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Abstract—This paper considers a simple on—off random multi- - equivalent to a sparsity detection problem that arisesoim-
ple access channel (MAC), where. users communicate simultane- pressed sensingp]-[7]. Exploiting recent results from this
ously to a single receiver. Each user is assigned a single evebord field, such as those in [8], [9], provides simple bounds on the

which it transmits with some probability A\ over m degrees of . hi bl . . timal detecti
freedom. The receiver must detect which users transmittedwe Maximum achievable capacity assuming optimal detection.

show that detection for this random MAC is mathematically Unfortunately, optimal sparsity detection is a well-known
equivalent to a standard sparsity detection problem. Usinghew NP-hard problem [10]. Current commercial designs typjcall

results in sparse estimation we are able to estimate the capigy of  yse simple single-user detection (see, for example [11] for
these channels and compare the achieved performance of vads  \ycpMA). However, there are well-known practical, but sub-
detection algorithms. The analysis provides insight into lte roles . . .
of power control and multi-user detection. optlm_al, algorithms such as the popular orthogona! matchin
pursuit (OMP) [12]-[14] and lasso [15] methods in sparse
|. INTRODUCTION estimation that can be used for multiuser detection for én—o
In wireless systemsandom accessefers to any multi-user random access channels. In contrast to single-user dsiecti
communication protocol where the users autonomously decige show that these methods can offer a level of robustness or
whether or not to transmit depending on their own trafficsensitivity to large dynamic ranges in received poweelev
requirements and estimates of the network load. While nandd his near—far resistance feature is similar to that of stashd
access is best known for its use in packet data communicatdMSE multi-user detection in CDMA [16].
in wireless local area networks (LANS), this paper consider However, we also show that single-user detection, as well
random access for simple on-off messaging. On-off rand@s both lasso and OMP, all suffer from a certagif-noise
access signaling can be used for a variety of control tadikwit at high SNRs. As a result, there is a significant potnti
in wireless networks such as user presence indicationalinitgap in performance between these techniques and optimal
access, scheduling requests and paging. maximum likelihood (ML) multiuser detection. However, we
The limits of on—off random access signaling with multiplshow that if accurate power control is available, this SNR
users are not fully understood. To this end, we considerlimit can be reduced by using a modified version of OMP
simple random multiple access channel wherssers transmit called sequential OMP (SeqOMP) in conjunction witbwer
to a single receiver. Each user is assigned a single codewsh@ping The method is analogous to the classic successive
which it transmits with probability\. We wish to understand interference cancelation (SIC) method in the MAC channel.
the capacity of these channels, by which we mean the totalThe connection between sparsity detection methods such as
number of degrees of freedom needed to reliably detect OMP and the SIC technique for the MAC channel has also
which users transmit as a function af A, and the channel been observed in the recent work of Jin and Rao [17]. A related
conditions. We also wish to establish performance bounds f@ork by Wipf and Rao [18] also gave some empirical evidence
specific decoding algorithms. for the benefit of power shaping when used in conjunction with
This on—off random access channel is related to the classpgarse Bayesian learning algorithms. The results in thiepa
multiple access channel (MAC) in network information theormake the connections between sparsity detection and the ran
[1], [2]. Unfortunately, it is difficult to apply the classic dom access MAC channel more precise by giving conditions
MAC channel analysis directly to the on—off random access the detectability of the sparsity pattern, charactegizhe
channel under consideration here. In the classic MAC cHaniptimal power shaping distribution, and contrasting thessic
analysis, each user can employ a capacity achieving coMAC and random access MAC capacities.
In contrast, no coding is possible with on—off signaling. In This paper summarizes the results of [19]; detailed proofs,
addition, “uncoded” multiuser detection results [3], [8huire numerical experiments, and additional context appeaether
that the received constellation is discrete and known at the
receiver, which is not possible for non-coherent receptien
is typically required for random access communication. Assume that there are transmitters sharing a wireless
Our analysis is instead based on showing that the problemannel to a single receiver. Each ugés assigned a unique,
at the receiver of detecting the active users is mathentigticadedicated codeword represented asnalimensional vector

