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Abstract—This paper considers the problem of detecting the
support (sparsity pattern) of a sparse vector from random noisy
measurements. Conditional power of a component of the sparse
vector is defined as the energy conditioned on the component
being nonzero. Analysis of a simplified version of orthogonal
matching pursuit (OMP) called sequential OMP (SequOMP)
demonstrates the importance of knowledge of the rankings of con-
ditional powers. When the simple SequOMP algorithm is applied
to components in nonincreasing order of conditional power, the
detrimental effect of dynamic range on thresholding performance
is eliminated. Furthermore, under the most favorable conditional
powers, the performance of SequOMP approaches maximum
likelihood performance at high signal-to-noise ratio.

Index Terms—Compressed sensing, convex optimization, lasso,
maximum likelihood estimation, orthogonal matching pursuit,
randommatrices, sparse Bayesian learning, sparsity, thresholding.

I. INTRODUCTION

S ETS of signals that are sparse or approximately sparse with
respect to some basis are ubiquitous because signal mod-

eling often has the implicit goal of finding such bases. Using a
sparsifying basis, a simple abstraction that applies in many set-
tings is for

(1)

to be observed, where is known, is the un-
known sparse signal of interest, and is random noise.
When , constraints or prior information about are es-
sential to both estimation (finding vector such that
is small) and detection (finding index set equal to the sup-
port of ). The focus of this paper is on the use of magnitude
rank information on —in addition to sparsity—in the support
detection problem. We show that certain scaling laws relating
the problem dimensions and the noise level are changed dramat-
ically by exploiting the rank information in a simple sequential
detection algorithm.
The simplicity of the observation model (1) belies the va-

riety of questions that can be posed and the difficulty of precise
analysis. In general, the performance of any algorithm is a com-
plicated function of , and the distribution of . To enable
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results that show the qualitative behavior in terms of problem
dimensions and a few other parameters, we assume the entries
of are i.i.d. normal, and we describe by its energy and its
smallest-magnitude nonzero entry.
We consider a partially-random signal model

(2)

where components of vector are i.i.d. Bernoulli random vari-
ables with and is a
nonrandom parameter vector with all nonzero entries. The value
represents the conditional power of the component in the

event that . We consider the problem where the estimator
knows neither nor , but may know the order or rank of the
conditional powers. In this case, the estimator can, for example,
sort the components of in an order such that

(3)

A stylized application in which the conditional ranks (and
furthermore approximate conditional powers) can be known is
random access communication as described in [1]. Also, par-
tial orders of conditional powers can be known in some appli-
cations because of the magnitude variation of wavelet coeffi-
cients across scale [2]. Along with being motivated by these ap-
plications, we aim to provide a new theoretical grounding for
a known empirical phenomenon: orthogonal matching pursuit
(OMP) and sparse Bayesian learning (see references below) ex-
hibit improvements in detection performance when the nonzero
entries of the signal have higher dynamic range.

A. Main Contribution

Rank information is extremely valuable in support detec-
tion. Abstracting from the applications above, we show that
when conditional rank information is available, a very simple
detector, termed sequential orthogonal matching pursuit
(SequOMP), can be effective. The SequOMP algorithm is a
one-pass version of the well-known OMP algorithm. Similar
to several works in sparsity pattern recovery [3]–[5], we ana-
lyze the performance of SequOMP by estimating a scaling on
the minimum number of measurements to asymptotically
reliably detect the sparsity pattern (support) of in the limit of
large random matrices . Although the SequOMP algorithm
is extremely simple, we show:
• When the power orders are known and the signal-to-noise
ratio (SNR) is high, the SequOMP algorithm exhibits a
scaling in the minimum number of measurements for spar-
sity pattern recovery that is within a constant factor of
the more sophisticated lasso and OMP algorithms. In par-
ticular, SequOMP exhibits a resistance to large dynamic
ranges, which is one of themainmotivations for using lasso
and OMP.

• When the power profile can be optimized, SequOMP can
achieve measurement scaling for sparsity pattern recovery

1053-587X/$31.00 © 2012 IEEE
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TABLE I
SUMMARY OF RESULTS ON MEASUREMENT SCALINGS FOR ASYMPTOTIC RELIABLE DETECTION FOR VARIOUS DETECTION ALGORITHMS. ONLY LEADING TERMS

ARE SHOWN. SEE BODY FOR DEFINITIONS AND TECHNICAL LIMITATIONS

that is within a constant factor of maximum likelihood
(ML) detection. This scaling is better than the best known
sufficient conditions for lasso and OMP.

The results are not meant to suggest that SequOMP is a good
algorithm; other algorithms such as OMP can perform dramati-
cally better. The point is to concretely and provably demonstrate
the value of conditional rank information.

