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Distributed Scalar Quantization for Computing:
High-Resolution Analysis and Extensions
Vinith Misra, Vivek K Goyal, Senior Member, IEEE, and Lav R. Varshney, Member, IEEE

Abstract—Communication of quantized information is fre-
quently followed by a computation. We consider situations of
distributed functional scalar quantization: distributed scalar
quantization of (possibly correlated) sources followed by cen-
tralized computation of a function. Under smoothness conditions
on the sources and function, companding scalar quantizer de-
signs are developed to minimize mean-squared error (MSE) of
the computed function as the quantizer resolution is allowed to
grow. Striking improvements over quantizers designed without
consideration of the function are possible and are larger in the
entropy-constrained setting than in the fixed-rate setting. As
extensions to the basic analysis, we characterize a large class of
functions for which regular quantization suffices, consider certain
functions for which asymptotic optimality is achieved without
arbitrarily fine quantization, and allow limited collaboration
between source encoders. In the entropy-constrained setting, a
single bit per sample communicated between encoders can have
an arbitrarily large effect on functional distortion. In contrast,
such communication has very little effect in the fixed-rate setting.

Index Terms—Asymptotic quantization theory, distributed
source coding, optimal point density function, rate-distortion
theory.

I. INTRODUCTION

C ONSIDER a collection of spatially separated sensors,
each measuring a scalar , . As shown in

Fig. 1, the measurements are encoded and communicated over
rate-limited links to a sink node without any interaction between
the sensors. The sink node computes an estimate of the function

from the received data. This may
be interpreted as a special case of the distributed source coding
problem in which distortion is measured as the mean-squared
error (MSE) of the function estimate. We refer to this special

Manuscript received November 21, 2008; revised November 17, 2010; ac-
cepted March 17, 2011. Date of current version July 29, 2011. The work in
this paper was supported by the National Science Foundation under Grant No.
0729069. The material in this paper was presented at the Information Theory
and its Applications Workshop, La Jolla, CA, January/February 2008, and at
the IEEE Data Compression Conference, Snowbird, UT, March 2008.

V. Misra was with the Massachusetts Institute of Technology, Cambridge,
MA 02139 USA. He is now with the Department of Electrical Engineering,
Stanford University, Stanford, CA 94305 USA (e-mail: vinith@stanford.edu).

V. K. Goyal is with the Department of Electrical Engineering and Computer
Science and the Research Laboratory of Electronics, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA (e-mail: vgoyal@mit.edu).

L. R. Varshney was with the Department of Electrical Engineering and
Computer Science, the Research Laboratory of Electronics, and the Laboratory
for Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA (e-mail: varshney@alum.mit.edu).

Communicated by E. Ordentlich, Associate Editor for Source Coding.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2011.2158882

Fig. 1. Distributed functional source coding.

case as distributed functional source coding to emphasize that
it is the function and not the source vector that
is being reconstructed. Similarly, we will refer to approximate
representation of under MSE distortion as ordinary source
coding. Restricting to scalar quantization, this distributed func-
tional scalar quantization (DFSQ) problem is the central sub-
ject of this paper. Compared to ordinary source coding, DFSQ
can provide performance improvements in addition to any that
are rooted in statistical dependence of the ; for clarity, most
examples presented here are for cases with independent .

A. Summary of Main Contributions

The Primary aim of this paper is to develop a high resolu-
tion approach to the analysis of DFSQ. To this end, we consider
for each source variable a sequence of companding quan-

tizers of increasing resolution . Under fairly loose

smoothness requirements on the function and the source
probability density function (pdf) , high-resolution anal-
ysis yields a choice for that outperforms
any other choice of companding quantizer sequences at suffi-
ciently high resolution. This analysis also gives an approxima-
tion for the resulting distortion-rate function that has relative
error which vanishes as .

There are situations in which designing quantizers to mini-
mize the MSE of the function estimate is no different than de-
signing them for low MSEs , .
Our analysis will show, for example, that there is little advantage
from accounting for when is linear. However, there are also
cases in which the improvement is very large for large values of

; examples in Section V feature distortion improvement over
ordinary source coding by a factor that is polynomial in in the
fixed-rate case and exponential in in the variable-rate case.

In addition to developing a basic theory in which there are
no interactions between quantizers and certain limitations on
simplify our analysis, we consider several extensions. First, we
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permit nonregular quantizers and demonstrate that if the func-
tion satisfies a loose equivalence-free condition then op-
timal quantizers are regular at sufficiently high rate. Next, we
explore a situation in which the high-resolution analysis breaks
down because there is an interval where the marginal density

is positive but the optimal companding quantizer sequence
for is not arbitrarily fine. This prompts the concept of a don’t
care interval, a mixture of low- and high-resolution, and con-
nections with [1]. Finally, we allow rate-constrained informa-
tion communicated from encoder 2 to encoder 1 to affect the
encoding of . We call this chatting and bound its effect on
the distortion . In the fixed-rate setting, the reduction in dis-
tortion can be no more than if were increased by the same
rate; in the variable-rate setting, the reduction in distortion can
be arbitrarily large.

For ordinary quantization problems, high-resolution analysis
is not interesting for a discrete source because the distortion
reaches zero at some finite resolution. Indeed, as in most works
using high-resolution analysis, we assume that the source
random variables are jointly continuous, i.e., that a joint proba-
bility density function for exists. Similarly, high-resolution
analysis of DFSQ may be uninteresting when is discrete
because zero functional distortion may be achieved at some
finite resolution. We do not explicitly require to be a
continuous random variable, but the continuity of that we
do require eliminates many situations in which zero functional
distortion may be achieved at some finite resolution.

B. Related Work

DFSQ has strong connections to several problems that have
been studied in prior work on quantization and distributed
source coding. We provide a brief summary of some of these
connections here. This paper is restricted to high-resolution
analysis of companding scalar quantizers for real-valued
sources. Contrarily, some related works deal with lossless
source coding or lossy vector quantization, often in the
(Shannon-theoretic) limit of large block length, at any rate.

Consider the situation depicted in Fig. 1 with . In gen-
eral, and are memoryless, stationary random processes
and is a function of the two. Several topics arise by consid-
ering special cases of this formulation.

When is the identity function, the goal is to reconstruct
the source variables themselves; often the correlation between

and is of primary interest. Slepian and Wolf solve this
problem in the infinite blocklength regime for lossless represen-
tation of sources drawn from a discrete alphabet [2]. The lossy
problem for sources from a discrete alphabet, restricted to scalar
quantization followed by block entropy coding, is considered in
[3].

In the setting with lossy representation of continuous sources,
one might consider applying Slepian–Wolf coding to the output
of local quantizers for each of the sources. This approach, with
vector quantization performed on blocks of each of the sources,
is optimal at all rates for jointly Gaussian sources and MSE
distortion [4]. This approach is also optimal in the asymptotic
regime of both large block length and high resolution [5]. The
general lossy multiterminal source coding problem for large

block length but finite rates, whether for discrete or continuous
alphabet sources, is open.

While this paper restricts to scalar quantization of the sources,
the use of Slepian–Wolf coding on the output of these quantizers
is considered (Section IV-D). Note that since the identity func-
tion has a vector output, our DFSQ formulation technically does
not permit this choice of , but that only minor modification of
the proofs are required to permit vector-valued functions.

If and is unconstrained, then can
be viewed as receiver side information available at the decoder.
The trade-off between and distortion (of alone) in the
large block length regime is given by the Wyner-Ziv rate-dis-
tortion function [6], [7]. Rebollo-Monedero et al. examined this
scenario at high resolution but any block length, and showed
that providing receiver side information to the encoder yields
no improvement in performance [8], cf. [9]. Under suitable con-
straints on the distortion metric, one may also view as re-
ceiver side information that determines the distortion measure
on , drawing a connection to [10] and to work on non-MSE
distortion functions [11].

For general and unconstrained , the lossy problem has
been studied by Yamamoto [12] and later by Feng et al. [13],
who provide an assortment of rate-loss bounds on performance
in the large block length setting. The lossless setting has been
explored by Orlitsky and Roche [14].

In the large block length regime for lossless coding, Han and
Kobayashi [15] studied the classification of functions according
to whether the rate region is the same as that for the identity
function (i.e., the same as the Slepian–Wolf rate region). Their
results are conclusive when and the source alphabets
are finite. This distributed version of the problem for general

, minimizing the sum-rate , was later investigated by
Doshi et al. [16].

Let . Then may be interpreted as a remote
source that is observed only through and , leading to a
remote source multiterminal source coding problem [17]. Al-
ternatively, , can be thought of as a source
triple and the problem in Fig. 1 as a two-help-one problem with

[18].
Most of the above examples involve block coding of and
, and results are obtained by allowing the block length to

grow arbitrarily large. While the variable-length DFSQ analysis
does utilize block entropy coding and Slepian–Wolf coding,
and must first pass through scalar quantizers. Even though
the samples of and are i.i.d., there would still be geo-
metric benefits to using vector quantization over blocks of sam-
ples; this is left to future work.

Quantization with a functional motive bears strong resem-
blance to the idea of “task-oriented quantization.” There has
been considerable work in this direction for detection, classi-
fication, and estimation, including high-rate analysis [19]–[21].
The use of a function at the decoder can be seen as inducing a
non-MSE distortion measure on the source data. In this sense, a
thread may be drawn to perceptual source coding [22], where a
non-MSE distortion reflects human sensitivity to audio or video.

