecture 30       Introduction to Materials    

Lecture 31       Heterojunctions                                     

Resonator Design

Lecture 32       Optimizing Quantum Wells

Lecture 33       Single Mode Resonators

Lecture 34       Single Mode Resonators

Lecture 35       Distributed Feedback Lasers

Lecture 36       Photonic Integration