B. Related Work

Under an i.i.d. Gaussian assumption on , maximum likeli-
hood estimation of under a sparsity constraint is equivalent
to finding sparse such that is minimized. This is
called optimal sparse approximation of using dictionary ,
and it is NP-hard [6]. Several greedy heuristics (matching pur-
suit [7] and its variants with orthogonalization [8]–[10] and it-
erative refinement [11], [12]) and convex relaxations (basis pur-
suit [13], lasso [14], Dantzig selector [15], and others) have been
developed for sparse approximation, and under certain condi-
tions on and they give optimal or near-optimal performance
[16]–[18]. Results showing that near-optimal estimation of is
obtained with convex relaxations, pointwise over compressible
and with high probability over some random ensemble for ,

form the heart of the compressed sensing literature [19]–[21].
Under a probabilistic model for and certain additional as-
sumptions, exact asymptotic performances of several estimators
are known [22].
Our interest is in recovery or detection of the support (or spar-

sity pattern) of rather than the estimation of . In the noiseless
case of , optimal estimation of can yield under
certain conditions on ; estimation and detection then coincide,
and some papers cited above and notably [23] contain relevant
results. In the general noisy case, direct analysis of the detection
problem has yielded much sharper results.
A standard formulation is to treat as a nonrandom parameter

vector and as either nonrandom with weight or random with

a uniform distribution over the weight- vectors. The minimum
probability of detection error is then attained withML detection.
Sufficient conditions for the success of ML detection are due to
Wainwright [3]; necessary conditions based on channel capacity
were given by several authors [24]–[27], and conditions more
stringent in many regimes and a comparison of results appear
in [5]. Necessary and sufficient conditions for lasso were deter-
mined by Wainwright [4]. Sufficient conditions for orthogonal
matching pursuit (OMP) were given by Tropp and Gilbert [28]
and improved by Fletcher and Rangan [29]. Even simpler than
OMP is a thresholding algorithm analyzed in a noiseless setting
in [30] and with noise in [5]. These results are summarized in
Table I, using terminology defined formally in Section II. While
thresholded backprojection is unsophisticated from a signal pro-
cessing point of view, it is simple and commonly used in a va-
riety of fields. Improvements relative to this are needed to justify
the use of methods with higher complexity.
Some of our results depend on knowledge of the ordering of

conditional powers of entries of . Several earlier works have
introduced other models of partial information about signal sup-
port or varying likelihoods of indexes appearing in the support
[31]–[33]. Statistical dependencies between components of
can be exploited very efficiently using a recent extension [34] of
the generalized approximate message passing framework [35].

C. Paper Organization

The remainder of the paper is organized as follows. The set-
ting is formalized in Section II. In particular, we define all the
key problem parameters. Common algorithms and previous re-
sults on their performances are then presented in Section III.
We will see that there is a potentially-large performance gap be-
tween the simplest thresholding algorithm and the optimal ML
detection, depending on the signal-to-noise ratio (SNR) and the
dynamic range of . Section IV presents a new detection al-
gorithm, sequential orthogonal matching pursuit (SequOMP),
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that exploits knowledge of conditional ranks. Numerical ex-
periments are reported in Section V. Conclusions are given in
Section VI, and proofs are relegated to the Appendix.

II. PROBLEM FORMULATION

In the observation model , let and
have i.i.d. entries. This is a normalization

under which the ratio of conditional total signal energy to total
noise energy

(4)

simplifies to

(5)

This is a random variable because is a random vector.
Let denote the support

of . Using signal model (2),
. The sparsity level of is .
An estimator produces an estimate of based

on the observed noisy vector . Given an estimator, its proba-
bility of error1 is taken with respect to
randomness in , noise vector , and signal . Our interest is
in relating the scaling of problem parameters with the success of
various algorithms. For this, we define the following criterion.
Definition 1: Suppose that we are given deterministic se-

quences , and that vary
with . For a given detection algorithm , the proba-
bility of error is some function of . We say that the de-
tection algorithm achieves asymptotic reliable detection when

.
We will see that two key factors influence the ability to detect
. The first is the total SNR defined above. The second is

what we call the minimum-to-average ratio

(6)

Like , this is a random variable. Since has ele-
ments, is the average of . Therefore,

with the upper limit occurring when all the
nonzero entries of have the same magnitude.
Finally, we define the minimum component SNR to be

(7)

where is the th column of and the second equality follows
from the normalization of chosen for and . The random
variable has a natural interpretation: The numerator
is the signal power due to the smallest nonzero component in
, while the denominator is the total noise power. The ratio

thus represents the contribution to the SNR from
the smallest nonzero component of . Observe that (5) and (6)
show

(8)

1An alternative to this definition of could be to allow a nonzero fraction
of detection errors [26], [27].