Under appropriate constraints on the function , one may con-
sider it as having introduced a locally quadratic distortion mea-
sure on the source . In [23], Linder et al. consider quanti-
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zation via companding functions for locally quadratic distor-
tion measures. We say more about connections to this work in
Section IV-E.

Interesting related problems have also arisen without a re-
quirement of distributed coding. Rather than having a single
function , one may consider a set of functions and
define

where is a random variable taking values in index set . One
may consider this a special case of the Wyner-Ziv problem with

as decoder side information and a functional distortion mea-
sure. In such a setting, fixed- and variable-rate quantization to
minimize MSE was studied by Bucklew in the high-rate regime
[24]. Note that if the function were known deterministically to
the encoder, one could do no better than to simply compute the
function and encode the result.

C. Structure of Paper

We start in Section II by reviewing the high-resolution ap-
proximation techniques used in our analysis. In Section III we
obtain optimal fixed- and variable-rate functional quantizers for
the case; while not important in practice, this case il-
lustrates the role of monotonicity and smoothness of . Gener-
alizations to arbitrary , under similar restrictions on , are
given in Section IV. Some notable examples in Section V are
those that show dramatic scaling of distortion with respect to .
Some arguments in Sections II and III are meant only to build
intuition; the technical results of those sections are rigorously
justified as special cases of statements in Section IV.

The second half of the paper extends the basic theory of
Section IV. Section VI addresses the use of nonregular com-
panding quantizers and shows that a weak equivalence-free
condition guarantees regularity of the optimal companding
quantizer sequence. In the process we develop the notion
of high-resolution nonregular quantization. In Section VII,
we consider certain conditions that cause the high-resolution
approach to lead to an optimal quantizer for that does not
have high resolution over the entire support of . A modified
analysis and design procedure yields a “rate amplification”
in the variable-rate case. Limited communication between
encoders, or chatting, is studied in Section VIII, and concluding
comments appear in Section IX.

II. UNIVARIATE ORDINARY QUANTIZATION

To introduce both notation and techniques, the high-resolu-
tion analysis of scalar quantizers under MSE distortion is re-
viewed in this section.

A. Definitions

A -level quantizer on is a function
with a range consisting of points. The expected dis-

tortion of applied to random variable taking values in
is given by , where

is an appropriately chosen distortion func-
tion. Squared-error distortion is both a fre-
quent and analytically tractable choice. In fixed-rate (or code-

book-constrained) quantization, the rate is defined as the loga-
rithm of the number of levels, , where all logarithms
have base 2. In variable-rate (or entropy-constrained) quantiza-
tion, the rate is defined as the entropy of the quantizer output,

. An optimal fixed-rate or variable-rate quan-
tizer minimizes distortion subject to a constraint on the appli-
cable rate.

A value in the range of is called a quantizer point or re-
construction point, and the inverse image under of a quan-
tizer point is called a cell or partition region. If each cell is an
interval and the associated reconstruction point lies within the
interval, the quantizer is called regular. For a distortion func-
tion that increases with the difference of its arguments (e.g.,
squared-error distortion), the optimal fixed-rate quantizer is reg-
ular. If the distortion function is also convex in the difference of
its arguments and the source distribution is nonatomic, the op-
timal variable-rate quantizer is regular as well [25, Sect. 6.2],
[26].

A compander function is continuous,
increasing, differentiable almost everywhere, and invertible on

. Furthermore, and . The -level
uniform quantizer on is defined as

for ;
for .

For squared-error distortion and more generally, optimal quan-
tizers satisfy a stronger condition than regularity:

They can thus be realized in companding form:

A quantizer that has a companding form may equivalently be
defined by its point density function :

which always satisfies
by the fundamental theorem of calculus. For small and large
resolution , one may observe that approximates the
fraction of quantizer points in an interval of length around

. Because of this intuitive relationship to quantizer structure,
we will use the point density description instead of the com-
pander description whenever possible, with denoting a
quantizer of resolution and point density function . A com-
panding quantizer sequence refers to a sequence of
quantizers generated with the same point density and indexed
by resolution . Our interest will be in optimizing these quan-
tizer sequences.

The distortion-resolution function for a companding
quantizer sequence indexes the distortion of the sequence
by the resolution :

The fixed-rate resolution-rate function is
the largest resolution that satisfies a fixed-rate constraint. Simi-
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larly, the variable-rate resolution-rate function is the
largest resolution that satisfies a variable-rate constraint. Specif-
ically, is the largest resolution such that the entropy
of the quantized output is less than the rate con-
straint :

The quality of a quantizer sequence is measured
by its distortion-rate function. The fixed-rate distortion-rate
function measures the distortion of the highest-resolution
element of the sequence that satisfies the fixed-rate constraint:

. Similarly, the variable-rate dis-
tortion-rate function measures the distortion of the highest-res-
olution element of the sequence that satisfies the variable-rate
constraint: .

Under a fixed-rate constraint, we say that a companding
quantizer sequence is asymptotically better than another

if

Essentially, we compare the best rate- quantizers from each
sequence. If is asymptotically better than all other quan-
tizer sequences, we say and are asymptotically fixed-
rate optimal.

Analogously, an asymptotically variable-rate optimal quan-
tizer sequence is asymptotically better than any other

:

Note that while we only consider optimality among the set of
regular companding quantizer sequences, Linder [27] provided
conditions for a source probability distribution function under
which a companding quantizer sequence can be optimal in a
more general sense.

B. Problem Statement

A sequence of quantizers is to be applied to a source with
pdf supported on the interval . The distortion of the
quantizers is measured by squared error. For any fixed- or vari-
able-rate constraint, the optimal quantizer can be realized in
companding form, so we seek an asymptotically optimal com-
panding function.

For high-resolution techniques to be valid, both the com-
panding function and the source pdf must satisfy certain
smoothness requirements. We assume the source satisfies
conditions UO1 and UO2, and we optimize only among com-
panding functions that satisfy UO3 and UO4:

UO1. The source pdf is bounded and supported on the
interval .
UO2. The first derivative of the source pdf is defined and
bounded on all but a finite number of points in .
UO3. We optimize among companding functions that are
differentiable.
UO4. The integral is finite.

C. Solution via High-Resolution Analysis

The quantities of fundamental interest in the analysis of com-
panding quantizer sequences are the fixed- and variable-rate dis-
tortion-rate functions and , which describe
the distortion of fixed- and variable-rate companding quantizers
with rate and point density . High resolution analysis con-
sists of several approximations that allow one to derive asymp-
totically accurate versions of both and .
Specifically, under appropriate restrictions on the source pdf we
will show that

(1)

In Section II-C1, the approximate distortion-resolution func-
tion is derived. Then, in Section II-C2, the approxi-
mate resolution-rate function is obtained for both
fixed- and variable-rate constraints. Finally, in Section II-C3
these two quantities yield the approximate distortion-rate func-
tions and . The derivation we provide
is left informal and is not intended to prove that assumptions
UO1–UO4 yield (1); this follows either from Linder [27, The-
orem 6] or as a special case of Theorem 6 in Section III. For
further technical details and references to original sources, see
[28]. Finally, in Section II-C4, the approximate distortion-rate
functions are optimized through choice of point density (com-
panding function). The sequences of companding quantizers
yielded by this optimization are shown to be asymptotically
fixed- or variable-rate optimal.

1) The Distortion-Resolution Function: As previously
defined, is the distortion of the companding quan-
tizer with resolution . We now define an approximation

, known as the approximate distortion-resolution
function. For rigorous proof that

(2)

we refer to the main result of Linder [27], or to Theorem 9 with
.

Let be a random variable with pdf , let be a
-point companding quantizer, and suppose and satisfy as-

sumptions UO1–UO4. Let be the recon-
struction points, and let , , be the cor-
responding partition regions.

The distortion of the quantizer is

(3)

by the law of total expectation. The initial aim of high-resolution
theory is to express this distortion as an integral involving .
To that end, we make the following approximations about the
source and quantizer:

HR1. may be approximated as constant on each .
HR2. The size of the cell containing is approximated with
the help of the point density function:

(4)
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where means that the ratio of the two quantities goes to
1 with increasing resolution . This is the meaning of “ ”
for the remainder of the paper.

The first approximation follows from the smoothness of (as-
sumptions UO1 and UO2), while the second follows from the
smoothness of (assumption UO3).

Now we can approximate each nonboundary term in (3). By
HR1, should be approximately at the center of , and the
length of then makes the conditional expectation approxi-
mately . Invoking Assumption HR1 again, the
th term in the sum is . Finally

(5)

2) The Resolution-Rate Function: For a fixed-rate quantizer,
the resolution-rate relationship is given simply by

, and it is approximated with vanishing relative error by
. The variable-rate resolution-rate function is

more difficult to approximate.
As long as the quantization is fine wherever the

density is positive, we can approximate the output entropy of a
quantizer using the point density. Defining as
for , and letting denote the differential entropy of

(6)

where (a) follows from the definition of ; and (b) involves
approximating the source pdf as constant in each cell and (4).

A generalized version of this approximation is proven rigor-
ously in [23]. We state it here as a lemma.

Lemma 1: Suppose the source has a density over and
a finite differential entropy . Then if is finite

Proof: Follows as a special case of Proposition 2 in [23].

With the insight of this approximation, we define the fol-
lowing.

Definition 1: The variable-rate approximate resolution-rate
function is given by

Lemma 2: The error between the log of the variable-rate ap-
proximate resolution-rate function and the log
of the actual resolution-rate function goes to zero,
i.e.

