Signal Processing with Fractals: A Wavelet-Based Approach
Prentice Hall Signal Processing Series
Alan V. Oppenheim, Series Editor

Andrews & Hunt Digital Image Restoration
Bracewell Two Dimensional Imaging
Brigham The Fast Fourier Transform and Its Applications
Burdic Underwater Acoustic System Analysis, 2/E
Cohen Time Frequency Analysis
Crochiere & Rabiner Multirate Digital Signal Processing
Dudgeon & Mersereau Multidimensional Digital Signal Processing
Haykin Advances in Spectrum Analysis and Array Processing, Vols. I, II, & III
Haykin, ed. Array Signal Processing
Johnson & Dudgeon Array Signal Processing
Kay Fundamentals of Statistical Signal Processing
Kay Modern Spectral Estimation
Lim Two-Dimensional Signal and Image Processing
Lim & Oppenheim, eds. Advanced Topics in Signal Processing
Marple Digital Spectral Analysis with Applications
McClellan & Rader Number Theory in Digital Signal Processing
Nikias & Petropulu Higher-Order Spectra Analysis
Oppenheim & Nawab Symbolic and Knowledge-Based Signal Processing
Oppenheim, Willsky, with Young Signals and Systems
Oppenheim & Schafer Digital Signal Processing
Oppenheim & Schafer Discrete-Time Signal Processing
Picinbono Random Signals and Systems
Rabiner & Juang Fundamentals of Speech Recognition
Rabiner & Schafer Digital Processing of Speech Signals
Stearns & David Signal Processing Algorithms in Fortran and C
Therrien Discrete Random Signals and Statistical Signal Processing
Tribolet Seismic Applications of Homomorphic Signal Processing
Vaidyanathan Multirate Systems and Filter Banks
Vetterli & Kovacevic Wavelets and Subband Coding
Widrow & Stearns Adaptive Signal Processing
Wornell Signal Processing with Fractals
Wornell, Gregory.
Signal processing with fractals : a wavelet-based approach / Gregory Wornell.
p. cm. — (Prentice Hall signal processing series)
Includes bibliographical references and index.
1. Signal processing—Mathematics. 2. Fractals. 3. Wavelets (Mathematics) I. Title. II. Series.
TK5102.9.W67 1995
621.382'2—dc20
95-25228
CIP

Editorial/production supervision: BooksCraft, Inc., Indianapolis, IN
Acquisitions editor: Karen Gettman
Cover design director: Jerry Votta
Cover design: Scott Weiss

© 1996 by Prentice Hall PTR
Prentice-Hall, Inc.
A Simon & Schuster Company
Upper Saddle River, NJ 07458

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact:
Corporate Sales Department
Prentice Hall PTR
One Lake Street
Upper Saddle River, NJ 07458
Phone: 800-382-3419 FAX: 201-236-7141
E-mail: corporsales@prenhall.com.

All rights reserved. No part of this book may be reproduced, in any form
or by any means, without permission in writing from the publisher.

All product names mentioned herein are the trademarks of their respective owners.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
to Kimberly
Contents

Preface x

1 Introduction and Overview 1

2 Wavelet Transformations 8
 2.1 Introduction 8
 2.2 Wavelet Bases 9
 2.3 Orthonormal Wavelet Bases 11
 2.3.1 An Octave-Band Filter Bank Interpretation 13
 2.3.2 Multiresolution Signal Analysis Interpretation 16
 2.3.3 Discrete Wavelet Transform 21
 2.3.4 Finite Data Length and Resolution Effects 23
 2.3.5 Orthonormal Wavelet Basis Constructions 25
 2.3.6 Examples 26
 2.3.7 Nondyadic Orthonormal Wavelet Bases 27
 2.4 Summary 28

3 Statistically Self-Similar Signals 30
 3.1 Introduction 30
 3.2 $1/f$ Processes 32
 3.2.1 Fractional Brownian Motion and Fractional Gaussian Noise 36
3.2.2 A Mathematical Characterization in the Frequency Domain .. 41
3.3 Nearly-1/f Processes ... 43
 3.3.1 ARMA Models ... 43
 3.3.2 Wavelet-Based Models .. 46
3.4 Summary .. 57

4 Detection and Estimation with Fractal Processes .. 59
 4.1 Introduction ... 59
 4.2 1/f Synthesis and Whitening Filters .. 61
 4.3 Parameter Estimation for 1/f Signals ... 63
 4.3.1 Case I: $\beta, \sigma^2, \sigma_w^2$ Unknown .. 66
 4.3.2 Case II: β, σ^2 Unknown; σ_w^2 Known .. 68
 4.3.3 Case III: β, σ^2 Unknown; $\sigma_w^2 = 0$.. 68
 4.3.4 Properties of the Estimators .. 69
 4.3.5 Simulations .. 71
 4.4 Smoothing of 1/f Signals .. 72
 4.4.1 Simulations .. 78
 4.5 Coherent Detection in 1/f Noise .. 79
 4.6 Discriminating Between 1/f Signals .. 84
 4.6.1 Simulations .. 87
 4.7 Alternative Approaches and Related Developments .. 92
 4.8 Summary .. 93

5 Deterministically Self-Similar Signals ... 95
 5.1 Introduction .. 95
 5.2 Energy-Dominated Homogeneous Signals ... 97
 5.3 Power-Dominated Homogeneous Signals ... 103
 5.4 Discrete-Time Algorithms for Homogeneous Signals 107
 5.5 Summary .. 111

6 Fractal Modulation ... 112
 6.1 Introduction .. 112
 6.2 Transmitter Design: Modulation ... 115
 6.3 Receiver Design: Demodulation .. 120
 6.3.1 Demodulation of Digital Data .. 120
 6.3.2 Demodulation of Analog Data .. 124
 6.4 Summary .. 127