We will be interested in estimators that exploit minimal
prior knowledge on : either only knowledge of sparsity level
(through or ) or also knowledge of the conditional ranks
(through the imposition of (3)). In particular, full knowledge
of would change the problem considerably because the finite
number of possibilities for could be exploited.

III. COMMON DETECTION METHODS

In this section, we review several asymptotic analyses for
detection of sparse signal support. These previous results hold
pointwise over sequences of problems of increasing dimension
, i.e., treating as an unknown deterministic quantity. That
makes these results stronger than results that are limited to the
model (2) where the s are i.i.d. Bernoulli variables. To reflect
the pointwise validity of these results, they are stated in terms
of deterministic sequences , and
that depend on dimension and are arbitrary aside from satis-
fying and the definitions of the previous section. To
simplify the notation, we drop the dependence of and on
, and and on . When the results are
tabulated for comparison with each other and with the results of
Section IV, we replace with ; this specializes the results to
the model (2).

A. Optimal Detection With No Noise

To understand the limits of detection, it is useful to first con-
sider the minimum number of measurements when there is no
noise. Suppose that is known to the detector. With no noise,
the observed vector is , which will belong to one of

subspaces spanned by columns of . If ,
then these subspaces will be distinct with probability 1. Thus,
an exhaustive search through the subspaces will reveal which
subspace belongs to and thus determine the support .
This shows that with no noise and no computational limits, the
scaling in measurements of

(9)

is sufficient for asymptotic reliable detection.
Conversely, if no prior information is known at the detector

other than being -sparse, then the condition (9) is also neces-
sary. If , then for almost all , any columns of span
. Consequently, any observed vector is consistent

with any support of weight . Thus, the support cannot be de-
termined without further prior information on the signal .
Note that we are considering correct detection with proba-

bility 1 (over the random choice of ) for a single -sparse .
It is elementary to show that correct detection with probability 1
(again over the random choice of ) for all -sparse requires

.

B. ML Detection With Noise

Now suppose there is noise. Since is an unknown determin-
istic quantity, the probability of error in detecting the support is
minimized by maximum likelihood (ML) detection. Since the
noise is Gaussian, the ML detector finds the -dimensional
subspace spanned by columns of containing the maximum
energy of .
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The ML estimator was first analyzed by Wainwright [3]. He
shows that there exists a constant such that if

(10)

then ML will asymptotically detect the correct support. The
equivalence of the two expressions in (10) is due to (8). Also,
[5, Thm. 1] (generalized in [36, Thm. 1]) shows that, for any

, the condition

(11)

is necessary. Observe that when , the lower
bound (11) approaches , matching the noise-free case (9)
as expected.
These necessary and sufficient conditions for ML appear in

Table I with smaller terms and the infinitesimal omitted for
simplicity.

C. Thresholding

The simplest method to detect the support is to use a thresh-
olding rule of the form

(12)

where is a threshold parameter and is the correlation
coefficient:

Thresholding has been analyzed in [5], [30], [37]. In particular,
[5, Thm. 2] is the following: Suppose

(13)

where and

(14)

Then there exists a sequence of detection thresholds
such that achieves asymptotic reliable detection of the sup-
port. As before, the equivalence of the two expressions in (13)
is due to (8).
Comparing the sufficient condition (13) for thresholding with

the necessary condition (11), we see two distinct problems with
thresholding:
• Constant offset: The scaling (13) for thresholding shows
a factor instead of in (11). It is easily
verified that, for

(15)

so this difference in factors alone could require that thresh-
olding use up to 4 times more measurements than ML for
asymptotic reliable detection.
Combining the inequality (15) with (13), we see that the
more stringent, but simpler, condition

(16)

is also sufficient for asymptotic reliable detection with
thresholding. This simpler condition is shown in Table I,
where we have omitted the infinitesimal quantity to
simplify the table entry.

• SNR saturation: In addition to the
offset, thresholding also requires a factor of more
measurements than ML. This factor has a natural
interpretation as intrinsic interference:When detecting any
one component of the vector , thresholding sees the en-
ergy from the other components of the signal as in-
terference. This interference is distinct from the additive
noise , and it increases the effective noise by a factor of

.
The intrinsic interference results in a large performance
gap at high SNRs. In particular, as , (13) reduces
to

(17)

In contrast, ML may be able to succeed with a scaling
for high SNRs.