II. ON—OFF RANDOM ACCESSCHANNEL MODEL
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a; € C™, wherem is the total number of degrees of freedom We will see that two key factors influence the ability to

in the channel. By degrees of freedom we simply mean tketect the active user set. The first is the total SNR defined as

dimension of the received vector, which represents the mumb E||Ax|?

of samples in time or frequency depending on the modulation. SNR = Ew]? (4)

In any channel use, only some fraction of the users, (0, 1),

transmit their codeword. The fractioh will be called the Since the components of the matrxand noise vectow are

activity ratio and any user that transmits will be calladtive i-i.d. CN'(0,1/m), it can be verified that, for deterministic
The signal at the receiver from each ugeis modeled as SNR = ||x|%. (5)

xz;a; wherez; is a complex scalar. If the user is not active,

x; = 0. If the user is activer,; would represent the product ofIn the case of random, this is the conditional SNR givex;

the transmitted symbol and channel gain. Note that we hawe will have both deterministic and random formulations.

assumed flat fading. The total signal at the receiver is givenThe second term is theminimum-to-average ratio

b .
Y MAR — i€ e |75

y= Zajxj +w=Ax+w, (1) [[x]]2/An
i=1 Since Iiue has An elements,||x||?/ n is the average of

wherew € C™ represents noise. The matrik € C™*" is {lzj|* | 5 € Iirue}. Therefore MAR € (0, 1] with the upper

formed by codeworda,, A = [a; - --a,], and will be called limit occurring when all the nonzero entries &f have the
jl - | . . . . . . .

the codebook The vectorx = [z - - - z,)7 will be called the S2M€ magnitudeviAR is a deterministic quantity wher is

modulation vectarand its componentéz;}"_, are referred deterministic and a random variable otherwise.

j=1 . . . ..
to as thereceived modulation symbolNote thatz; succinctly | "€ factoMAR in (6) is the ratio of the minimum to average
\ received power and is thus related to the dynamic range

encapsulates the channel gain, transmit power, and phase. ) .
Given a modulation vectog. define theactive user seas amongst users. We will show that low MAR can make reliable

detection significantly more difficult for certain algonitis.
Lywe=1{7 :2; #0}, 2) The problem is analogous to the well-knowear—far effect
in CDMA systems [16], where users with weak signals can
which is the “true” set of active users. The size of the actiiee dominated by higher-power signals.
user set is related to the activity ratio throu§jh= | lrye|/n.
The goal of the receiver is to determine an estimiate I(y)
of I, based on the received noisy vecsar The problem of detecting the active user set is precisely
We will be interested in estimators that exploit minimagquivalent to a sparsity detection problem. To see thise not
prior knowledge of the modulation vector other than it that the modulation vectax is sparsewith nonzero compo-
being sparse. In particular, we will limit our attention tonents only in positions corresponding to the active usens. T
estimators that do not explicitly requieepriori knowledge of problem at the receiver is to detect these nonzero positions
the complex modulation symbats. We make this assumptionx from linear noisy observations in (1).
since the channel gain is typically unknown or uncertairhatt Table | summarizes scaling laws for various detection algo-
receiver; users conducting random access communicateon gthms. We discuss details below.
unlikely to be concurrently sending a persistent pilot refice. . . . .
Knowledge of a discrete alphabet for eaeh obviously A. Optimal Detection with No Noise
changes the receiver’s task dramatically [3]. For exantpie, ~ To understand the limits of detection, it is useful to first
knowledge would enable perfect cancellation of a userisalig consider the minimum number of degrees of freedom when
without orthogonalization, so the number of active usergato there is no noise. Since the activity ratioNsx will have k =
exceed the number of degrees of freedom. An nonzero components. For a lower bound on the minimum
We consider large random codebooks where the entrids ofmumber of degrees of freedom needed for reliable detection,
are i.i.d. complex normal\/(0,1/m). We assume the noiseSuUppose that the receiver knows the number of active users
vector is also Gaussianw ~ CN(0,(1/m)l,,). Given an @as side information.