Proof: The error of the approximation may be
written as

where goes to zero by Lemma 1. Furthermore, by definition
has been chosen to be the largest resolution such that

. We then have that

i.e., the second term in the rate approximation error is bounded
by the increment in entropy from an increment in resolution. By
Lemma 1 once again, the increment in entropy may be bounded
as

where goes to zero. Since diverges to infinity
with , this error goes to zero.

3) The Distortion-Rate Functions: The high-resolution dis-
tortion-rate function can be obtained by combining the distor-
tion-resolution and resolution-rate functions. For fixed-rate

(7a)

whereas for variable-rate

(7b)

Asymptotic validity in the sense of (1) follows in the fixed-rate
case from (2) and from the fact that
goes to 1. In the variable-rate case, we may bound the error from
use of in place of as a multiplying factor
of , which by Lemma 2 goes to 1.

4) Asymptotically Optimal Companding Quantizer Se-
quences: We seek asymptotically optimal companding quan-
tizer sequences for both fixed-rate and variable-rate constraints.
By the following lemma, this reduces to minimizing the
high-resolution distortion-rate functions of (7a) and (7b).

Lemma 3: Suppose and minimize and
, respectively. Then the quantizer sequences

and are asymptotically fixed- and variable-rate optimal.
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Proof: As the proof is virtually identical for fixed- and vari-
able-rate cases, we only provide it for the variable-rate case.

Let be any companding quantizer sequence. We are
interested in proving that

The supremum limit on the left may be factored (see the equa-
tion at the bottom of the page) because the supremum limit of a
product of positive sequences is upper-bounded by the product
of their individual supremum limits. We can now bound each of
these factors.

We have, by optimality of , that
for any and therefore that

Furthermore, by (1), we have that

This proves the lemma.

Now we optimize the distortion-rate expressions. Because
analogous optimizations appear in Sections III and IV, we ex-
plicitly derive both the optimizing point densities and the re-
sulting distortion-rate functions. Our approach follows [29].

In the fixed-rate case, the problem is to minimize (7a) for a
given value of . This minimization may be performed with the
help of Hölder’s inequality:

with equality only if . Thus, is minimized
by

(8)

The resulting minimal distortion is

(9)
where we have introduced a notation for the quasi-norm.

For the variable-rate optimization, we use Jensen’s inequality
rather than Hölder’s inequality:

where (a) follows from the convexity of . This lower
bound is achieved when is a constant. Thus is
asymptotically optimal, i.e., the quantizer should be uniform.

Note that both variable- and fixed-rate quantization have
, or , dependence of distortion on rate. This

is a common feature of ordinary quantizers with MSE distor-
tion, but we demonstrate in Section VII that certain functional
scenarios can cause distortion to fall even faster with the rate.

5) Optimal Bit Allocation: As a final preparatory digression,
we state the solution to a typical resource allocation problem
that arises several times in Section IV.

Lemma 4: Suppose for some positive
constants . Then the minimum of over the choice of

subject to the constraint is attained
with

resulting in

Proof: The result can be shown using the inequality for
arithmetic and geometric means. It appeared first in the context
of bit allocation in [30]; a full proof appears in [25, Sect. 8.3].

The lemma does not restrict the to be nonnegative or to
be integers. Such restrictions are discussed in [31].

III. UNIVARIATE FUNCTIONAL QUANTIZATION

Let be a random variable with pdf defined over
, and let be the function of interest. A se-
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quence of companding quantizers is applied to the source
, and an estimate is formed at the decoder, where
is the estimator function. Functional distortion is measured

by squared error . We seek an
asymptotically optimal estimator and companding function
that satisfy certain constraints.

Since we seek to answer this design question with high-reso-
lution techniques, the function and the source must be re-
stricted in a manner similar to conditions UO1–4 in Section II-B.
For the moment we err on the side of being too strict. Sections VI
and VII will significantly loosen these requirements.

UF1. is monotonic.
UF2. is Lipschitz continuous on , and the first- and
second- derivatives of are defined except possibly on a
set of zero Jordan measure.
UF3. The source pdf is continuous, bounded, and sup-
ported on the interval .
UF4. We optimize among companding functions that
are piecewise differentiable (and therefore a point density
description is appropriate).
UF5. The integral is defined and
finite.

Throughout this paper, we assume that
for all . This achieves the minimum

possible functional distortion .

A. Sufficiency of Regular Quantizers

The following lemma relates monotonicity to regularity of
optimal quantizers, thus justifying the optimization among com-
panding quantizers.

Lemma 5: If is monotonic, there exists an optimal func-
tional quantizer of that is regular.

Proof: The optimal functional quantizer in one dimension
is induced by the optimal ordinary quantizer for the variable

. That is, one may compute the function and
quantize it directly. Since the optimal ordinary quantizer for a
real-valued source is regular, the optimal quantizer for , de-
noted by and having points , is regular.

may be implemented by a quantizer for with cells
given by . We know that is an interval
since is regular. Also, since is monotonic, the inverse
map applied to any interval in the range of gives an in-
terval. Thus is an interval, which demonstrates
that there exists a regular quantizer in that is optimal.

B. The Distortion-Resolution Function

Assumption UF2 is introduced so that a piecewise linear ap-
proximation of suffices in estimating the functional distor-
tion of the quantizer. More specifically, recalling the notation

for the quantizer points and for the partition

may be interpreted as an approximation of that leads to the
high-resolution approximate distortion-resolution function.

The use of prompts us to give a name to the magnitude
of the derivative of . The distortion is then expressed using this
function.

Definition 2: The univariate functional sensitivity profile of
is defined as .

Theorem 6: Suppose a source is quantized by
a sequence of companding quantizers with point den-
sity and increasing resolution . Further suppose that the
source, quantizer, and function satisfy As-
sumptions UF1–5. Then the high-resolution distortion-resolu-
tion function is an asymptotically accurate approximation of the
true distortion-resolution function:

(10)

Proof: Follows as a special case of Theorem 9.

C. The Resolution-Rate Functions

The relationship between resolution and rate in the functional
context is unchanged from the ordinary context. For a fixed-rate
constraint, the resolution-rate function is given by

and is approximated at high-resolution by
. For a variable-rate constraint, the resolution-rate function is

given by the highest resolution such that the entropy of the quan-
tized output is less than the rate constraint. This is approximated
as before by . Both
of these approximations continue to be asymptotically accurate,
regardless of the distortion measure in use.

D. The Distortion-Rate Functions

By combining the distortion-rate function with the resolution-
rate function, the high-resolution distortion-rate function can be
obtained. For fixed-rate

(11a)

whereas for variable-rate

(11b)
The asymptotic validity of these two expressions, as in

(1), holds as it did in the ordinary case. For the fixed-rate
expression, this follows from Theorem 6 and the fact that

approaches 1. For the variable-rate expression, the
error from use of in the distortion-rate expression
instead of can be bounded as a multiplying factor of

, which by Lemma 2 goes to 1.

E. Asymptotically Optimal Companding Quantizer Sequences

We seek asymptotically optimal companding quantizer se-
quences for fixed- and variable-rate constraints under a func-
tional distortion measure. The lemma below demonstrates that it
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suffices to optimize the high-rate distortion-rate functions
and .

Lemma 7: Suppose and minimize and
, respectively. Then the quantizer sequences

and are asymptotically fixed- and variable-rate optimal.
Proof: The proof is virtually identical to that of Lemma 3.

The distortion expression (10) bears strong resemblance
to (5), but with the probability density replaced with
a weighted density . Unlike the density ,
the weighted density need not integrate to one.
Optimal point densities and the resulting distortions now follow
easily.

For fixed-rate coding, we are attempting to minimize the dis-
tortion (10) for a given value of . Following the arguments in
Section II-C4, the optimal point density is proportional to the
cube root of the weighted density:

(12)

The admissibility of this point density (assumption UF5) re-
quires positivity of everywhere is positive. This ex-
cludes the possibility that for an interval
such that because in this case the quanti-
zation is not fine for . We revisit this restriction in
Section VII. By evaluating (11a) with point density (12), the re-
sulting distortion is

(13)

For variable-rate coding, a derivation very similar to that of
ordinary variable-rate quantization may be performed. This
yields an optimal point density that is proportional to the
functional sensitivity profile

(14)

The restriction for to be positive wherever is positive takes
the same form as above (assumption UF5). The resulting distor-
tion is

(15)
The example below shows that even for univariate functions,

there are benefits from functional quantization. It also illustrates
the difference between the fixed- and variable-rate cases. While
quantizing instead of seems naïve, as we move to the
distributed multivariate case it will not be possible to compute
the function before quantization.

Example 1: Suppose is uniformly distributed over
and . For both fixed- and variable-rate, the optimal
ordinary quantizer is uniform, i.e., . With

, evaluating (11a) gives
.

Fig. 2. Quantizer points illustrating the point densities derived in Example 1 at
rate � � �.

The optimal point density for fixed-rate functional quantiza-
tion is and yields distortion

The optimal point density for variable-rate functional quanti-
zation is . With and

, the resulting distortion is

Quantizers designed with the three derived optimal point densi-
ties are illustrated in Fig. 2 for rate . The functionally op-
timized quantizers put more points at higher values of , where
the function varies more quickly. In addition, the variable-rate
quantizer is allowed more points while meeting the
rate constraint.

The interested reader can verify that and
exactly match the performance obtained by designing optimal
quantizers for .

In the second example, we use a nonuniform source pdf with
the same nonlinear function to illustrate various quantities.

Example 2: Suppose has the pdf over
and . We illustrate a codebook-constrained quantizer
with rate designed with the high-resolution analysis.