D. Lasso and OMP Detection

While ML has clear advantages over thresholding, it is not
computationally tractable for large problems. One practical
method is lasso [14], also called basis pursuit denoising [13].
The lasso estimate of is obtained by solving the convex
optimization

where is an algorithm parameter that encourages sparsity
in the solution . The nonzero components of can then be used
as an estimate of .
Wainwright [4] has given necessary and sufficient conditions

for asymptotic reliable detection with lasso. Partly because of
freedom in the choice of a sequence of parameters , the
finite SNR results are difficult to interpret. Under certain condi-
tions with SNR growing unboundedly with , matching neces-
sary and sufficient conditions can be found. Specifically, if
and , with , the scaling

(18)

is both necessary and sufficient for asymptotic reliable detec-
tion.
Another common approach to support detection is the OMP

algorithm [8]–[10]. This was analyzed by Tropp and Gilbert
[28] in a setting with no noise. This was generalized to the
present setting with noise by Fletcher and Rangan [29]. The re-
sult is very similar to condition (18): If and , with
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, a sufficient condition for asymptotic reliable
recovery is

(19)

The main result of [29] also allows uncertainty in .
The conditions (18) and (19) are both shown in Table I. As

usual, the table entries are simplified by including only the
leading terms.
The lasso and OMP scaling laws, (18) and (19), can be com-

pared with the high SNR limit for the thresholding scaling law
in (17). This comparison shows the following:
• Removal of the constant offset: The factor in the
thresholding expression is replaced by a factor
in the lasso and OMP scaling laws. Similar to the discus-
sion above, this implies that lasso and OMP could require
up to 4 times fewer measurements than thresholding.

• Dynamic range: In addition, both the lasso and OMP
methods do not have a dependence on MAR. This gain
can be large when there is high dynamic range, i.e., MAR
is near zero.

• Limits at high SNR: We also see from (18) and (19) that
both lasso and OMP are unable to achieve the scaling

that may be achievable with ML at high
SNR. Instead, both lasso and OMP have the scaling

, similar to the minimum scaling
possible with thresholding.

E. Other Sparsity Detection Algorithms

Recent interest in compressed sensing has led to a plethora
of algorithms beyond OMP and lasso. Empirical evidence sug-
gests that the most promising algorithms for support detection
are the sparse Bayesian learning methods developed in the ma-
chine learning community [38] and introduced into signal pro-
cessing applications in [39], with related work in [40]. Unfor-
tunately, a comprehensive summary of these algorithms is far
beyond the scope of this paper. Our interest is not in finding the
optimal algorithm, but rather to explain qualitative differences
between algorithms and to demonstrate the value of knowing
conditional ranks a priori.

IV. SEQUENTIAL ORTHOGONAL MATCHING PURSUIT

The results summarized in the previous section suggest a
large performance gap between ML detection and practical al-
gorithms such as thresholding, lasso and OMP, especially when
the SNR is high. Specifically, as the SNR increases, the perfor-
mance of these practical methods saturates at a scaling in the
number of measurements that can be significantly higher than
that for ML.
In this section, we introduce an OMP-like algorithm, which

we call sequential orthogonal matching pursuit, that under fa-
vorable conditions can break this barrier. Specifically, in some
cases, the performance of SequOMP does not saturate at high
SNR.

A. Algorithm: SequOMP

Given a received vector , threshold level , and de-
tection order (a permutation on ), the algorithm
produces an estimate of the support with the following
steps:

1) Initialize the counter and set the initial support esti-
mate to empty: .

2) Compute where is the projection op-
erator onto the orthogonal complement of the span of

.
3) Compute the squared correlation between and

:

4) If , add the index to . That is,
. Otherwise, set .

5) Increment to . If return to step 2.
6) The final estimate of the support is .
The SequOMP algorithm can be thought of as an iterative

version of thresholding with the difference that, after a nonzero
component is detected, subsequent correlations are performed
only in the orthogonal complement to the corresponding column
of . The method is identical to the standard OMP algorithm
of [8]–[10], except that SequOMP passes through the data only
once, in a fixed order. For this reason, SequOMP is computa-
tionally simpler than standard OMP.
As simulations will illustrate later, SequOMP generally has

much worse performance than standard OMP. It is not intended
as a competitive practical alternative. Our interest in the algo-
rithm lies in the fact that we can prove positive results for Se-
quOMP. Specifically, we will be able to show that this simple
algorithm, when used in conjunction with known conditional
ranks, can achieve a fundamentally better scaling at high SNRs
than what has been proven is achievable with methods such as
lasso and OMP.

