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ABSTRACT

Sparse signal models arise commonly in audio and image process-
ing. Recent work in the area of compressed sensing has provided
estimates of the performance of certain widely-used sparse signal
processing techniques such as basis pursuit and matching pursuit.
However, the optimal achievable performance with sparse signal ap-
proximation remains unknown. This paper provides bounds on the
ability to estimate a sparse signal in noise. Specifically, we show
that there is a critical minimum signal-to-noise ratio (SNR) that is re-
quired for reliable detection of the sparsity pattern of the signal. We
furthermore relate this critical SNR to the asymptotic mean squared
error of the maximum likelihood estimate of a sparse signal in ad-
ditive Gaussian noise. The critical SNR is a simple function of the
problem dimensions.

Index Terms— basis pursuit, compressed sensing, estimation,
matching pursuit, maximum likelihood, unions of subspaces

1. INTRODUCTION

Sparse signal models arise in a variety of applications. A simple
mathematical model for sparse signals is as follows: Suppose T is
an N × M matrix andX is the set of vectors

X = {x = Tu | u has at mostK non-zero components} . (1)

When M ≥ N and T has rank N , the columns of T are an over-
complete set and comprise a frame in R

N . The vector x ∈ X is said
to be K-sparse with respect to T .

A fundamental problem in sparse signal processing is the esti-
mation of sparse signals in noise. Specifically, suppose x is an un-
known signal that is K-sparse with respect to some frame T . Sup-
pose that y is a noisy version of x given by

y = x + d, (2)

where d is additive noise. The problem is to estimate x from y.
One natural estimate is the K-sparse vector closest to the ob-

served signal y. (Under a probabilistic model for d in which the
probability density is maximum at d = 0, this is the maximum
likelihood (ML) estimate of x.) Unfortunately, finding this sparse
approximation estimator is well-known to be NP-hard [1]. Most re-
search has thus focused on approximate methods, including iterative
techniques such as matching pursuit [2] and convex programming-
based methods such as basis pursuit [3].
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While both matching pursuit and basis pursuit are computation-
ally simple and appear to often work well in practice, their perfor-
mance is difficult to quantify precisely. Important developments in
recent years include a number of explicit conditions that guarantee
that basis pursuit or matching pursuit recovers the sparsity pattern of
the unknown signal u in (1) [4–11]. The conditions to guarantee the
recovery of the sparsity pattern u are generally stated in terms of the
magnitude of the noise d and the so-called coherence of T . These
performance guarantees and further insights from [12] have moti-
vated an application to distributed and universal compression known
as compressed sensing [13, 14].

If the above results can be considered as lower bounds on the
achievable performance of sparse approximation with practical al-
gorithms, the purpose of this paper is to establish upper bounds that
apply to all algorithms. Specifically, for the sparse approximation
problem, we consider an optimal, but computationally intractable,
ML estimator that exhaustively searches all possibleK-dimensional
subspaces for the sparse signal. For this estimator, we provide a sim-
ple lower bound on the minimum SNR required to detect the correct
subspace with vanishing probability of error. The bound is given in
terms of the problem dimensions.

Some of the results follow from an information-theoretic analy-
sis along the lines of our earlier paper [15] and the more recent pa-
per [16]. Proofs are outlined in Section 6; details have been omitted
due to space constraints.

2. INDEPENDENT SUBSPACE SIGNALMODELS

Our analysis is based on the following generalization of frame-based
signals in (1). We define as a (J, N, K)-subspace set any set

S = {S1, . . . , SJ} (3)

where each element Sj is a K-dimensional subspace of R
N . The

sparsity ratio of the set is α = K/N . We call the union of the
subspaces

X =
{

x ∈ R
N | x ∈ Sj , for some j = 1, . . . , J

}
(4)

the (J, N, K)-subspace signal set generated by S.
With these definitions, the sparse signal model (1) is a partic-

ular example of a (J, N, K)-signal set. Specifically, any K-sparse
vector x in (1) is the span of at most K of the M columns of T ,
and therefore belongs to one of

(
M

K

)
subspaces of R

N of dimension
K. Therefore, if we let J =

(
M

K

)
and denote the possible subspaces

containing x by Sj with j = 1, . . . , J , then X in (1) is precisely
the (J, N, K)-signal set generated by the set of Sjs. In particular,
any bound that applies to all (J, N, K)-signal sets will apply to the
frame model (1).
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Definition 1 A (J, N, K)-subspace set (3) is called independent and
uniformly generated if

(a) the subspaces Sj are random, independently and identically
distributed; and

(b) each Sj is the range of a random N × K matrix Aj , where
the NK components of Aj are i.i.d. Gaussian scalars with
zero mean and unit variance.

