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Abstract—This paper considers a simple on–off random multi-
ple access channel (MAC), wheren users communicate simultane-
ously to a single receiver. Each user is assigned a single codeword
which it transmits with some probability λ over m degrees of
freedom. The receiver must detect which users transmitted.We
show that detection for this random MAC is mathematically
equivalent to a standard sparsity detection problem. Usingnew
results in sparse estimation we are able to estimate the capacity of
these channels and compare the achieved performance of various
detection algorithms. The analysis provides insight into the roles
of power control and multi-user detection.

I. I NTRODUCTION

In wireless systems,random accessrefers to any multi-user
communication protocol where the users autonomously decide
whether or not to transmit depending on their own traffic
requirements and estimates of the network load. While random
access is best known for its use in packet data communication
in wireless local area networks (LANs), this paper considers
random access for simple on–off messaging. On–off random
access signaling can be used for a variety of control tasks
in wireless networks such as user presence indication, initial
access, scheduling requests and paging.

The limits of on–off random access signaling with multiple
users are not fully understood. To this end, we consider a
simple random multiple access channel wheren users transmit
to a single receiver. Each user is assigned a single codeword
which it transmits with probabilityλ. We wish to understand
the capacity of these channels, by which we mean the total
number of degrees of freedomm needed to reliably detect
which users transmit as a function ofn, λ, and the channel
conditions. We also wish to establish performance bounds for
specific decoding algorithms.

This on–off random access channel is related to the classic
multiple access channel (MAC) in network information theory
[1], [2]. Unfortunately, it is difficult to apply the classic
MAC channel analysis directly to the on–off random access
channel under consideration here. In the classic MAC channel
analysis, each user can employ a capacity achieving code.
In contrast, no coding is possible with on–off signaling. In
addition, “uncoded” multiuser detection results [3], [4] require
that the received constellation is discrete and known at the
receiver, which is not possible for non-coherent receptionas
is typically required for random access communication.

Our analysis is instead based on showing that the problem
at the receiver of detecting the active users is mathematically

equivalent to a sparsity detection problem that arises incom-
pressed sensing[5]–[7]. Exploiting recent results from this
field, such as those in [8], [9], provides simple bounds on the
maximum achievable capacity assuming optimal detection.

Unfortunately, optimal sparsity detection is a well-known
NP-hard problem [10]. Current commercial designs typically
use simple single-user detection (see, for example [11] for
WCDMA). However, there are well-known practical, but sub-
optimal, algorithms such as the popular orthogonal matching
pursuit (OMP) [12]–[14] and lasso [15] methods in sparse
estimation that can be used for multiuser detection for on–off
random access channels. In contrast to single-user detection,
we show that these methods can offer a level of robustness or
insensitivity to large dynamic ranges in received power levels.
This near–far resistance feature is similar to that of standard
MMSE multi-user detection in CDMA [16].

However, we also show that single-user detection, as well
as both lasso and OMP, all suffer from a certainself-noise
limit at high SNRs. As a result, there is a significant potential
gap in performance between these techniques and optimal
maximum likelihood (ML) multiuser detection. However, we
show that if accurate power control is available, this SNR
limit can be reduced by using a modified version of OMP
called sequential OMP (SeqOMP) in conjunction withpower
shaping. The method is analogous to the classic successive
interference cancelation (SIC) method in the MAC channel.

The connection between sparsity detection methods such as
OMP and the SIC technique for the MAC channel has also
been observed in the recent work of Jin and Rao [17]. A related
work by Wipf and Rao [18] also gave some empirical evidence
for the benefit of power shaping when used in conjunction with
sparse Bayesian learning algorithms. The results in this paper
make the connections between sparsity detection and the ran-
dom access MAC channel more precise by giving conditions
on the detectability of the sparsity pattern, characterizing the
optimal power shaping distribution, and contrasting the classic
MAC and random access MAC capacities.

This paper summarizes the results of [19]; detailed proofs,
numerical experiments, and additional context appear therein.

II. ON–OFF RANDOM ACCESSCHANNEL MODEL

Assume that there aren transmitters sharing a wireless
channel to a single receiver. Each userj is assigned a unique,
dedicated codeword represented as anm-dimensional vector



aj ∈ C
m, wherem is the total number of degrees of freedom

in the channel. By degrees of freedom we simply mean the
dimension of the received vector, which represents the number
of samples in time or frequency depending on the modulation.
In any channel use, only some fraction of the users,λ ∈ (0, 1),
transmit their codeword. The fractionλ will be called the
activity ratio and any user that transmits will be calledactive.