B. Sequential OMP Performance

The analyses in Section III hold for deterministic vectors
. Recall the partially-random signal model (2) where is a

random variable while the value of conditional
on being nonzero remains deterministic; i.e., is determin-
istic.
Let denote the conditional energy of , conditioned on

(i.e., ). Then

(20)

We will call the power profile. Since
for every , the average value of in (4) is given by

(21)

Also, in analogy with and in (6) and (7),
define

Note that the power profile and the quantities
and as defined above are deterministic.
To simplify notation, we henceforth assume is the iden-

tity permutation, i.e., the detection order in SequOMP is simply
. A key parameter in analyzing the performance of
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SequOMP is what we will call the minimum signal-to-interfer-
ence and noise ratio (MSINR)

(22a)

where is given by

(22b)

The parameters and have simple interpretations: Sup-
pose SequOMP has correctly detected for all . Then,
in detecting , the algorithm sees the noise with power

plus, for each component , an interference
power with probability . Hence, is the total average
interference power seen when detecting , assuming perfect
cancellation up to that point. Since the conditional power of
is , the ratio in (22a) represents the average SINR
seen while detecting component . The value is the minimum
SINR over all components.
Theorem 1: Let , and the power profile

be deterministic quantities varying with
that satisfy

(23a)

(23b)

Also, assume the sequence of power profiles satisfies the limit

(23c)

Finally, assume that for all

(24)

for some where is defined in (14) and is
defined in (22a). Then, there exists a sequence of thresh-
olds, , such that SequOMP with detection order

will achieve asymptotic reliable detection. The
sequence of threshold levels can be selected independent of the
sequence of power profiles.

Proof: See Appendix A.
The theorem provides a simple sufficient condition on the

number of measurements as a function of the MSINR , prob-
ability , and dimension . The condition (23c) is somewhat
technical; we will verify its validity in examples. The remainder
of this section discusses some of the implications of this the-
orem.

C. Most Favorable Detection Order With Known Conditional
Ranks

Suppose that the ordering of the conditional power levels
is known at the detector, but possibly not the values

themselves. Reordering the power profile is equivalent to
changing the detection order, so we seek the most favorable
ordering of the power profile. Since defined in (22b)

involves the sum of the tail of the power profile, the MSINR
defined in (22a) is maximized when the power profile is non-in-
creasing:

(25)

In other words, the best detection order for SequOMP is from
strongest component to weakest component.
Using (25), it can be verified that the MSINR is bounded

below by

(26)

Furthermore, in cases of interest , so the sufficiency of
the scaling (24) shows that

(27)

is sufficient for asymptotic reliable detection. This expression
is shown in Table I with the additional simplification that

for . To keep the
notation consistent with the expressions for the other entries in
the table, we have used for , which is the average number
of nonzero entries of .
When , (27) simplifies to

(28)

This is identical to the lasso and OMP performance except for
the factor , which lies in for

. In particular, the minimum number of measurements
does not depend on ; therefore, similar to lasso and OMP,
SequOMP can theoretically detect components that are much
below the average power at high SNRs. More generally, we can
say that knowledge of the conditional ranks of the powers en-
ables a very simple algorithm to achieve resistance to large dy-
namic ranges.

D. Optimal Power Shaping

The MSINR lower bound in (26) is achieved as and
the power profile is constant (all ’s are equal). Thus, opposite
to thresholding, a constant power profile is in some sense the
worst power profile for a given for the SequOMP algo-
rithm.
This raises the question: What is the most favorable power

profile? Any power profile maximizing the MSINR subject
to a constraint on total SNR (21) will achieve the minimum in
(22a) for every and thus satisfy

(29)

The solution to (29) and (21) is given by

(30a)

where

(30b)
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and the approximation holds for large .2 Again, some algebra
shows that when is bounded away from zero, the power profile
in (30) will satisfy the technical condition (23c) when

.
The power profile (30a) is exponentially decreasing in the

index order . Thus, components early in the detection sequence
are allocated exponentially higher power than components later
in the sequence. This allocation insures that early components
have sufficient power to overcome the interference from all the
components later in the detection sequence that are not yet can-
celled.
Substituting (30b) into (24), we see that the scaling

(31)

is sufficient for SequOMP to achieve asymptotic reliable de-
tection with the best-case power profile. This expression is
shown in Table I, again with the additional simplification that

for .

E. SNR Saturation

As discussed earlier, a major problem with thresholding,
lasso, and OMP is that their performances “saturate” with high
SNR. That is, even as the SNR scales to infinity, the minimum
number of measurements scales as .
In contrast, optimal ML detection can achieve a scaling

, when the SNR is sufficiently high.
A consequence of (31) is that SequOMP with exponential

power shaping can overcome this barrier. Specifically, if we
take the scaling of in (31), apply the bound

for , and assume that
is bounded away from zero, we see that asymptotically, Se-

quOMP requires only measurements. In this way, un-
like thresholding and lasso, SequOMP is able to succeed with
scaling when . In fact, if grows
slightly faster so that it satisfies
while still satisfying , then (31)
leads to an asymptotic sufficient condition of .

F. Power Shaping With Sparse Bayesian Learning

The fact that power shaping can provide benefits when com-
bined with certain iterative detection algorithms confirms the
observations in the work of Wipf and Rao [41]. That work con-
siders signal detection with a certain sparse Bayesian learning
(SBL) algorithm. They show the following result: Suppose
has nonzero components and , is the power
of the th largest component. Then, for a given measurement
matrix , there exist constants such that if

(32)

the SBL algorithm will correctly detect the sparsity pattern of
.