By evaluating (12), the asymptotically optimal point density
for fixed-rate functional quantization is . In-
tegrating the point density gives the corresponding compander
function . As shown in the top panel of Fig. 3,
the points are given by

and the cell boundaries are given by
. The middle panel

shows and an approximation that is constant on
each cell of the quantizer. The bottom panel shows and
the approximation , which is linear on each cell of the
quantizer and tangent to at each point.

Referring to Fig. 3 for examples, the high-resolution distor-
tion-resolution function can be thought of as a com-
putation of the MSE of when the source with piecewise
constant pdf is quantized with companding quantizer em-
ploying compander . In this case , the optimal function
estimate, is given by evaluating at the center of the cell
containing the source variable. Informally, as resolution in-
creases, , , and the centers of the cells ap-
proach the corresponding quantizer points. These intuitions ex-
tend to multivariate functions as well, but our formal justifica-
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Fig. 3. Illustrations for Example 2. Top panel: points and cell boundaries of the quantizer are determined by the companding function � . Middle panel: source
pdf � and its piecewise constant approximation. Bottom panel: function � and its piecewise linear approximation.

tions in Section IV use techniques that do not explicitly form
approximations or .

F. Discontinuous Functions

Our main result on univariate functional quantization, The-
orem 6, assumes the continuity of . One can effectively sidestep
this assumption, but doing so requires the quantizer to be de-
scribed more precisely than by a point density function alone.

For simplicity, assume is strictly positive on . Sup-
pose we were to allow to have a point of discontinuity

with

The difficulty that arises is that if is an interior point of a par-
tition cell , this cell produces a component of the functional
distortion proportional to . Since

, it is not negligible in comparison to the (best case)
functional distortion. Thus having a point of disconti-

nuity of in the interior of a partition cell disrupts the asymp-
totic distortion calculation (10).

The representation of quantizers by number of levels and
point density function cannot prevent a point of discontinuity
from falling in the interior of a partition cell. However, if we
augment the description of the quantizer with specified partition
boundaries, we can still obtain the distortion estimate (10).

Corollary 8: Suppose a companding quantizer sequence for
a source is described by point density function

. Further suppose that the source, quantizer, and function
satisfy Assumptions UF1–5 with the excep-

tion of discontinuities at points . Then a quan-
tizer sequence obtained by adding partition cell boundaries at

will have distortion

Proof: This follows from Theorem 6 applied separately to
each of the subintervals where is continuous.

In the sequel, we will not consider discontinuous functions.
The multivariate extension of Corollary 8 requires points of dis-
continuity to be in the Cartesian product of finite sets of discon-
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tinuity for each variable. Such separable sets of points of dis-
continuity are not general and can be handled rather intuitively.

IV. MULTIVARIATE FUNCTIONAL QUANTIZATION

With Section III as a warm-up, we may now establish the
central results of distributed functional quantization.

A. Definitions

An -dimensional distributed companding quantizer is
specified by companding functions
and an -vector of resolutions . When
applied to an -tuple , quantizes each compo-
nent of separately with compander and resolution

A distributed companding quantizer may equivalently be speci-
fied by point density functions , in which
case it is denoted by .

An estimation function estimates the value
of from the quantized representation . The dis-
tortion of a distributed quantizer paired with an estimator is
given by the distortion-resolution function

In this paper, use of the optimal estimator

will be indicated by omitting the subscript: .
The rate of a distributed quantizer takes on three different

meanings. A fixed-rate constraint limits the total resolution
, and we assume that the th quan-

tizer communicates to the decoder with rate .
A variable-rate (marginal entropy) constraint limits the sum
of the marginal entropies , and
we assume that the th quantizer utilizes entropy-coding
to the decoder to attain rate . A
Slepian–Wolf (joint entropy) constraint limits the joint en-
tropy , and we assume that the th quantizer
utilizes Slepian–Wolf coding to the decoder to attain rate

, where

is used to represent . Note that
the choice of this particular point on the Slepian–Wolf rate
boundary is arbitrary. The resulting performance is measured
by the distortion-rate functions

and

A quantizer point density is asymptotically better than an-
other under a fixed-rate, variable-rate, or Slepian–Wolf con-
straint if the ratio of the distortion-rate functions is at most one:

(16a)

(16b)

(16c)

If is asymptotically better than any other distributed quantizer
sequence, it is asymptotically optimal.

B. Problem Statement

Let be a random vector with joint pdf de-
fined over , and let be the func-
tion of interest. A distributed companding quantizer
is applied to . Equivalently, a companding quantizer

is applied to each component of the source .
The decoder then forms an estimate , where

is the optimal estimation
function. Distortion is measured by squared error in the func-
tion , which for the optimal
estimator reduces to .
Fig. 1 depicts this scenario, with in the
fixed-rate case, in the variable-rate case,

and in the Slepian–Wolf
case. We wish to choose to be asymptotically optimal.

As in Section III, we will impose restrictions on the function
and the joint probability distribution function of so that a

local affine approximation is effective.
MF1. is Lipschitz continuous, and the first and second
derivatives of are defined except possibly on a set of zero
Jordan measure.
MF2. The source pdf is continuous and supported on

, and is therefore bounded.
MF3. We optimize among companding functions that
are piecewise differentiable (and therefore a point density
description is appropriate).
MF4. Letting denote , the integrals

are defined and positive for all .
Constraints MF1–MF4 are more restrictive than they need to
be, but this helps in simplifying proofs. For instance, condition
MF4 guarantees that every source variable must be finely quan-
tized for distortion to approach zero. If this is violated for the th
source variable, it merely implies that a finite-resolution quan-
tization of suffices.

Note that there is no analogue to the monotonicity assump-
tion UF1 in the multivariate case. It can be shown that if is
monotonic in each of its variables the optimal fixed-rate dis-
tributed quantizer is regular. With the added restriction that the
source variables be independent, it can be shown that the optimal
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variable-rate distributed quantizer is also regular, via techniques
similar to those of [26]. Rather than constraining the function
and the source pdf in this manner, however, assumption MF3
explicitly restricts optimization to the space of regular com-
panding quantizer sequences, regardless of whether regularity is
optimal. In Section VI it is shown that nonregular companding
quantizer sequences are asymptotically suboptimal for a wide
variety of functions , giving this constraint some validity.

C. High-Resolution Analysis

1) The Distortion-Resolution Function: Our main technical
task in finding the optimal quantizers is to justify an approxima-
tion of the distortion in terms of point density functions. Since
the quantization is distributed, our concept of functional sen-
sitivity is now extended to each variable separately, with aver-
aging performed over the remaining variables.

Definition 3: The th functional sensitivity profile of is de-
fined as

(17)

Theorem 9: Suppose sources are quantized
by a distributed companding quantizer , and suppose that the
source, quantizers, and function satisfy assump-
tions MF1–4. Let de-
note the true distortion-resolution function, and let denote
the high-resolution approximate distortion-resolution function:

(18)

Then , where indicates that the ratio
of the two quantities approaches one as the smallest element of
the vector grows without bound.

Proof: See Appendix A.

2) Connecting Resolution to Rate: To convert the distor-
tion-resolution function to a distortion-rate function, we first
introduce a slight generalization of the high-resolution resolu-
tion-rate relationship.

Lemma 10: If the source has a density over with
finite differential entropy and if is finite

for all , then as each component of the resolution
vector diverges

Proof: Suppose is
an -dimensional companding function that is applied to the
source prior to quantization by a rectangular lattice quan-
tizer with side length on the th side, and further-
more suppose is then applied to estimate the source. The
output of this quantization process is iden-
tical to the scenario we consider, and since is one-to-one,
the joint discrete entropies of the outputs are identical as well:

.
Since the volume of each cell of the rectangular lattice is

equal to , and since the diameter of each cell falls to zero,
a special case of a result by Csiszár [32], [33] tells us that

Since the differential entropy of a continuously differen-
tiable function of is given by

, where denotes the Jacobian ma-
trix for the function , we may reduce the expression to

Recalling that , the proof is
complete.

Armed with this, the distortion-resolution function may be
modified to include considerations of rate.

Lemma 11: Define the fixed-rate, variable-rate, and
Slepian–Wolf distortion-resolution functions as shown in
the equations at the bottom of the page. Then

.
Proof: By Theorem 9, . This estab-

lishes the first of the asymptotic equalities.
For the second (variable-rate) asymptotic equality, we ob-

serve that by Lemma 1
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and therefore that . Again, by The-
orem 9, .

For the third (Slepian–Wolf) asymptotic equality, we start by
noting that by Lemma 10

and similarly

Dividing the first by the second yields that

and therefore that .

3) The Distortion-Rate Functions: We may now establish
high-resolution approximations to the distortion-rate function
under each of the three rate constraints.

Lemma 12: Define the fixed-rate, variable-rate, and
Slepian–Wolf high-resolution distortion-rate functions as

(19a)

(19b)

(19c)

Then .
Proof: See Appendix B.

4) Asymptotically Optimal Distributed Quantizers: The ex-
pressions (19) decouple the problem of designing point densi-
ties into separate problems of designing a single point den-
sity . Furthermore, each design problem (the minimization of
an expression in (19)) is of a familiar form. Thus we obtain the
following theorem.