The signal at the receiver from each userj is modeled as
xjaj wherexj is a complex scalar. If the user is not active,
xj = 0. If the user is active,xj would represent the product of
the transmitted symbol and channel gain. Note that we have
assumed flat fading. The total signal at the receiver is given
by

y =

n∑

j=1

ajxj + w = Ax + w, (1)

wherew ∈ Cm represents noise. The matrixA ∈ Cm×n is
formed by codewordsaj , A = [a1 · · ·an], and will be called
the codebook. The vectorx = [x1 · · ·xn]T will be called the
modulation vector, and its components{xj}n

j=1 are referred
to as thereceived modulation symbols. Note thatxj succinctly
encapsulates the channel gain, transmit power, and phase.

Given a modulation vectorx, define theactive user setas

Itrue = { j : xj 6= 0 } , (2)

which is the “true” set of active users. The size of the active
user set is related to the activity ratio throughλ = |Itrue|/n.
The goal of the receiver is to determine an estimateÎ = Î(y)
of Itrue based on the received noisy vectory.

We will be interested in estimators that exploit minimal
prior knowledge of the modulation vectorx other than it
being sparse. In particular, we will limit our attention to
estimators that do not explicitly requirea priori knowledge of
the complex modulation symbolsxj . We make this assumption
since the channel gain is typically unknown or uncertain at the
receiver; users conducting random access communication are
unlikely to be concurrently sending a persistent pilot reference.
Knowledge of a discrete alphabet for eachxj obviously
changes the receiver’s task dramatically [3]. For example,this
knowledge would enable perfect cancellation of a user’s signal
without orthogonalization, so the number of active users could
exceed the number of degrees of freedom.

We consider large random codebooks where the entries ofA

are i.i.d. complex normalCN (0, 1/m). We assume the noise
vector is also Gaussian:w ∼ CN (0, (1/m)Im). Given an
estimator,Î = Î(y), the probability of error,

perr = Pr
(
Î 6= Itrue

)
, (3)

is taken with respect to random codebookA, the noise vector
w, and the statistical distribution of the modulation vector
x. We want to find estimatorŝI that bring perr close to
zero. An alternative could be to allow a nonzero constant
fraction of detection errors. This may change scaling behavior
considerably [20], [21].

We will see that two key factors influence the ability to
detect the active user set. The first is the total SNR defined as

SNR =
E‖Ax‖2

E‖w‖2
. (4)

Since the components of the matrixA and noise vectorw are
i.i.d. CN (0, 1/m), it can be verified that, for deterministicx,

SNR = ‖x‖2. (5)

In the case of randomx, this is the conditional SNR givenx;
we will have both deterministic and random formulations.

The second term is theminimum-to-average ratio

MAR =
minj∈Itrue

|xj |2

‖x‖2/λn
. (6)

Since Itrue has λn elements,‖x‖2/λn is the average of
{|xj |

2 | j ∈ Itrue}. Therefore,MAR ∈ (0, 1] with the upper
limit occurring when all the nonzero entries ofx have the
same magnitude.MAR is a deterministic quantity whenx is
deterministic and a random variable otherwise.

The factorMAR in (6) is the ratio of the minimum to average
received power and is thus related to the dynamic range
amongst users. We will show that low MAR can make reliable
detection significantly more difficult for certain algorithms.
The problem is analogous to the well-knownnear–far effect
in CDMA systems [16], where users with weak signals can
be dominated by higher-power signals.

III. C URRENT SPARSITY DETECTION METHODS

The problem of detecting the active user set is precisely
equivalent to a sparsity detection problem. To see this, note
that the modulation vectorx is sparsewith nonzero compo-
nents only in positions corresponding to the active users. The
problem at the receiver is to detect these nonzero positionsin
x from linear noisy observationsy in (1).

Table I summarizes scaling laws for various detection algo-
rithms. We discuss details below.

A. Optimal Detection with No Noise

To understand the limits of detection, it is useful to first
consider the minimum number of degrees of freedom when
there is no noise. Since the activity ratio isλ, x will have k =
λn nonzero components. For a lower bound on the minimum
number of degrees of freedom needed for reliable detection,
suppose that the receiver knows the number of active usersk
as side information.