2The solution (30) is the case of a more general result in Section IV.G;
see (35).

The condition (32) shows that a certain growth in the powers
can guarantee correct detection. The parameters however de-
pend in some complex manner on the matrix , so the appro-
priate growth is difficult to compute. They also provide strong
empirical evidence that shaping the power with certain profiles
can greatly reduce the number of measurements needed.
The results in this paper add to Wipf and Rao’s observations

showing that growth in the powers can also assist SequOMP.
Moreover, for SequOMP, we can explicitly derive the optimal
power profile for certain large random matrices.
This is not to say that SequOMP is better than SBL. In fact,

empirical results in [39] suggest that SBLwill outperform OMP,
which will in turn do better than SequOMP. As we have stressed
before, the point of analyzing SequOMP here is that we can de-
rive concrete analytic results. These results may provide guid-
ance for more sophisticated algorithms.

G. Robust Power Shaping

The above analysis shows certain benefits of SequOMP used
in conjunction with power shaping. The results are proven for
reliable detection of all entries of the support in a limit of un-
bounded block length (see Definition 1). In problems of finite
size or at operating points where a nonzero fraction of errors is
tolerable, the power shaping above may hurt performance.
When a nonzero component is not detected in SequOMP,

that component’s energy is not cancelled out and remains as in-
terference for all subsequent components in the detection se-
quence. With power shaping, components early in the detec-
tion sequence have much higher power than components later
in the sequence. Compared to a case with the same and
a constant power profile, the use of power shaping reduces the
probability of an early missed detection but increases the harm
in subsequent steps that comes from such a missed detection.
As block length increases, the probability of missed detection
can be driven to zero. But at any finite block length, the proba-
bility of a missed detection early in the sequence will always be
nonzero.
The work [42] observed a similar problem when successive

interference cancellation is used in a CDMA uplink. To mitigate
the problem, [42] proposed to adjust the power allocations to
make them more robust to detection errors early in the detection
sequence. The same technique, which we will call robust power
shaping, can be applied to SequOMP as follows.
The condition (29) is motivated by maintaining a constant

MSINR through the detection process, assuming all components
with indexes have been correctly detected and subtracted.
An alternative, following [42], is to assume that some fixed frac-
tion of the energy of components early in the detection
sequence is not cancelled out due to missed detections. We will
call the leakage fraction. With nonzero leakage, the condition
(29) is replaced by

(33)

For given , and , (33) in a system of linear equations that
determines the power profile ; one can vary until the
power profile provides the desired SNR according to (21).
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Fig. 1. Probability of error in full support recovery with SequOMP for a signal
with components when the power profile is optimized as in (35) with
leakage fraction . Each shaded box presents the result of 2000 Monte
Carlo trials with and
SNR as indicated. The white line shows the theoretical sufficient condition on
obtained from Theorem 1.

A closed-form solution to (33) provides some additional in-
sight. Adding and subtracting inside the parentheses in
(33) while also using (21) yields

which can be rearranged to

(34)

Using standard techniques for solving linear constant-coeffi-
cient difference equations,

(35a)

where

(35b)

and

(35c)

Notice that implies , so the power profile (35a)
is decreasing as in the case without leakage in Section IV-D.
Setting recovers (30).

V. NUMERICAL SIMULATIONS

A. Basic Validation of Sufficient Condition

We first compare the actual performance of the SequOMP
algorithm with the sufficient condition for support recovery in
Theorem 1. Fig. 1 shows the simulated probability of error
obtained using SequOMP at various SNR levels, probabilities of

Fig. 2. Comparison of SequOMP and OMP, with and without power shaping.
Probability of error in full support recovery is plotted as a function of with
number of components , probability of an entry being nonzero
, and SNR dB. The power profile is either constant or optimized as in

(35) with leakage fraction .

nonzero components , and numbers of measurements . In all
these simulations, the number of components was fixed to
, and each shaded box represents an empirical probability

of error over 2000 independent Monte Carlo trials. The robust
power profile of Section IV-G is used with a leakage fraction

. Here and in subsequent simulations, the threshold
is set to the level specified in (39) in the proof of Theorem 1 in
Appendix A.3

The white line in Fig. 1 represents the number of measure-
ments for which Theorem 1 would theoretically guarantee
reliable detection of the support at infinite block lengths. To
apply the theorem, we used the MSINR from (35c). At the
block lengths considered in these simulations, the probability
of error at the theoretical sufficient condition is small, typically
under 0.1%. The theoretical sufficient condition shows the same
trends as the empirical results.