Part (b) of the definition is equivalent to the subspaces Sjs be-
ing rotationally invariant in that each K-dimensional subspace, Sj ,
is identically distributed toUSj for anyN×N orthogonal matrixU .
It is important to recognize that an independent and uniformly gener-
ated signal model in Definition 1 is not equivalent to the frame model
(1) for some random matrix T . If the components of the matrix T in
the frame model are i.i.d. Gaussian variables with zero mean, then
each of the J =

(
M

K

)
subspaces of spanned byK columns of T will

satisfy the rotationally invariant property in part (b) of Definition 1.
However, the random subspaces will not be independent since, in
general, they will share common column vectors. Nevertheless, we
will see that independent and uniformly generated subspace signal
sets provide certain lower bounds that apply to all subspace sets in-
cluding those generated by frames.

3. APPROXIMATION ERROR BOUNDS

Our first result provides a lower bound on the ability of any (J, N, K)-
signal model to approximate a Gaussian random vector. Let y ∼
N (0, IN) be anN -dimensional Gaussian vector with zero mean and
unit variance. Given any (J, N, K)-subspace signal set, X, we can
define the relative approximation error of y with respect toX as

ρmin =
1

‖y‖2
min
x∈X

‖y − x‖2. (5)

The approximation error ρmin is between 0 and 1, with a value closer
to 0 implying a lower approximation error.

The first result provides a lower bound on ρmin. To state the
result, given N and J , define the subspace rate as

RJ =
1

N
log2 J, (6)

which represents the number of bits per dimension to index the J
subspaces. Also, for scalars p and q ∈ (0, 1), let D(p, q) denote the
binary Kullback-Leibler distance [17] given by

D(p, q) = p log2

(
p

q

)
+ (1 − p) log2

(
1 − p

1 − q

)
. (7)

With these two definitions, we have the following bound.

Theorem 1 Let y ∼ N (0, IN).

(a) For any (J, N, K) subspace signal set, X, the mean relative
approximation is bounded below as:

Eρmin ≥ ρ∗
min, (8)

where ρ∗
min is the unique solution to

2RJ = D(α, 1 − ρ∗
min), ρ∗

min ∈ (0, 1 − α). (9)
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Fig. 1. Approximation of a Gaussian random vector with an inde-
pendent and uniformly generated subspace set. Plotted are theoreti-
cal (solid lines) and simulated (dashed lines) cumulative distribution
functions of ρmin with N = 50, RJ = 0.25 and K ∈ {5, 10}.
Simulated values are based on 10 000 Monte Carlo trials.

(b) Suppose X is an independent and uniformly generated
(J, N, K)-subspace set as in Definition 1. Then, the limit of
the approximation error ρmin with N → ∞ and α = K/N
and RJ in (6) held constant is given by

lim
N→∞

ρmin = ρ∗
min. (10)

Part (a) of the theorem provides a simple lower bound on the rel-
ative approximation error of a Gaussian random vector with respect
to an arbitrary subspace signal model. In particular, the bound ap-
plies whenX is a frame. Part (b) shows the result is tight in that the
bound can be achieved for certain large random subspace signal sets.
However, the result does not imply that the bound can be achieved
for large random frames. Indeed for frames, it can be shown that the
bound is not tight, and the exact characterization of the approxima-
tion error using frames remains open.