(6)

IIl. CURRENT SPARSITY DETECTIONMETHODS

estimator,/ = I(y), the probability of error, With no noise, the received vector j5 = Ax, which
will belong to one of J = (}) subspaces spanned hy
Perr = Pr (f £ ]tmc) , (3) columns ofA. If m > k, then these subspaces will be distinct

with probability 1. Thus, an exhaustive search through the
is taken with respect to random codebotkthe noise vector subspaces will reveal which subspagéelongs to and thus
w, and the statistical distribution of the modulation vectatetermine the active user set. This shows that with no noise
x. We want to find estimatord that bring p.. close to and no computational limits, having more degrees of freedom
zero. An alternative could be to allow a nonzero constatitan active users is sufficient for asymptotic reliable dita.
fraction of detection errors. This may change scaling biglnav  Conversely, if no prior information is known at the receiver
considerably [20], [21]. other thanx being k-sparse, then having more degrees of
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| I finite SNR - MAR | SNR - MAR — 00 |
Necessary for ML m > L Anlog(n(l — X)) m > An
Fletcheret al.[9, Thm. 1] (elementary)
Sufficient for ML m > =CmAnlog(n(l — ) m > An
Wainwright [8] (elementary)
Sufficient for sequential || m > m)\n log(n(1 — X)) m > 5An
OMP with power shaping From Theorem 1 From Theorem 1
Necessary and unknown (expression to m > Anlog(n(l — X))
sufficient for lasso the right is necessary) Wainwright [22]
Sufficient for unknown m > 2Xnlog(n)
OMP Tropp and Gilbert [23]
Sufficient for single- m > %An log(n(1 — X)) | m> sa=Anlog(n(l — \))
user detection (9) Fletcheret al. [9, Thm. 2]
TABLE |

SUMMARY OF RESULTS ON DEGREE OF FREEDOM SCALINGS FOR ASYMPTOTRELIABLE DETECTION FOR VARIOUS DETECTION ALGORITHMS
ONLY LEADING TERMS ARE SHOWN. SEE BODY FOR DEFINITIONS AND ADDITIONAL TECHNICAL LIMITATIONS.

freedom than active users is also necessan. K k = An, where p > 0 is a threshold parameter anelj) is the
then for almost all codebookd, any k columns of A correlation coefficient:

span C™. Consequently, any received vectpr = Ax is |a’y]?

consistent with any: users transmitting. Thus, the active user p(3) = JQ > (20)

set cannot be determined without further prior information 2 lly |

the modulation vectoxk. Single-user detection has been analyzed in the compressed

sensing context in [9], [24], [25]. A small modification of,[9

B. ML Detection with Noise Thm. 2] shows the following result: Suppose,
Now suppose there is noise. For a lower bound on the
(14 8)L(A,n)(1 + SNR)

degrees of freedom needed for reliable detection, suppese t m(n)
receiver has, as side information, the number of activesuser SNR - MAR
k. In this case, we can consider the maximum likelihood (MLyhered > 0 and
detector, which is the optimal detector without any priorson 2
other thanx being k-sparse. Since the noise is Gaussian, L(An) = {\/k’g(”(l —A)+ \/10g(”/\)} - (12
the ML detector finds thé-dimensional subspace spanned b
k columns of A containing the maximum energy &f

The ML estimator was first analyzed by Wainwright [8]
The results in that work, along with the fact that= Xn,
show that there exists a constarnt> 0 such that if

An, (11)

Yhen there exists a sequence of detection threshotds:(n)
such that single-user detection achieves asymptoticbtelia
detection of the active user set.

Comparing the sufficient condition (11) for single-user
detection with thenecessargondition (8), we see two distinct
Anlog(n(l — A)), —Anlog(\) problems in single-user detection:

@ « Constant offsetThe scaling (11) for single-user detection
shows a factol.(\, n) instead oflog((1 — A)n) in (8). It
is easily verified that, fon € (0,1/2), L(A,n)/log((1—
A)n) < 4, so the more stringent, but simpler, condition

mECmaX{

then ML will asymptotically detect the correct active uset. s
Also, [9, Thm. 1] shows that, for any > 0, the condition