Theorem 13: The asymptotic fixed-rate (codebook-con-
strained) distortion-rate expression (19a) is minimized by the
choice

(20)

yielding distortion

(21)

The asymptotic variable-rate (marginal entropy-constrained)
distortion-rate expression (19b) is minimized by the choice

(22)

yielding distortion

(23)
The asymptotic Slepian–Wolf (joint entropy-constrained)

distortion-rate expression (19c) is optimized by a choice of
point densities identical to the variable-rate case (22). The
resulting distortion is

(24)
The distributed quantizer point densities yielded by the above

optimizations are asymptotically optimal.
Proof: To prove (20) gives the optimal point density for

fixed-rate coding and (22) gives the optimal point density for
both variable-rate and Slepian–Wolf coding, it suffices to note
that minimizing the terms in (19a)–(c) separately gives prob-
lems identical to those in Section III.

The proof that the choice of that minimizes the high-reso-
lution expression is asymptotically optimal is virtually identical
to that of Lemma 3, so it is omitted.

D. Variation: Joint Entropy Constraint

Distortion expressions (21) and (23) are minimum distortions
subject to a sum-rate constraint. The individual rates given by

(fixed-rate) or by (6) (variable-rate) implicitly
specify no entropy coding or separate entropy coding of the ,
respectively.

If the are not independent—which is anticipated
whenever the are not independent—one may employ
Slepian–Wolf coding of the without violating the dis-
tributed coding requirement implicit in Fig. 1. This lowers
the total rate from to and
changes the marginal entropy constraint into a joint entropy
constraint. While the optimal compander choice (22) is un-
changed by this modification, the resulting distortion-rate
function reduces from (23) to (24).

Some remarks:
1) By comparing (24) to (23), we see that the inclusion of

Slepian–Wolf coding has reduced the sum rate to achieve
any given distortion by
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This is, of course, not unexpected as it represents the excess
information in the product of marginal probability distribu-
tions as compared to the joint probability distribution. This
has been termed the multiinformation [34] and equals the
mutual information when .

2) While the resolution allocation amongst the sources
has a unique minimizing choice, there is some flexibility
in rate allocations for the Slepian–Wolf encoder. Any
point on the Slepian–Wolf joint-entropy boundary may be
achieved with arbitrarily low probability of error.

3) The theorem seems to analytically separate correlations
among sources from functional considerations, exploiting
correlation even though the quantizers are regular. In re-
ality, the binning introduced by Slepian–Wolf coding trans-
forms the scalar quantizers of each source component into
nonregular vector quantizers so as to remove redundancy
between sources.

E. Relationship to Locally Quadratic Distortion Measures

Linder et al. consider the class of “locally quadratic” distor-
tion measures for variable-rate high-resolution quantization in
[23]. They define locally quadratic measures as those having the
following two properties:

1) Let be in . For sufficiently close to in the Eu-
clidean metric, the distortion between and is well ap-
proximated by , where is a
positive scaling factor. In other words, the distortion is a
space-varying nonisotropically scaled MSE.

2) The distortion between two points is zero if and only if the
points are identical.

For these distortion measures, the authors consider high-reso-
lution variable-rate regular quantization, generalize Bucklew’s
results [24] to nonfunctional distortion measures, and demon-
strate the use of multidimensional companding functions to im-
plement these quantizers. Of particular interest is the compar-
ison they perform between joint vector quantization and sep-
arable scalar quantization. When Slepian–Wolf coding is em-
ployed for the latter, the scenario is similar to the developments
of this section.

The source of this similarity is the implicit distortion measure
we work with: . When and are very
close to each other, Taylor approximation reduces this error to
a quadratic form

From this, one may obtain the same variable-rate Slepian–Wolf
performance as (24) through the analysis in [23].

However, there are important differences between locally
quadratic distortion measures and the functional distortion
measures we consider. First and foremost: a continuous scalar
function of variables, , is guaranteed to have an
uncountable number of pairs for which and
therefore that . This violates the second condition
of a locally quadratic distortion measure, and the repercussions
are felt most strikingly for nonmonotonic functions—those

for which regular quantizers are not necessarily optimal (see
Section VI).

The second condition is also violated by functions that are not
strictly monotonic in each variable; one finds that without strict-
ness, variable-rate analysis of the centralized encoding problem
is invalidated. Specifically, if the derivative vector

has nonzero probability of possessing a zero component, the
expected variable-rate distortion as derived by both Bucklew
and Linder et al. is , regardless of rate. This answer ar-
rives from the null derivative having violated the high-resolu-
tion approximation, and it implies that the distortion falls faster
than . In future work, generalizations of our results in
Section VII may be able to address such deficiencies.

V. EXAMPLES

Before moving on to extensions of the basic theory, we
present a few examples to show how optimal ordinary scalar
quantization and optimal DFSQ differ. We especially want to
highlight a few simple examples in which performance scaling
with respect to differs greatly between ordinary and function-
ally optimized quantization. To draw attention to this scaling,
we define the rate-per-source as the sum-rate divided by the
number of sources , and hold this quantity constant as the
number of sources increases.

Example 3 (Linear Function): Consider the function
where the are scalars. Then for any

, . Since does not depend on , it has no
influence on the optimal point density for either the fixed- or
variable-rate case; see (20) and (22).

Although gives no information on which values of
are more important than others (or rather shows that they are all
equally important) the set of shows the relative importance
of the components. This is reflected in the allocation of rate.

Example 4 (Maximum): Let the set of sources be uni-
formly distributed on and hence mutually independent.
Consider the function

Note that this function is differentiable outside the sets
, where . Each is an

-dimensional plane and therefore has Jordan measure zero,
and since a finite union of Jordan-measure-zero sets has Jordan
measure zero, condition MF1 is satisfied. Though very simple,
this function is more interesting than a linear function because
the derivative with respect to one variable depends sharply on
all the others. The function is symmetric in its arguments, so for
notational convenience consider only the design of the quantizer
for .

The partial derivative is 1 where the maximum is
and is 0 otherwise. Thus
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Fig. 4. Optimal point densities for Example 4 (maximum), � � �� �� � � � � ��. As � increases, the sensitivities � ��� become more unbalanced toward large �;
this is reflected in the point densities, more so in the variable-rate case than in the fixed-rate case. (a) fixed-rate. (b) Variable-rate.

where the final step uses the probability of all variables
being less than .

The optimal point density for fixed-rate quantization is found
by evaluating (20) to be

The resulting distortion when each quantizer has rate (equal
rate allocations) is found by evaluating (21) to be

The optimal point density for variable-rate quantization is
found by evaluating (22) to be

Substituting and into (23)
gives

The two computed distortions decrease sharply with . This
is in stark contrast to the results of ordinary quantization. When
functional considerations are ignored, one optimally uses a uni-
form quantizer, resulting in for any
component. Since the maximum is equal to one of the compo-
nents, the functional distortion is , un-
changing with .

The optimal point densities computed above are shown in
Fig. 4. The distortions are presented along with the results of
the following example in Fig. 5.

Example 5 (Median): Let , , and again let
the set of sources be uniformly distributed on . The
function

provides a similar but more complicated example. Note that, as
in Example 4, this function is differentiable outside the zero-
Jordan-measure sets , and it therefore satisfies condition
MF1.

Fig. 5. Distortions of optimal fixed- and variable-rate functional quantizers for
maximum and median functions from Examples 4 and 5. Shown is the depen-
dence on the number of variables �; by plotting � � �� � � we see the perfor-
mance relative to ordinary quantization.

The partial derivative is 1 where the median is and
is 0 otherwise. Thus

where the final step uses the binomial probability for the event
of exactly of the variables exceeding .

The optimal point density for fixed-rate quantization is found
by evaluating (20) to be

where is the beta function. The resulting distortion when each
quantizer has rate is found by evaluating (21) to be

To understand the trend for large , we can substitute in the
Stirling approximations and
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Fig. 6. Optimal point densities for Example 5 (median), � � �� �� � � � � ��. As � increases, the sensitivities � ��� become more unbalanced toward � � ���;
this is reflected in the point densities, more so in the variable-rate case than in the fixed-rate case. (a) fixed-rate. (b) Variable-rate.

to obtain

The optimal point density for variable-rate quantization is
found by evaluating (22) to be

To evaluate the resulting distortion, note that and
. Substituting into (23) gives

Using the approximation above for the binomial factor we ob-
tain

The optimal point densities computed above are shown in
Fig. 6. The distortions are presented along with the results of
Example 4 in Fig. 5.

Note the following similarities to Example 4: is constant
with respect to , decays polynomially with , and
decays exponentially with .

The large performance improvement over ordinary quantiza-
tion in these examples illustrates the potential benefits of func-
tional quantization. Additional examples and details appear in
[35].

VI. NONMONOTONIC FUNCTIONS AND NONREGULAR

QUANTIZATION

The high-resolution approach to quantizer optimization is in-
herently limited to the design of regular quantizers. In partic-
ular, we have specified compander functions to be monotonic in

Fig. 7. Two functions of two variables are shown. The left function is separable
and � is best quantized by a nonregular quantizer; for the right function (a
rotated version of the left), a regular quantizer is asymptotically optimal. This
is due to the right function being “equivalence-free.”

Section II-A. The analysis of Section IV therefore gave us quan-
tizer sequences within the class of regular quantizers.

In this section we explore less restrictive alternatives to the
monotonicity requirement. Specifically, we introduce the con-
cept of equivalence-free and show that if a function has this
property, then nonregular companding quantizer sequences are
asymptotically suboptimal.

Fig. 7 illustrates the concept. The function on the left is
aligned with the axes in the sense that depends only
on . Since the dependence on is not monotonic, there are
pairs of distinct points where
and thus the optimal quantizer at high enough resolution has

, giving a nonregular quantizer. When the
argument vector of the function is rotated as shown on
the right, the resulting function is still nonmonotonic. However,
there is no longer a clearly optimal nonregular quantization
scheme. Specifically, for some fixed there may be pairs

such that , but the equality
does not hold for all . As we shall see, this results in the
suboptimality of any compander that maps in the same way
as .