The proof of Theorem 1 relies on a derivation of the distribu-
tion of ρmin for the case of an independent and uniformly generated
subspace set. Specifically, ρmin has the cumulative distribution

FJ (ρ) = Pr(ρmin ≤ ρ) = 1 − (1 − F (ρ))J (11)

where F ( · ) is the cumulative distribution function of a beta(r,s)
random variable with r = (N − K)/2 and s = K/2. The corre-
sponding p.d.f. of ρmin is given by

fJ (ρ) =
∂FJ (ρ)

∂ρ
= Jf(ρ)(1 − F (ρ))J−1. (12)

Two examples of the distribution of ρmin are shown in Figure 1.
The convergence of ρmin to ρ∗

min is illustrated in Figure 2. The the-
orem correctly implies convergence to ρ∗

min ≈ 0.513.

4. SUBSPACE DETECTION BOUNDS

We next consider the estimation of subspace-based signals in the
presence of noise. Specifically, suppose X is a (J, N, K)-subspace
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Fig. 2. Convergence of ρmin for a uniformly and independently gen-
erated sparse signal model. Plotted is the c.d.f. of the approximation
error ρmin for various values of N with α = 0.1 and RJ = 0.5.

signal set. Given an unknown x ∈ X, let y be a noisy observation
of the form (2), where d ∼ N (0, IN) is additive Gaussian noise.
Since x ∈ X, x belongs to one of J subspaces of dimensional K,
Sj . We consider the problem of detecting the subspace to which
x belongs. For the frame model (1), the problem is equivalent to
detecting whichK components of the vector u are non-zero.

We analyze the following ML estimator. Let θ be the index of
the subspace containing x. Under the assumption that d is additive
Gaussian noise, the ML estimate for θ is given by

θ̂ = argmax
j∈{1,...,J}

‖Pjy‖, (13)

where Pj is the orthogonal projection operator onto Sj . Similar to
the approximation problem, this ML estimator is computationally
infeasible since it involves an exhaustive search over all J subspaces.
However, we will ignore this consideration since we are interested
here in information-theoretic limits.

Our analysis of the ML estimator considers the average error
under the following model for the unknown signal x.

Assumption 1 The signal x in (2) is of the form

x = Vθu, (14)

where θ is an unknown subspace index, uniformly distributed on the
set {1, . . . , J}; each Vj is an orthogonal N × K matrix, with inde-
pendent and rotationally invariant distributions; and u is a Gaussian
random vector with u ∼ N (0, IKγ/α) for some constant γ > 0.

Here, the constant γ > 0 represents the SNR, since it can be eas-
ily verified that γ = E‖x‖2/E‖d‖2. The following result provides
a bound on the average probability of error in terms of the signal
dimensions J ,N andK and the SNR γ.

Theorem 2 Consider the subspace detection problem above.
(a) Let γcrit be the solution to

RJ =
1

2
log2(1 + γcrit) −

α

2
log2

(
1 +

γcrit

α

)
, (15)
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Fig. 3. Convergence of the probability of sparsity pattern detection.
Perr is plotted as a function of the SNR γ for various values of N .
In all cases, α = 0.1 and RJ = 0.5.

where RJ is defined in (6). Then, if X is independent and
uniformly generated, the limit of the error probability Perr as
N → ∞ with γ, α = K/N and RJ held constant is given by

lim
N→∞

Perr =

{
0, γ > γcrit;
1, γ < γcrit.

(16)

(b) For any (J, N, K)-subspace signal set X, the probability of
error is lower bounded by

(
1 − H

(
Perr

2

)) [
RJ +

α

2
log2

(
1 +

γ

α

)]
≤

log2(1 + γ)

2
,

where H(p) is the binary entropy.

Part (b) of the theorem provides a simple lower bound on the
probability of error, Perr, in terms of the signal dimensions and SNR.
One way of interpreting the inequality in part (b) is as follows. The
binary entropy H(p) satisfiesH(p) → 0 when p → 0. Therefore, if
we require the probability of error to vanish, we must have

RJ ≤
1

2
log2(1 + γ) −

α

2
log2

(
1 +

γ

α

)
.

Since the right hand side of this inequality increases with γ, we must
have that γ ≥ γcrit, where γcrit is defined in (15). Therefore, γcrit

represents a minimum SNR required for reliable detection of the cor-
rect subspace.

The result in part (a) thus shows that the minimum SNR bound is
tight in that, for large random subspace signal models, the subspace
can be reliably detected at this SNR.