With no noise, the received vector isy = Ax, which
will belong to one ofJ =

(
n

k

)
subspaces spanned byk

columns ofA. If m > k, then these subspaces will be distinct
with probability 1. Thus, an exhaustive search through the
subspaces will reveal which subspacey belongs to and thus
determine the active user set. This shows that with no noise
and no computational limits, having more degrees of freedom
than active users is sufficient for asymptotic reliable detection.

Conversely, if no prior information is known at the receiver
other thanx being k-sparse, then having more degrees of

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

170



finite SNR · MAR SNR · MAR → ∞

Necessary for ML m >
1

MAR·SNR
λn log(n(1 − λ)) m > λn

Fletcheret al. [9, Thm. 1] (elementary)

Sufficient for ML m >
C

MAR·SNR
λn log(n(1 − λ)) m > λn

Wainwright [8] (elementary)

Sufficient for sequential m >
4

log(1+SNR)
λn log(n(1 − λ)) m > 5λn

OMP with power shaping From Theorem 1 From Theorem 1

Necessary and unknown (expression to m > λn log(n(1 − λ))

sufficient for lasso the right is necessary) Wainwright [22]

Sufficient for unknown m > 2λn log(n)

OMP Tropp and Gilbert [23]

Sufficient for single- m >
4(1+SNR)
MAR·SNR

λn log(n(1 − λ)) m >
4

MAR
λn log(n(1 − λ))

user detection (9) Fletcheret al. [9, Thm. 2]

TABLE I
SUMMARY OF RESULTS ON DEGREE OF FREEDOM SCALINGS FOR ASYMPTOTIC RELIABLE DETECTION FOR VARIOUS DETECTION ALGORITHMS.

ONLY LEADING TERMS ARE SHOWN. SEE BODY FOR DEFINITIONS AND ADDITIONAL TECHNICAL LIMITATIO NS.

freedom than active users is also necessary. Ifm ≤ k = λn,
then for almost all codebooksA, any k columns of A
span Cm. Consequently, any received vectory = Ax is
consistent with anyk users transmitting. Thus, the active user
set cannot be determined without further prior informationon
the modulation vectorx.

B. ML Detection with Noise

Now suppose there is noise. For a lower bound on the
degrees of freedom needed for reliable detection, suppose the
receiver has, as side information, the number of active users
k. In this case, we can consider the maximum likelihood (ML)
detector, which is the optimal detector without any prior onx

other thanx being k-sparse. Since the noisew is Gaussian,
the ML detector finds thek-dimensional subspace spanned by
k columns ofA containing the maximum energy ofy.

The ML estimator was first analyzed by Wainwright [8].
The results in that work, along with the fact thatk = λn,
show that there exists a constantC > 0 such that if

m ≥ C max

{
1

MAR · SNR
λn log(n(1 − λ)),−λn log(λ)

}

(7)
then ML will asymptotically detect the correct active user set.
Also, [9, Thm. 1] shows that, for anyδ > 0, the condition

m ≥
1 + δ

MAR · SNR
λn log(n(1 − λ)) + λn, (8)

is necessary.1

C. Single User Detection

The most common and simple method to detect the active
user set is a single-user detection estimator of the form

ÎSUD = { j : ρ(j) > µ } , (9)

1Note that here and elsewhere, there is a factor of two difference between
the real and complex cases.

where µ > 0 is a threshold parameter andρ(j) is the
correlation coefficient:

ρ(j) =
|a′

jy|
2

‖aj‖2‖y‖2
. (10)

Single-user detection has been analyzed in the compressed
sensing context in [9], [24], [25]. A small modification of [9,
Thm. 2] shows the following result: Suppose,

m(n) >
(1 + δ)L(λ, n)(1 + SNR)

SNR · MAR
λn, (11)

whereδ > 0 and

L(λ, n) =
[√

log(n(1 − λ)) +
√

log(nλ)
]2

. (12)

Then there exists a sequence of detection thresholdsµ = µ(n)
such that single-user detection achieves asymptotic reliable
detection of the active user set.