Our approach is to first create a model for high-resolution
nonregular quantization, then to use this model to expand the
class of functions for which regular quantization is optimal,
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Fig. 8. Example of a generalized compander � �� � for a function ��� � � � and the partition resulting from uniform quantization of � �� �. Notice that the
compander dictates both the relative sizes of cells and the binning of intervals of � values. (a) Function of interest. (b) Generalized compander.

and finally to construct asymptotically optimal nonregular quan-
tizers when regularity is suboptimal.

A. High-Resolution Nonregular Quantization

To accommodate nonregular quantization, we extend the
compander-based model of quantization. In Bennett’s devel-
opment of optimal companding, reviewed in Section II, it is
natural to require to be both monotonic and have a bounded
derivative everywhere; the derivative is proportional to
the quantizer point density that has been central in our
development thus far. Whether we look at or , the role is to
set the relative sizes of the quantization cells.

Since optimal functional quantizers are not necessarily reg-
ular, we adapt the conventional development to implement non-
regular quantizers.

Definition 4: A function is a generalized
compander if it is continuous, piecewise monotonic with a finite
number of pieces, and has bounded derivative over each piece.

As in regular companding, and are used along with a
uniform quantizer as . The restriction to a
finite number of pieces is a limitation on the types of nonregular
quantizers that can be captured with this model: those for which
every quantizer cell is a finite union of intervals. Barring certain
pathological situations, this restriction is reasonable.

Along with setting relative sizes of cells, provides for
nonregularity by allowing intervals to be binned together. To
illustrate this, consider a simple example. Suppose that the
pair is uniformly distributed over , variable
rate quantization is to be performed on both variables, and the
function of interest is defined by

An optimal functional quantizer—a quantizer for to min-
imize —should bin together
values that always yield the same . Furthermore, the

magnitude of the slope of this quantizer should follow (22). The
choice of

can be shown to be optimal. Both and the resulting quantizer
at resolution are illustrated in Fig. 8(b).

B. Equivalence-Free Functions

We now define a broad class of functions for which regular
quantization is optimal at sufficiently high resolutions. Consider
the design of the th quantizer in an -dimensional distributed
functional quantization setting.

We require a set of definitions:

Definition 5: For any in the support of , let

If then is a functional equivalence in the
th variable. If has no functional equivalences in any of its

variables, we say it is equivalence-free.
The theorem below demonstrates that for DFSQ with an

equivalence-free function, quantizer regularity is necessary
for asymptotic optimality. Specifically, strictly nonregular
quantization is shown to introduce a nonzero lower bound on
the distortion, independent of rate. This is formalized with
the aid of generalized companding. To simplify the proof
somewhat, we assume that the marginal probability density

is nonzero over . This assumption is without loss
of generality, since one may consider the subset of where

is nonzero.

Theorem 14: Let be equivalence-free with respect to the pdf
of on . Suppose quantization of each is performed
as where is a generalized compander and
is a uniform quantizer. If there is an index , set , and
function such that , and, for every
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, and , then the distortion has
a positive, resolution-independent lower bound.

Proof: See Appendix C.

The positive, rate-independent lower bound shows that the
quantizer is suboptimal if the rate is sufficiently high; even naive
uniform quantization will yield distortion with depen-
dence on rate and thus will eventually outperform the strictly
nonregular quantizer.

When a function has equivalences, the best asymptotic quan-
tization tactic is to design companders that bin all the equivalent
values in each variable but are otherwise monotonic. In effect,
this procedure losslessly converts the function into one that is
equivalence-free. One might consider this a real-valued-source
analogue of the functional compression procedure suggested by
Doshi et al. [16].

VII. DON’T-CARE INTERVALS AND RATE AMPLIFICATION

Ordinary high-resolution analysis produces point-density
functions that reflect the source pdf in the sense that optimal
quantizers never have zero point density where there is nonzero
probability density. In fact, having zero point density where
there is nonzero probability density invalidates high-resolution
analysis. The situation is more complicated in the functional
setting since the optimal point densities depend on both the
functional sensitivity profiles and the source probability distri-
bution. Having zero functional sensitivity where the probability
density is nonzero changes the optimal quantizers in the vari-
able-rate case.

The following example illustrates the potential for failure of
the analysis of Section IV-C4. Note that the intricacies arise even
with a univariate function.

Example 6: Let have the uniform probability distribu-
tion over , and suppose the function of interest is

. It is clear that the optimal quantizer (for both
fixed- and variable-rate) has uniform point density on .
With the functional sensitivity profile given by

if ;
otherwise,

evaluating (12) and (14) is consistent with the intuitive result.
The distortion for the fixed-rate case obtained from (13) is

. This is sensible since for half of the source
values there is zero distortion by having a single
codeword at 1/2, whereas for the other half of the source values

, codewords quantize a random variable
uniformly distributed over . However, assumption MF4
is not satisfied by this quantizer point density, so it is unclear
whether this expression is an asymptotically valid approxima-
tion for the distortion-rate function.

The variable-rate case is also problematic. Since
, evaluating (15) yields . Both

the distortion-resolution and resolution-rate analyses fail
because the quantization is not fine over the full support of .
However, if an alternative quantization structure is used, the
distortion-rate performance can be accurately determined. In
this alternative structure, the first representation bit specifies
the event or its complement. Since additional

bits are useful only when occurs, one can spend
bits in those cases to have an average expenditure of bits.
The resulting distortion is

Note that the exponent in the distortion-rate relationship is larger
than it was in the fixed-rate case.

In the example, there is an interval of source
values that need not be distinguished for function evaluation. Let
us define a term for such intervals before discussing the example
further.

Definition 6: An interval is called a don’t-care
interval for the th variable when the th functional sensitivity

is identically zero on , but the probability is
positive.

In univariate FSQ, at sufficiently high rates, each don’t-care
interval corresponding to a distinct value of the function should
be allotted one codeword. This follows from reasoning similar
to that given in Section VI-B and is illustrated by Example 6.
In the fixed-rate case, the don’t-care intervals simply occupy
a few of the codewords and have a limited effect. In the
variable-rate case, however, the don’t-care intervals produce a
subset of source values that can be allotted very little rate. This
gives more rate to be allotted outside the don’t-care intervals
and behavior we refer to as rate amplification.

We derive the high-resolution distortion-resolution func-
tion for this quantizer structure in Section VII-A, and in
Section VII-B the distortion-rate function is obtained.

A. The Distortion-Resolution Function

In the following analysis we will assume that the th
variable has a finite number of don’t-care intervals

. We also assume

(25)

where denotes the union of don’t-care inter-
vals for the th variable. Without this, there is no improve-
ment beyond levels in representing , so the high-resolu-
tion approach is wholly inappropriate. We will denote the event

by .
At sufficiently high rates, it is intuitive to allot a codeword

of to each don’t-care interval . The remaining
codewords are assigned optimally to according to the
basic theory developed in Section IV. We refer to this quantizer
structure as a don’t-care quantizer.

Theorem 15: Suppose sources are quantized
by a sequence of distributed don’t-care quantizers . Further
suppose that the sources, quantizers, and function

satisfy assumptions MF1–MF3, and assumption MF4 is re-
placed by the following: The integrals

are finite for every . Finally, assume each source
has don’t-care intervals satisfying (25). Then the high-
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Fig. 9. Suppose the encoder for � could send a bit to the encoder for � .
Is there any benefit? How does it compare to sending an additional bit to the
decoder?

resolution distortion-resolution function is asymptotically accu-
rate to the true distortion-resolution function

(26)

Proof: Follows from applying Theorem 9 to the region
.

B. The Distortion-Rate Functions

In the fixed-rate case, the high-resolution resolution-rate
function is unchanged: . Asymptotic validity
is easily observed: .
Applying this to the distortion-resolution expression (26),
we obtain the unoptimized high-resolution fixed-rate distor-
tion-rate function

The optimal point densities for fixed-rate quantization are given
by (20) outside of the don’t-care intervals. These point densi-
ties yield an optimized high-resolution fixed-rate distortion-rate
function

(27)

The variable-rate case is a bit more involved. To formalize
the analysis, we define discrete random variables to represent
the events of source variables lying in don’t-care intervals.

Definition 7: The random variable

if ;
otherwise

is called the th don’t-care variable. The previously defined
event can be expressed as .

At sufficiently high rate, the th encoder communicates
and in addition, only when , a fine quantization of .
The resulting performance is summarized by the following the-
orem.

Theorem 16: Under the conditions of Theorem 15, the op-
timal point densities for variable-rate quantization follow (22)
and yield

(28)

where is the amplification of .
Proof: See Appendix D.

Some remarks:
1) The quantity may be identified as the cost of

communicating the indicator information to the decoder.
The remaining rate is amplified by factor

because additional description of is useful only
when . The amplification shows that the standard

-per-source distortion decay may be exceeded
in the presence of don’t-care regions.

2) At moderate rates, it may not be optimal to communicate
losslessly, and it may be beneficial to include values

with small but positive in don’t-care intervals. Study of
this topic is left for specific applications.

3) The rate amplification we have seen in the variable-rate
case and the relative lack of importance of don’t-care in-
tervals in the fixed-rate case have a close analogy in ordi-
nary lossy source coding. Suppose a source is a mixed
random variable with an -valued discrete component
and a continuous component. High-resolution quantization
of will allocate one level to each discrete value and the
remaining levels to the continuous component. The dis-
crete component changes the constant factor in
fixed-rate operational distortion-rate performance while it
changes the decay rate in the variable-rate case. See [36]
for related Shannon-theoretic (rather than high-resolution
quantization) results.

