To make sense of speech in everyday conditions, listeners have to employ processing strategies to cope with distortions produced by additive noise, reverberation and channel variability. This contribution highlights one such strategy - glimpsing - which listeners might use to tackle the problem of additive noise. Glimpsing is a process in which listeners identify speech based on spectro-temporal regions with advantageous local SNR. Recent experiments demonstrated that listeners' ability to identify VCVs presented in multi-speaker babble noise can be predicted by a computational model of glimpsing [Cooke, M.P. (2003) A glimpsing model of speech perception, *Int. Cong. Phonetic Sciences*, 1425-1428]. However, an analysis of consistent listener confusions revealed significant departures from the model, which was based solely on the audibility of the speech target (energetic masking). It is known that the confusability of the target with respect to background sources (informational masking) also plays an important role in speech perception in noise. It is possible that certain listener confusions were due to an incorrect assignment of background glimpses to the foreground source. This paper describes a set of experiments in which the role of energetic masking alone is assessed. Identification performance is measured for signals which have been resynthesised from putative glimpses. One finding is that such signals are surprisingly intelligible in spite of their sparse spectro-temporal energy distribution. The resulting consonant confusion pattern is compared with that found in the earlier experiment and with the computational model.