B. Effect of Power Shaping

Fig. 2 compares the performances of SequOMP and OMP,
with and without power shaping. In the simulations,

, and the total SNR is 25 dB. When power shaping is
used, the power profile is determined through (35) with leakage
fraction . Otherwise, the power profile is constant. The
number of measurements was varied, and for each , the
probability of error was estimated with 5000 independentMonte
Carlo trials.
As expected from the theoretical analysis in this paper, with

the total SNR kept constant, the performance of SequOMP is
improved by optimization of the power profile. As also is to be
expected, SequOMP is considerably worse than OMP in terms
of error probability for a given number of measurements or
number of measurements needed to achieve a given error proba-
bility. Our interest in SequOMP is that it is amenable to analysis;
OMP presumably performs better than SequOMP in any setting
of interest, but it does not do so for every problem instance, so
our analysis does not carry over to OMP rigorously.
The simulation in Fig. 2 shows that power shaping provides

gains with OMP as well. As discussed in Section IV-F, this is
consistent with observations in the work of Wipf and Rao [41].

3Simulations presented in [43] use a different choice of . There, is adjusted
to achieve a fixed false alarm probability and all plotted quantities are missed
detection probabilities. The conclusions are qualitatively similar.
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VI. CONCLUSION

Methods such as OMP and lasso, which are widely used in
sparse signal support detection problems, exhibit advantages
over thresholding but still fall far short of the performance
of optimal (ML) detection at high SNRs. Analysis of the
SequOMP algorithm has shown that knowledge of conditional
rank of signal components enables performance similar to
OMP and lasso at a lower complexity. Furthermore, in the
most favorable situations, conditional rank knowledge changes
the fundamental scaling of performance with SNR so that
performance no longer saturates with SNR.

APPENDIX
PROOF OF THEOREM 1

A. Proof Outline

At a high level, the proof of Theorem 1 is similar to the
proof of [5, Thm. 2], the thresholding condition (16). One of
the difficulties in the proof is to handle the dependence between
random events at different iterations of the SequOMP algorithm.
To avoid this difficulty, we first show an equivalence between
the success of SequOMP and an alternative sequence of events
that is easier to analyze. After this simplification, small modifi-
cations handle the cancellations of detected vectors.
Fix and define , which

is the set of elements of the true support with indices .
Observe that and .
Let be the projection operator onto the orthogonal

complement of , and define

(36)

A simple induction argument shows that SequOMP correctly
detects the support if and only if, at each iteration , the vari-
ables and defined in the algorithm are equal
to and , respectively. Therefore, if
we define , then SequOMP cor-
rectly detects the support if and only if . In particular,

.
To prove that it suffices to show that there exists

a sequence of threshold levels such that

(37a)

(37b)

hold in probability. The first limit (37a) ensures that all the com-
ponents in the true support will not be missed and will be called
the zero missed detection condition. The second limit (37b) en-
sures that all the components not in the true support will not be
falsely detected and will be called the zero false alarm condi-
tion.
Set the sequence of threshold levels as follows. Since ,

we can find an such that

(38)

For each , let the threshold level be

(39)

The asymptotic lack of missed detections and false alarms with
these thresholds are proven in Appendices D and E, respec-
tively. In preparation for these sections, Appendix B reviews
some facts concerning tail bounds on chi-squared and beta
random variables and Appendix C presents some preliminary
computations.

B. Chi-Squared and Beta Random Variables

The proof requires a number of simple facts concerning
chi-squared and beta random variables. These variables are
reviewed in [44]. We omit all the proofs in this subsection and
instead reference very closely related lemmas in [5].
A random variable has a chi-squared distribution with

degrees of freedom if it can be written as , where
are i.i.d. .
Lemma 1 ([5], Lemma 2): Suppose has a Gaussian

distribution . Then:
a) is chi-squared with degrees of freedom; and
b) if is any other -dimensional random vector that is
nonzero with probability one and independent of , then
the variable is a chi-squared random
variable with one degree of freedom.

The following two lemmas provide standard tail bounds.
Lemma 2 (Similar to [5], Lemma 3): Suppose that for

each is a set of Gaussian random vectors with

each spherically symmetric in an -dimensional
space. The variables may be dependent. Suppose also that

and where
. Then the limits

hold in probability.
Lemma 3 ([5], Lemma 4): Suppose that for each

is a set of chi-squared random variables, each with
one degree of freedom. The variables may be dependent. Then

where the limit is in probability.
The final two lemmas concern certain beta-distributed

random variables. A real-valued scalar random variable
follows a distribution if it can be written as

, where the variables and are inde-
pendent chi-squared random variables with and degrees of
freedom, respectively. The importance of the beta distribution
is given by the following lemma.
Lemma 4 ([5, Lemma 5]): Suppose and are indepen-

dent random -dimensional random vectors with being spher-
ically-symmetrically distributed in and having any distri-
bution that is nonzero with probability one. Then the random
variable is independent of and fol-
lows a distribution.
The following lemma provides a simple expression for the

maxima of certain beta-distributed variables.
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Lemma 5 ([5, Lemma 6]): For each , suppose is

a set of random variables with having a
distribution. Suppose that

where . Then,

in probability.