VIII. CHATTING ENCODERS

Our final variation on the basic theory of distributed func-
tional scalar quantization is to allow limited communication be-
tween the encoders. How much can the distortion be reduced via
this communication? Echoing the results of the previous sec-
tion, we will find dramatically different answers in the fixed-
and variable-rate cases.

For notational convenience, we will fix the communication
to be from encoder 2 to encoder 1 though the number of source
variables remains general. In accordance with the block dia-
gram of Fig. 9, the information must be condition-
ally independent of given . We consider only the case
where is a single bit; this suffices to illustrate the key ideas.

In this section, we express the high-resolution distortion as
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where various expressions for have been found for different
scenarios, including for fixed-rate (21) and variable-rate (23)
quantization. At issue is how is affected by ; the other
are not affected.

A. Fixed-Rate Quantization

In general, the availability of a single bit causes one to
choose between two potentially different quantizers and

in the quantization of . We express the optimal quan-
tizers and the resulting distortion contribution by way of the
following concept.

Definition 8: The th conditional functional sensitivity pro-
file of given is defined as

Now several results follow by analogy with Theorem 13. For
the case of , the optimal point density is given by

resulting in conditional distortion contribution

Combining the two possibilities for via total expectation gives

(29)

From this expression we reach an important conclusion on the
effect of the chatting bit .

Theorem 17: For fixed-rate quantization, communication of
one bit of information from decoder 2 to decoder 1 will asymp-
totically reduce by at most a factor of 4.

Proof: From Theorem 13, the distortion contribution anal-
ogous to (29) without the chatting bit is . Thus

the fact we wish to prove is a statement about quasi-norms
of weighted densities and their conditional forms.

We proceed as follows:

where (a) uses a quasi-triangle inequality that may be estab-
lished via well-known inequalities (see Appendix E for a state-
ment and proof); (b) is an application of Bayes’s Rule; and (c)
is based on an evaluation of the (unconditional) functional sen-
sitivity via the total expectation theorem with conditioning on

. This proves the theorem.

Note that while the bit leads a reduction of by at most
a factor of 4 and therefore a reduction of by at most a
factor of , an identical reduction in distortion is achieved
simply by increasing the rate to the centralized decoder by
one bit. Generalizing to any number of chatting bits, we obtain
the following corollary.

Corollary 18: For fixed-rate functional quantization, com-
munication of some number of bits from encoder to encoder

performs at best as well as increasing the communication to
the centralized decoder by the same number of bits.

In general, the idea that bits from encoder 2 to encoder 1
are as good as bits from encoder 1 to the decoder is optimistic.
In particular, if , then is bounded away
from zero for any amount of communication from encoder 2
to encoder 1.

B. Variable-Rate Quantization

In a variable-rate scenario, the rate could be made to depend
on the chatting bit , introducing a bit allocation problem be-
tween the cases of and . Even without such de-
pendence, we can demonstrate that the bit can reduce the first
variable’s contribution to the functional distortion by an arbi-
trary factor.

Analogous to (29)

(30)

by comparison to (23). In contrast with the quasi-norms in
(29), this linear combination can be arbitrarily smaller than

We demonstrate this through a simple example.

Example 7: Let sources and be uniformly distributed
on . We specify the function of interest through its par-
tial derivatives. Let for all and let

be piecewise constant as shown in Fig. 10, where
is a positive constant.

While is not continuous everywhere and condition
MF1 is therefore not strictly satisfied, the points of discontinuity
fall along the line . As observed following the proof of
Corollary 8, this variety of discontinuity can be easily and intu-
itively merged with high-resolution analysis: one simply places
an extra quantizer cell boundary at for every quan-
tizer in the sequence being considered. This increases the reso-
lution by 1, but has negligible impact on the rate in the limit

.
We can easily derive the first functional sensitivity profile of
to be
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Fig. 10. Illustration for Example 7. Shown is the unit square ��� �� with quad-
rants marked with the value of � �� � � �, the derivative of � with respect to
� .

This also allows us to find the distortion contribution factor
without chatting to be

In this example, one bit about is enough to allow the en-
coder for to perfectly tailor its point density to match the
sensitivity of at . Of course, the chatting bit should
simply be

if ;
otherwise.

The first conditional functional sensitivity profiles for are then

for
or ;
otherwise.

Now for either value of , we have
and . Thus, evaluating (30)

gives

This is smaller than the with no chatting by about a factor
of . The performance gap can be made arbitrarily large by in-
creasing —all from just one bit of information communicated
between encoders per sample.

C. Comparison With Ordinary Source Coding

The results of this section are strikingly different from those
of ordinary source coding. Consider first the discrete scenario
in which we with to recreate perfectly at the decoder. Can
communication between encoders enable a reduction in the rate
of communication to the decoder? According to Slepian and
Wolf, the answer is a resounding “no.” Even in the case of un-
limited collaboration via fused encoders, the minimum sum rate
to the decoder remains unchanged.

How about in lossy source coding? If quantization is variable-
rate and Slepian–Wolf coding is employed on the quantization
indices, no gains are possible from encoder interactions. This is
a consequence of the work of Rebollo-Monedero et al. [8] on
high-resolution Wyner-Ziv coding, where it is shown that there
is no gain from supplying the source encoder with the decoder
side information.

IX. SUMMARY

We have developed asymptotically optimal companding de-
signs of functional quantizers using high-resolution quantiza-
tion theory. This has shown that accounting for a function while
quantizing a source can lead to arbitrarily large improvements
in distortion. In certain scenarios (Section V), this improvement

can grow exponentially with the number of sources. In others
(Section VII), it can grow exponentially with rate.

Additionally, our study of functional quantization has high-
lighted some striking distinctions between fixed- and variable-
rate cases:

1) For certain simple functions of order statistics, distortion
relative to ordinary quantization falls polynomially with
the number of sources in the fixed-rate case, whereas in
the variable-rate case it falls exponentially.

2) The distortion associated with fixed-rate quantizers will
always exhibit rate dependence at high rates,
whereas the decay of distortion can be faster in some vari-
able-rate cases.

3) Information sent from encoder-to-encoder can lead to ar-
bitrarily large improvements in distortion for variable-rate,
whereas for fixed-rate this information can be no more
useful than an equal amount of information sent to the de-
coder.

The second and third of these have extensions or analogues
beyond functional quantization. Rate amplification is a feature
of quantizing sources with mixed probability distributions, and
the results on chatting encoders continue to hold when the func-
tion is the identity operation.

APPENDIX A
PROOF OF THEOREM 9

Lemma 19: Let be a real-valued random variable
distributed over a bounded interval , and let be an
absolutely continuous, real-valued function on with bounded
derivative . If is defined for almost every ,
then , where .
If is furthermore defined for every , then

, where .
Proof: Draw and i.i.d. according to the distribution

of , and define the following functions:

To prove the first part of the lemma, assume the derivative of
is defined for almost every . By the absolute continuity

of

Therefore, the magnitude can be bounded above
as follows:

This then implies that and, since
, that

(31)

Since each and is a sum of i.i.d. variables,
and . Inserting these into

(31) and dividing by 2 proves the first part of the lemma.
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Now to prove the second part of the lemma, assume further
that is defined for every . By the mean value the-
orem, there exists between and such that

As before, this implies that

(32)

Since and , sub-
stituting into (32) and dividing by 2 proves the second part of
the lemma.

We now define a function that will appear in the
proof of the theorem after we establish properties of the function
in a lemma.

Definition 9: Suppose is uniformly distributed over a
rectangular region . The th reduced-dimension function (with
parameter vector ) is defined as

Lemma 20: Let be uniformly distributed over a rect-
angular region , and let be Lipschitz
continuous over . If the first and second derivatives of are
defined and bounded almost everywhere in , then:

1) is Lipschitz continuous in .
2) Where defined, .

If the first and second derivatives of are furthermore de-
fined and bounded everywhere in , then:

3) For all , the derivative

is defined for all .
4) The magnitude of derivative may be lower bounded:

Proof: First, assume that the first and second derivatives of
are defined and bounded almost everywhere in .
1) Since is an average of functions with a common

Lipschitz constant, it too is Lipschitz with this constant.
2) Where is defined, we have

Now assume that furthermore the first and second deriva-
tives of are defined and bounded everywhere in .

3) Since is defined for all , the average deriva-
tive is defined for all .

4) We now obtain a lower bound on the derivative. As before,
we note that . Because

the derivatives of are defined everywhere in , and be-
cause the expectation under a uniform distribution is just an
average, the mean value theorem guarantees the existence

of an such that .
Finally, since , we have . To sum-
marize:

We now bound the variance of the function within a rectan-
gular cell, assuming the source is uniformly distributed. This
will later be adapted to the case where the source is nonuni-
formly distributed.