Comparing the sufficient condition (11) for single-user
detection with thenecessarycondition (8), we see two distinct
problems in single-user detection:

• Constant offset:The scaling (11) for single-user detection
shows a factorL(λ, n) instead oflog((1−λ)n) in (8). It
is easily verified that, forλ ∈ (0, 1/2), L(λ, n)/ log((1−
λ)n) < 4, so the more stringent, but simpler, condition

m(n) >
(1 + δ)4(1 + SNR)

SNR · MAR
λn log((1 − λ)n) (13)

is also sufficient.
• Self-noise limit:Single-user detection has an additional

1+SNR term in the number of degrees of freedom. When
detecting any one component ofx, single-user detection
sees the energy from the rest of the signal as interference.
This “self-noise” increases the effective noise by a factor
of 1 + SNR, which results in a proportional increase in
the minimum number of degrees of freedom.
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This self-noise results in a large performance gap at high
SNRs. In particular, asSNR → ∞, (11) reduces to

m(n) >
(1 + δ)L(λ, n)

MAR
λn log((1 − λ)n). (14)

In contrast, ML may be able to succeed with a scaling
m = O(λn) for high SNRs, which is fundamentally
better than them = Ω(λn log((1 − λ)n) required by
single-user detection.

D. Lasso and OMP Estimation

While ML has clear advantages over single-user detection, it
is not computationally feasible. However, one practical method
used in sparse signal estimation is thelasso estimator [15],
also called basis pursuit denoising [26]. In the context of the
random access channel, the lasso estimator would first estimate
the modulation vectorx by solving the convex minimization

x̂ = argmin
x

(
‖y − Ax‖2

2 + µ‖x‖1

)
, (15)

where µ > 0 is an algorithm parameter that “encourages”
sparsity in the solution̂x. The nonzero components ofx̂ can
then be used as an estimate of the active user set.

The exact performance of lasso is not known at finite
SNR. However, Wainwright [22] has exactly characterized the
conditions for lasso to work at high SNR. Specifically, ifm,
n andλn → ∞, with SNR · MAR → ∞, the scaling

m > λn log(n(1 − λ)) + λn + 1, (16)

is necessary and sufficient for asymptotic sparsity recovery.
Another common approach to sparsity pattern detection is

the greedy OMP algorithm [12]–[14]. This has been analyzed
by Tropp and Gilbert [23] in a setting with no noise. They
show that, whenA has Gaussian entries, asufficientcondition
for asymptotic reliable recovery is

m > 2λn log(n) + Cλn, (17)

for some constantC > 0, similar to the lasso scaling law.
A variant of OMP, called CoSaMP [27] improves upon this
scaling.

The lasso and OMP scaling laws, (16) and (17), can be
compared with the high SNR limit for the single-user detection
scaling law in (14). We see two important benefits of lasso
and OMP: First, theL(n, k) term for single-user detection
is replaced bylog(n(1 − λ)) for lasso or2 log(n) for OMP,
providing a gain of up to 4 for lasso and 2 for OMP.

Second, and more importantly, both lasso and OMP do not
have a dependence on MAR as long asSNR · MAR → ∞;
thus, in the high SNR regime, they have a near–far resistance
that single-user detection does not.

On the other hand, we also see from (16) and (17) that both
lasso and OMP are unable to achieve the scalingm = O(λn)
that may be achievable with ML at high SNR. Instead, both
have the scalingm = O(λn log((1−λ)n)) and thus also suffer
from the self-noise limit.

IV. SEQUENTIAL ORTHOGONAL MATCHING PURSUIT

To show that the self-noise barrier can be broken with a
practical algorithm when accurate power control is available,
we propose a new algorithm, which we callsequential orthog-
onal matching pursuitor SeqOMP. The algorithm works inn
iterations indexed byj = 1, . . . , n, producing a sequence of
estimates of the active user set,Î(j), in each iteration. The
initial estimate Î(0) is taken as empty. At iterationj, the
algorithm computes the correlation

ρ(j) =
|a′

jP(j)y|2

‖P(j)aj‖2‖P(j)y‖2
,

whereP(j) is the projection onto the orthogonal complement
of the previously detected vectors:{aℓ, ℓ ∈ Î(j − 1)}. If the
correlationρ(j) exceeds a threshold levelµ, the index is added
so: Î(j) = Î(j − 1) ∪ {j}. Otherwise,Î(j) = Î(j − 1). The
final estimate iŝISOMP = Î(n).

The SeqOMP algorithm can be thought of as an iterative
version of single-user detection with the difference that,after
an active user is detected, subsequent correlations are per-
formed only in the orthogonal complement to the detected
codeword. The method is identical to the standard OMP
algorithm of [12]–[14], except that SeqOMP passes through
the data only once. For this reason, SeqOMP is actually
computationally simpler than standard OMP.