The convergence of Perr to a step function is illustrated in Fig-
ure 3. This reinforces the interpretation of γcrit as a critical SNR.

5. ESTIMATION ERROR BOUNDS

Our final results are bounds on the mean squared error (MSE) of
the ML estimator described in the previous section. We measure the
performance of estimate x̂ via the average normalized MSE:

MSE =
E‖x − x̂‖2

E‖d‖2
=

1

N
E‖x − x̂‖2. (17)
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Fig. 4. Convergence of the average normalized MSE. The average
normalized MSE in Theorem 3 is plotted as a function of the SNR γ
for various values of N . In all cases, α = 0.1 and RJ = 0.5.

Theorem 3 Consider the signal model in Assumption 1. Then the
average normalized MSE of the ML estimate x̂ is given by

MSE = α +

∫ 1

0

∫ 1

0

f(z)fJ−1(ρ)H(ρ, z)1{ρ<g(z)} dρ dz + ε,

(18)
where fJ−1(ρ) is the p.d.f. in (12),

g(z) =
z

1 + (1 − z)γ/α
, (19)

H(ρ, z) = (1 − ρ)z + (1 + γ/α)ρ(1 − z) − 2αρ, (20)
and ε is bounded by

|ε|2 ≤ 8K/N2 = 8α/N. (21)

Note that the MSE expression in Theorem 3 is not exact but
rather has an O(1/N) error term. Therefore, it is asymptotically ex-
act for large signal dimensionsN . For any fixedN , (18) is relatively
easy to compute numerically. This expression yields an asymptotic
MSE given in our final theorem.

Theorem 4 Consider the MSE in Theorem 3, and let γcrit be the
solution to (15). Then the limit of MSE in (18) as N → ∞ with γ,
α = K/N and RJ in (6) held constant is given by

lim
N→∞

MSE = α + (1 − α)
γ + γcrit

1 + γcrit
1{γ<γcrit}. (22)

The convergence of the MSE is illustrated in Figure 4. For the
values of α and RJ in the figure, the solution to (15) results in a
critical SNR γcrit of 2.21 dB. It can be seen that asN → ∞, for γ >
γcrit, the MSE approaches α = 0.1. For γ < γcrit the asymptotic
MSE grows with γ and achieves values with MSE > 1.

6. PROOFS

6.1. Proof of Theorem 1

A full proof would require some tedious details that we omit. For
any u ∈ (0, 1 − α), define the function

φ(u) = 2RJ − D(α, 1 − u). (23)

With this definition, (9) is equivalent to φ(ρ∗
min) = 0. We use the

following two lemmas.

Lemma 1 Given any α ∈ (0, 1) and RJ > 0, there exists a unique
solution ρ∗

min ∈ (0, 1 − α) to φ(ρ∗
min) = 0. Moreover,

φ(ρ) < 0 for all ρ ∈ (0, ρ∗
min); and

φ(ρ) > 0 for all ρ ∈ (ρ∗
min, 1 − α). (24)

Lemma 2 Let f(u) be the beta(r,s) p.d.f. with r = (N −K)/2 and
s = K/2. Then

lim
N→∞

2

N
log2(Jf(u)) = φ(u).

Lemma 1 proves the existence and uniqueness of ρ∗
min satisfying

(9). To prove the limit in distribution, ρ → ρ∗
min, we must show that

lim
N→∞

FJ (ρ) =

{
0, if ρ < ρ∗

min;
1, if ρ > ρ∗

min,
(25)

where FJ (ρ) is the c.d.f. of ρmin in (11).
Combining Lemmas 1 and 2 shows that for any u ∈ (0, 1 − α),

lim
N→∞

Jf(u) =

{
0, if u < ρ∗

min;
∞, if u > ρ∗

min.

Integrating this limit,

lim
N→∞

JF (ρ) = lim
N→∞

∫ ρ

0

Jf(u) du =

{
0, if ρ < ρ∗

min;
∞, if ρ > ρ∗

min.
(26)

Now suppose that ρ > ρ∗
min. From (26), JF (ρ) → ∞ as N → ∞,

and consequently,

(1 − F (ρ))J ≤ exp(−JF (ρ)) → 0.