Lemma 21: Let be a Lipschitz continuous function
defined over a rectangular cell with edge
lengths , let and be lower and upper bounds to

, when it exists, and let denote the average value of
within :

If the first and second derivatives of are defined almost every-
where in , then

If the first and second derivatives of are furthermore defined
everywhere in , then

Proof: Since is uniformly distributed over

This may be expanded by repeated application of the law of
total variance: See (33) at the bottom of the next page, where (a)
follows from the law of total variance with conditioning on ;
(b) uses the law of total variance applied to the variance within
the expectation in the first term, with conditioning performed
on ; (c) simplies the first term using iterated expectation; and
(d) applies the law of total variance repeatedly to the variance
within the first expectation, as in step (b), with conditioning on

during the th iteration.
Upper Bound: Let be the set of points

where the derivative is undefined. By Lemma 20,

is Lipschitz continuous and therefore is of

measure zero. As such, for every value of considered

within the expectation, is now the
variance of a function satisfying the upper bound conditions for



MISRA et al.: DISTRIBUTED SCALAR QUANTIZATION FOR COMPUTING 5319

Lemma 19. Applying this upper bound within the expectation,
we have

which proves the first half of the lemma.
Lower Bound: We return to (33), now assuming that the

first and second derivatives of are defined everywhere in the
cell . By Lemma 20, for any choice of the
function satisfies the conditions for the lower bound
in Lemma 19. Inserting this lower bound into the expectation,
we obtain

which proves the second half of the lemma.

Armed with this lemma, we may now determine upper and
lower bounds to the distortion of within a single quantizer
cell.

Lemma 22: Suppose that over a rectangular cell
the function is Lipschitz continuous

and the probability density is continuous, and suppose
has bounded first and second derivatives almost-every-

where in . Let denote the subset of where the first

and second derivatives of are defined. Then, defining
and

for some , .
Proof: We first prove the lower bound. If is nonempty,

for every so the lower bound is trivially true. Now
suppose is empty and therefore that the first and second
derivatives of are defined everywhere in . In this case,
(see the first equation at the bottom of the next page), where
(a) follows from the first mean value theorem for integration;
(b) introduces the random vector that is uniform over ; (c)
is true because the variance is the smallest possible MSE from
a constant estimate; and (d) follows from the lower bound in
Lemma 21.

For the upper bound, we proceed in a similar manner:

where in (a) we reintroduce the notation

for the average value of with respect to a uniform distribu-
tion, and the inequality is valid because the expected value of a
random variable minimizes the MSE of the estimate; (b) is due

(33)
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to the first mean value theorem for integration; and (c) follows
from the upper bound in Lemma 21.

At this point, we provide a proof of the theorem.
Proof: The distortion is given by

Let denote the set of points where both the
first and second derivatives of are defined. By assump-
tion MF1, has both Jordan and Lebesgue measure
zero. Defining and

, we may obtain lower and upper bounds

to by applying Lemma 22 to each term within the summa-
tion: (see the second equation at the bottom of the page). Let

be the number of cells in the quantizer for . For any
cell of this quantizer, . By continuity
of and the first mean value theorem, this implies that the
length of interval is given by for some .

Therefore, in the above expression may be replaced by
for some : See the third equation at

the bottom of the page. Furthermore, we may recognize that
, simplifying the

bounds further

Consider the th term in the lower-bound summation

One may observe that this expression approaches a Riemann
integral:
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1) By Lemma 22, .
2) By definition, is the minimal value of

within the cell .
3) By its definition, is also an element in .
4) The product is the size of the cell, and because

the largest quantizer cell size goes to zero as every element
of the vector grows, the mesh of this summation also
goes to zero.

Since is Jordan-measureable, is Riemann
integrable. By assumption MF2, the expression

is Riemann integrable.
Since the product of two integrable functions is integrable, the
Riemann integral of is
defined and

where (a) follows from the Jordan measure of being
zero; and (b) is the result of integrating over and .
This relation then yields

Since this holds for any , it holds for the sum
over as well

Similarly,

Since is bounded between these two quantities, this proves
the theorem.

APPENDIX B
PROOF OF LEMMA 12

We start by defining the distortion-resolution optimiza-
tion function as the resolution vector that min-
imizes , the distortion subject to a fixed
rate constraint. We define and anal-
ogously, and we write when we can combine all
three cases to be handled identically. We similarly define
the high-resolution distortion-resolution optimizing func-
tion as the resolution vector that minimizes

under a rate constraint. Note that
by definition .

Lemma 23: Under assumptions MF1–4, every component
of the vectors and diverges with
increasing .

Proof: For a function, source, and quantizer point density
that together satisfy conditions MF1–4, we demonstrate that
every component of both and
diverges. Suppose first that the th element of
is bounded by a finite value for any . Then the quan-
tizer is a sufficient description of for achieving
arbitrarily small distortion for the function . More
precisely, there exists a reconstruction function such that

with probability one.
This then implies that is zero with probability one,
but this violates condition MF4 and thus every component of

diverges with .
If the th component of has a finite upper bound ,

then the high-resolution distortion is lower bounded by

By condition MF4, this lower bound is strictly positive, and
therefore this choice of is suboptimal.

Using this lemma, we are able to connect the distortion-rate
function to the high-resolution distortion-resolution function.

Lemma 24: The distortion-rate function is asymptotically
equal to the optimized high-resolution distortion-resolution
function: .

Proof: Since by Lemma 23 both and
diverge in every component, Theorem 9 tells us that

and

Furthermore, by definition we have that

and

Therefore
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Before proceeding with the proof, we define three countably
infinite subsets of that describe the rate vectors achievable
by a certain choice of point densities : See (34)–(36) at the
bottom of the page.

Using these definitions and Lemma 24, we may rephrase the
distortion-rate functions somewhat: see (37)–(39) at the bottom
of the page.

Additionally, we introduce the concept of increasing granu-
larity.

Definition 10: A countably infinite set is said to
be increasingly granular if for any there exists a van-
ishing nonnegative function such that
for any whose components are each greater than ,
there exists a point within of each component of

. The function is called the
granularity function of the set .

Lemma 25: The sets , , and are increasingly
granular.

Proof: Let , and let every component of be
greater than . We prove the granularity of each of the three sets
in turn.

: Define the point so that .
This point is clearly a member of . Furthermore, we
can easily bound the distance between and :

Defining , we have shown that
is increasingly granular.
: Define so that where is

chosen according to

We may then bound the distance between and :

where the first term goes to zero by Lemma 10 and the
second by Lemma 23.

: Define so that
where is chosen according to

The distance between and may then be bounded in
the following manner:

To show that the first term goes to zero, we invoke Lemma
10 to state that

(34)

(35)

(36)

(37)

(38)

(39)
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Subtracting from this the similar expression (also obtained
from Lemma 10)

yields that

We now establish an important property of increasingly gran-
ular sets.

Lemma 26: Suppose

where for all and is an increasingly granular subset
of . Then .

Proof: Since , we have that

Let , let

indicate the smallest element of , and let be the granu-
larity function of . Since there must be an element of within
distance of each of the coordinates of , we may create
a bound in the opposite direction

Because for , diverges with
and vanishes. Combining the two bounds, we have that

, which proves the lemma.

Applying Lemmas 25 and 26 to (37)–(39), we may widen the
optimization to occur over any positive real-valued rate vector

: see (40)–(42) at the bottom of the page.
The proof is completed by a straightforward application of

Lemma 4 to optimize the rate allocation in each of these ex-
pressions.

APPENDIX C
PROOF OF THEOREM 14

The theorem asserts that when the function is equivalence-
free, failing to be one-to-one on the support of cre-
ates a component of the distortion that cannot be eliminated by
quantizing more finely. The proof here lower-bounds the distor-
tion by focusing on the contribution from just the th variable.
The bound is especially crude because it is based on observing

and without quantization and it uses only the
contribution from .

We wish to first bound the functional distortion in terms of a
contribution from the th variable:

(43)

where is the event . Step (a) will hold with
equality when the optimal estimate (the conditional expectation
of given the quantized values) is used; (b) holds because,

(40)

(41)

(42)
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for each , is a function of ; (c) holds because is
a function of ; (d) is an application of the law of total
expectation; (e) holds because the discarded term is nonnega-
tive; and (f) converts the expectation over into integral form.
It remains to use the hypotheses of the theorem to bound the
conditional variance in the final expression.

Since the function is equivalence free, for every set
of cardinality greater than one

Since for any , the set is of
cardinality greater than one for any in . Therefore
for any

and (43) is therefore greater than zero and independent of rate.

APPENDIX D
PROOF OF THEOREM 16

It is already shown in Theorem 15 that the distortion-resolu-
tion expression (26) holds when a codeword is allocated to each
of the don’t-care intervals. After an appropriate rate analysis, we
will optimize the point densities outside of the don’t-care inter-
vals.

The key technical problem is that the rate analysis (6) does
not hold when there are intervals where is positive but is
not. This is easily remedied by only applying (6) conditioned on

(44)

Note that this approximation can be shown to be asymptotically
valid in the same manner as in Lemmas 1 and 2. Now condi-
tioned on , the dependence of distortion and rate on is
precisely in the standard form of Section IV. Thus, following
Theorem 13, the optimal point density outside of is given by
(22).

Since the previous results now give the distortion in terms of
the conditional entropies , what remains is to relate
these to the rates

where (a) uses that is a deterministic function of ; and (b)
uses that specifying any determines uniquely. In
anticipation of evaluating (26), we define the high-rate resolu-
tion-rate function as before

Asymptotic accuracy of this approximation follows from (44).
As before, one may insert this into the high-resolution distor-
tion-resolution expression (26) and bound the effect of the ap-
proximation as a multiplying factor that goes to one. Now eval-
uating (26) with optimal point densities (22) gives (28).

APPENDIX E
A QUASI-TRIANGLE INEQUALITY

Lemma 27: The “norm” is a quasi-norm with constant
4. Equivalently, letting and be functions with finite

quasi-norms

Proof: First, we prove for positive
real numbers and

Now by this relation, with and

where the second inequality uses, pointwise over , the con-
cavity of the cube-root function on .
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