C. Preliminary Computations and Technical Lemmas

We first need to prove several simple but technical bounds.
We begin by considering the dimension defined as

(40)

Our first lemma computes the limit of this dimension.
Lemma 6: The limit

(41)

holds in probability and almost surely.
Proof: Recall that is the projection onto the or-

thogonal complement of the vectors with .
With probability one, these vectors will be linearly independent,
so will have dimension . Since
is increasing with

(42)

Since each index is in the support with probability and the s
are independent, the law of large numbers shows that

in probability and almost surely. Combining this with (42) and
(23b) shows (41).
Next, for each , define the residual vector,

(43)

Observe that

where (a) follows from (1) and (b) follows from the fact that
is the projection onto the orthogonal complement of

the span of all vectors with and .
The next lemma shows that the power of the residual vector

is described by the random variable

(44)

Lemma 7: For all , the residual vector , condi-
tioned on the modulation vector and projection , is a

spherically symmetric Gaussian in the range space of
with total variance

(45)

where and are defined in (40) and (44), respectively.
Proof: Let , so that .

Since the vectors and have Gaussian distri-
butions, for a given vector must be a zero-mean white
Gaussian vector with total variance . Also,
since the operator is a function of the components
and vectors for is independent of the vec-
tors and , and therefore independent of . Since

is a projection from an -dimensional space to an
-dimensional space, , conditioned on themodulation vector
, must be spherically symmetric Gaussian in the range space
of with total variance satisfying (45).
Our next lemma requires the following version of the well-

known Hoeffding’s inequality.
Lemma 8 (Hoeffding’s Inequality): Suppose is the sum

where is a constant and the variables are
independent random variables that are almost surely bounded
in some interval . Then, for all

where .
Proof: See [45].

Lemma 9: Under the assumptions of Theorem 1, the limit

holds in probability.
Proof: Let . From the definition of
in (44), we can write

where for .
Now recall that in the problem formulation, each is

nonzero with probability , with conditional power . Also,
the activity variables are independent, and the con-
ditional powers are deterministic quantities. Therefore, the
variables are independent with

for . Combining this with the definition of in (22b),
we see that

Also, for each , we have the bound .
So for use in Hoeffding’s Inequality (Lemma 8), define
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where dependence of the power profile and on is implicit.
Now define

so that for all . Hoeffding’s Inequality
(Lemma 8) now shows that for all

Using the union bound,

The final step is due to the fact that the technical condition (23c)
in the theorem implies . This proves the lemma.

D. Missed Detection Probability

Consider any . Using (43) to rewrite (36) along with
some algebra shows

(46)

where

(47)

(48)

Define

We will now bound from below and from above.
We first start with . Conditional on and ,

Lemma 7 shows that each is a spherically-symmetrically
distributed Gaussian on the -dimensional range space of

. Since there are asymptotically elements in ,
Lemma 2 along with (23b) show that

(49)

where the limit is in probability. Similarly, is also
a spherically-symmetrically distributed Gaussian in the range
space of . Since is a projection from an -di-
mensional space to a -dimensional space and ,

we have that . Therefore, Lemma 2
along with (23b) show that

(50)

Taking the limit (in probability) of

(51)

where (a) follows from (47); (b) follows from (49) and (50); (c)
follows from (20); (d) follows from Lemma 9; and (e) follows
from (22a).
We next consider . Conditional on , the vectors

and are independent spherically-symmetric
Gaussians in the range space of . It follows from
Lemma 4 that each is a random variable.
Since there are asymptotically elements in , Lemma 5
along with (41) and (23b) show that

(52)

The above analysis shows that for any

(53)

where (a) follows from the definitions of and ; (b) fol-
lows from (51) and (52); (c) follows from (24); (d) follows from
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(14); (e) follows from (39); and (f) follows from (38). Therefore,
starting with (46),

where (a) follows from (46); (b) follows from (53); (c) follows
from the fact that (it is a beta-distributed random
variable); (d) follows from (51). This proves the first require-
ment, condition (37a).
E. False Alarm Probability

Now consider any index . This implies that
and therefore (43) shows that

Hence from (36),

(54)

where is defined in (48). From the discussion above, each
has the distribution. Since there are asymptot-
ically elements in , the conditions (41) and (23b)
along with Lemma 5 show that the limit

(55)

holds in probability. Therefore,

where (a) follows from (54); (b) follows from (39); and (c) fol-
lows from (55). This proves (37b) and thus completes the proof
of the theorem.
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