1+9
m > —————Anlog(n(l — X)) + An, (8) 1+ 6)4(1 4 SNR
MAR - SNR m(n) > LEVAAESNR) (@ = V) (13)
. SNR - MAR
is necessary. _ N
_ _ is also sufficient.
C. Single User Detection « Self-noise limit:Single-user detection has an additional
The most common and simple method to detect the active 1+4SNRterm in the number of degrees of freedom. When
user set is a single-user detection estimator of the form detecting any one component of single-user detection
i R , 9 sees the energy from the rest of the signal as interference.
sup=1{J : pj) > n}, ©) This “self-noise” increases the effective noise by a factor
INote that here and elsewhere, there is a factor of two differebetween of 1+ SNR, which results in a proportional increase in

the real and complex cases. the minimum number of degrees of freedom.
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This self-noise results in a large performance gap at high V. SEQUENTIAL ORTHOGONAL MATCHING PURSUIT

SNRs. In particular, aSNR — oo, (11) reduces to To show that the self-noise barrier can be broken with a

L\ practical algorithm when accurate power control is avééab
(A+9) L) | aceura !
m(n) > —— =——Anlog((1 =M)n).  (14) " we propose a new algorithm, which we catiguential orthog-

) _onal matching pursuibr SeqOMP. The algorithm works im
In contrast, ML may be able to succeed with a scalingy 4iions indexed by = 1,...,n, producing a sequence of
m = O(An) for high SNRs, which is funda_menta”yestimates of the active user sétj), in each iteration. The
bgttTr than gh% = Q(Anlog((1 — A)n) required by jnitia| estimate /(0) is taken as empty. At iteratiori, the
single-user detection. algorithm computes the correlation

D. Lasso and OMP Estimation , &P (j)y[?

: . o p(j) = . 5
While ML has clear advantages over single-user detection, i ( IP()a; [*IP()yll?

is not computationally feasible. However, one practicalltod  \herep ;) is the projection onto the orthogonal complement
used in sparse signal estimation is tlasso estimator [15], ¢ the previously detected vectorgay, ¢ € f(j —1)}. If the

also called basis pursuit denoising [26]. In the contexthef t ;o relationy(j) exceeds a threshold leve] the index is added
random access channel, the lasso estimator would firstastim,. f(j) _ f(j — 1)U {j}. Otherwise f(j) _ f(j —1). The

the modulation vectox by solving the convex minimization ¢4 estimate ifsomp = 1(n).

(15) The SeqOMP algorithm can be thought of as an iterative
version of single-user detection with the difference tladier

% = argmin ([ly — Ax|3 + plx|) .
x

where x> 0 is an algorithm parameter that “encouragesan active user is detected, subsequent correlations are per

sparsity in the solutiok. The nonzero components &fcan forcrjned (()jnlxrrl]n the t?]rtr(;ogongl Ct(.)mfltemi:‘t tot thg ddeteC;:'t/Tg
then be used as an estimate of the active user set. codeword. € method IS identical o he Standar

The exact performance of lasso is not known at finit"’Ilgorlthm of [12]-{14], except that SeqOMP passes through

SNR. However, Wainwright [22] has exactly characterizesl tﬁ%e data only once. For this reason, SeqOMP s actually

- . o .. computationally simpler than standard OMP.
conditions for lasso to work at high SNR. Specificallypif,
n and An — oo, with SNR - MAR — oo, the scaling To understand the performance of SeqOMP,pletdenote

the received modulation symbol power = |x;|?, conditional
m > Anlog(n(l —\)) + An + 1, (16) that userj is active. Since each user transmits with a proba-
bility A, the total SNR is given by
is necessary and sufficient for asymptotic sparsity regover "
Another common approach to sparsity pattern detection is SNR = /\ijl pj- (18)

the greedy OMP algorithm [12]-{14]. This has been analyzgghen a power profile, a key parameter in estimating the

by Tropp and Gilbert [23] in a setting with no noise. Theyerformance of SeqOMP is what we will call timeinimum
show that, whem\ has Gaussian entries safficientcondition signal-to-interference and noise ratio (SINE&fined as

for asymptotic reliable recovery is
y= min pe/53(0), F2() =1+ A eap (19)
m > 2 nlog(n) + CAn, a7) t=1,....,n
. ) The ratio in the right-hand side of (19) represents the SINR

for some constanC' > 0, similar to the !asso scaling 'aW'_seen when detecting usérassuming users < ¢ have been
A variant of OMP, called CoSaMP [27] improves upon thig,celeq perfectly. Our main result is the following:
scaling. . Theorem 1 ( [19]):Let A = A(n), m = m(n) and the