To understand the performance of SeqOMP, letpj denote
the received modulation symbol powerpj = |xj |2, conditional
that userj is active. Since each user transmits with a proba-
bility λ, the total SNR is given by

SNR = λ
∑n

j=1
pj. (18)

Given a power profile, a key parameter in estimating the
performance of SeqOMP is what we will call theminimum
signal-to-interference and noise ratio (SINR)defined as

γ = min
ℓ=1,...,n

pℓ/σ̂2(ℓ), σ̂2(ℓ) = 1 + λ
∑n

j=ℓ+1
pj (19)

The ratio in the right-hand side of (19) represents the SINR
seen when detecting userℓ assuming usersj < ℓ have been
canceled perfectly. Our main result is the following:

Theorem 1 ( [19]): Let λ = λ(n), m = m(n) and the
power profile{pj}

n

j=1
= {pj(n)}n

j=1
, be deterministic quan-

tities that all vary withn satisfying the limitsm−λn, λn and
(1 − λ)n → ∞, and γ → 0. Also, assume the sequence of
power profiles satisfies the limit

lim
n→∞

max
i=1,...,n−1

log(n)σ̂−4(i)
∑n

j>i p2
j = 0. (20)

Finally, assume that for alln,

m ≥ (1 + δ)L(n, λ)/γ + λn, (21)

for someδ > 0 andL(n, λ) defined in (12). Then, there exists
a sequence of thresholds,µ = µ(n), such that SeqOMP will
achieve asymptotic reliable detection of the active user set:

perr = Pr
(
ÎSOMP 6= Itrue

)
→ 0,
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where the probability is taken over the randomness in the
activities of the users, the codebookA, and the noisew. The
sequence of threshold levels can be selected independent of
the sequence of power profiles.

The theorem shows the following properties of SeqOMP:

• Near-far resistance with known power ordering and high
SNR: Suppose that the power orderingpj is known at
the receiver so the receiver can detect the users in order
of decreasing power. If, in addition, the SNRs of all the
users go to infinity so thatpj → ∞ for all j, then it can
be verified thatγ > 1/(λn). In this case, the scaling (21)
reduces to

m ≥ (1 + δ)λnL(n, λ) + λn,

which is identical to the lasso performance except for
the constant offsetL(λ, n)/ log((1 − λ)n). In particular,
the minimum number of degrees of freedom does not
depend onMAR and therefore, similar to lasso and
OMP, SeqOMP is able to achieve some level of near–
far resistance.

• Reduction of the SNR barrier with power control:Now
suppose that accurate power control is feasible so that the
receive power levelspj can be set by the receiver. In this
case, we can maximize the SINRγ in (19) for a given
total SNR constraint (18). For largen, the optimal value
is γ = (1/λn) log(1 + SNR). Substituting this value into
(21) results in a scaling

m ≥
1 + δ

log(1 + SNR)
λnL(n, λ) + λn.

An important property of this scaling is that when
SNR = Ω(λn), the number of degrees of freedom scales
as m = O(λn), which matches the scaling of ML at
high SNRs. This scaling improves the high SNR scaling
of m = O(λn log((1 − λn)) achieved by single-user
detection, lasso and OMP. In this sense, SeqOMP is a
“practical” algorithm that can break the SNR barrier.

Practical Considerations:The use of power control requires
some justification. On–off random access is most likely used
when users are transmitting intermittently, so fast closed-loop
power control is not likely available. However, in cellular
systems, mobiles can achieve some degree of power control
by estimating the path loss in the downlink and adjusting the
uplink transmit power accordingly. Also, SeqOMP does not
require any knowledge of the channel phase. Moreover, the
effect of small power control errors may not be large since they
result only in a suboptimal detection sequence and interference
profile. The SeqOMP algorithm does not assume the receive
power is known in the cancellation.

V. CONCLUSIONS

Sparse signal detection is a valuable framework for un-
derstanding multiple access on–off random signaling. Results
can provide simple capacity estimates and clarify the role
of power control and multiuser detection. Combining these

ideas with concepts from the classic MAC such as SIC
and power shaping, we have presented a new algorithm,
SeqOMP, that has certain advantages at high SNR. We believe
that new methods—including iterative decoding and MMSE
detection—can improve these results further.
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