Therefore,

lim
N→∞

FJ (ρ) = 1 − lim
N→∞

(1 − F (ρ))J = 1 (27)

for all ρ > ρ∗
min.

Next, suppose ρ < ρ∗
min. Let ε > 0. From (26), there exists an

N0 > 0 such that for all N > N0, JF (ρ) < ε. Therefore,

lim
N→∞

(1 − F (ρ))J ≥ lim
N→∞

(1 − ε/J)J = exp(−ε).

Since this is true for all ε > 0, we must have

lim
N→∞

(1 − F (ρ))J = 1,

and consequently

lim
N→∞

FJ (ρ) = 1 − lim
N→∞

(1 − F (ρ))J = 0 (28)

for all ρ < ρ∗
min. The limits (27) and (28) together prove (25).

Therefore, ρmin → ρ∗
min in distribution. �
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6.2. Proof of Theorem 2

One can show
Perr = Pr (ρmin < g(Z)) , (29)

where Z is a beta((N −K)/2,K/2) random variable and g is given
in (19). From Theorem 1, ρmin → ρ∗

min where ρ∗
min is the unique

solution to (9). Also, limN→∞ Z = EZ = 1 − α, where the con-
vergence is in mean square. Substituting these limits into (29),

lim
N→∞

Perr =

{
0, if ρ∗

min > g(1 − α);
1, if ρ∗

min < g(1 − α).

So, the theorem will be proven if we can show that the condition
ρ∗
min > g(1 − α) is equivalent to γ > γcrit, where γcrit is defined
in (15).

To this end, let ρ∗ = (1 − α)/(1 + γcrit). Then,

1 − ρ∗ = (γcrit + α)/(1 + γcrit).

Using the definition of the Kullback-Leibler distance function in (7),

D(α, 1 − ρ∗) = α log2

(
α

1 − ρ∗

)
+ (1 − α) log2

(
1 − α

ρ∗

)

= log2(1 + γcrit) − α log2

(
1 +

γcrit

α

)
= 2RJ .

Thus, 2RJ = D(α, 1 − ρ∗). But, by Theorem 1, ρ∗
min is the unique

solution to 2RJ = D(α, 1 − ρ∗
min), Therefore,

ρ∗
min = ρ∗ = (1 − α)/(1 + γcrit). (30)

Now, using the definition of g(z) in (19),

g(1 − α) =
1 − α

1 + γ
.

Therefore,

ρ∗
min > g(1− α) ⇐⇒

1 − α

1 + γcrit
>

1 − α

1 + γ
⇐⇒ γ > γcrit.

So γ > γcrit if and only if ρ∗
min > g(1− α). �

6.3. Proof of Theorem 3

In the integral in (18), fJ−1(ρ) and f(z) are the p.d.f.’s of ρmin and
the beta random variable Z as before. Therefore, the MSE in (18)
can be rewritten as

MSE = α + E
[
H(ρmin, Z)1{ρmin<g(Z)}

]
+ ε. (31)

Similar to the proof of Theorem 2, we know that Z → 1 − α and
ρmin → ρ∗

min, where ρ∗
min is the solution to (9). Also, because of

(21), the error term ε in (18) goes to zero as N → ∞. Therefore,

lim
N→∞

MSE = α + H(ρ∗
min, 1 − α)1{ρ∗

min
<g(1−α)}. (32)

Substituting (30) into the definition of H(ρ∗
min, 1 − α) in (20),

H(ρ∗
min, 1 − α) = (1 − ρ∗

min)(1 − α) + (α + γ)ρ∗
min − 2αρ∗

min

= 1 − α + [α − 1 + α + γ − 2α] ρ∗
min

= 1 − α + (γ − 1)
(1 − α)

1 + γcrit

= (1 − α)
γcrit + γ

1 + γcrit
.

Also, from the proof of Theorem 2, we know that ρ∗
min < g(1 − α)

is equivalent to γ < γcrit. Substituting these limits into (32) gives

lim
N→∞

MSE = α + (1 − α)
γcrit + γ

1 + γcrit
1{γ<γcrit},

which proves (22). �
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