The Iasso. and OMP scallpg_laws, (16) and (17), can B%wer prof"e{pj};l:l - {pj(”)}?:p be deterministic quan-
compared with the high SNR limit for the single-user detatti tities that all vary withn satisfying the limitsm — An, An and

scaling law in (14). We see two important benefits of Iass(q ~ Mn — oo, andy — 0. Also, assume the sequence of
and OMP: First, theL(n, k) term for single-user detection power profiles satisfies the limit

is replaced bylog(n(1 — X)) for lasso or2log(n) for OMP,

providing a gain of up to 4 for lasso and 2 for OMP. lim  max log(n)a (i) Y5, p3 = 0. (20)
Second, and more importantly, both lasso and OMP do not noeei=henl T

have a dependence on MAR as longSi$R - MAR — oo; Finally, assume that for ah,

thus, in the high SNR regime, they have a near—far resistance

that single-user detection does not. m 2 (1+0)L(n A)/y + An, (1)
On the other hand, we also see from (16) and (17) that bddy somed > 0 andL(n, A) defined in (12). Then, there exists

lasso and OMP are unable to achieve the scaling O(An) a sequence of thresholds,= 1(n), such that SeqOMP will

that may be achievable with ML at high SNR. Instead, botiichieve asymptotic reliable detection of the active user se

have the scaling: = O(Anlog((1—X)n)) and thus also suffer .

from the self-noise limit. Perr = Pr (ISOMP # ftruc) -0,

.....
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where the probability is taken over the randomness in tigeas with concepts from the classic MAC such as SIC
activities of the users, the codebodk and the noisev. The and power shaping, we have presented a new algorithm,
sequence of threshold levels can be selected independenBeflOMP, that has certain advantages at high SNR. We believe
the sequence of power profiles. that new methods—including iterative decoding and MMSE

The theorem shows the following properties of SeqOMP:

« Near-far resistance with known power ordering and high
SNR: Suppose that the power orderipg is known at [1]
the receiver so the receiver can detect the users in order
of decreasing power. If, in addition, the SNRs of all thel?
users go to infinity so thagi; — oo for all j, then it can 3]
be verified thaty > 1/(An). In this case, the scaling (21)
reduces to Fg%

m > (1 +0)AnL(n,\) + An,

which is identical to the lasso performance except fo!ﬁ]
the constant offsef (A, n)/log((1 — A)n). In particular, [7]
the minimum number of degrees of freedom does not
depend onMAR and therefore, similar to lasso and g
OMP, SeqOMP is able to achieve some level of near—
far resistance. ]
« Reduction of the SNR barrier with power contridow
suppose that accurate power control is feasible so that the
receive power levelg; can be set by the receiver. In this[ll]
case, we can maximize the SINRin (19) for a given
total SNR constraint (18). For large the optimal value
is v = (1/An)log(1 4+ SNR). Substituting this value into [12]
(21) results in a scaling

1+46
m> —
~ log(1+ SNR)

An important property of this scaling is that WheI‘PA]
SNR = Q(An), the number of degrees of freedom scald$s]
asm = O(An), which matches the scaling of ML at[le]
high SNRs. This scaling improves the high SNR scaling
of m = O(Anlog((1 — An)) achieved by single-user[17]
detection, lasso and OMP. In this sense, SeqOMP is[lg]
“practical” algorithm that can break the SNR barrier.

(13]
AnL(n, \) + An.

Practical ConsiderationsThe use of power control requires[i9]
some justification. On—off random access is most likely used
when users are transmitting intermittently, so fast cleleeq 20]
power control is not likely available. However, in cellular
systems, mobiles can achieve some degree of power contfdl
by estimating the path loss in the downlink and adjusting t
uplink transmit power accordingly. Also, SeqOMP does not
require any knowledge of the channel phase. Moreover, the
effect of small power control errors may not be large sineg th (23]
result only in a suboptimal detection sequence and intemfar
profile. The SeqOMP algorithm does not assume the recel¢é
power is known in the cancellation.
V. CONCLUSIONS [25]
Sparse signal detection is a valuable framework for u ol
derstanding multiple access on—off random signaling. Res
can provide simple capacity estimates and clarify the rojer]
of power control and multiuser detection. Combining these
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detection—can improve these results further.
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