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Abstract—Quantization is an important but often ignored
consideration in discussions about compressed sensing. This
paper studies the design of quantizers for random measurements
of sparse signals that are optimal with respect to mean-squared
error of the lasso reconstruction. We utilize recent results in
high-resolution functional scalar quantization and homotopy
continuation to approximate the optimal quantizer. Experimental
results compare this quantizer to other practical designs and
show a noticeable improvement in the operational distortion-rate
performance.

I. INTRODUCTION

In practical systems where information is stored or trans-
mitted, data must be discretized using a quantization scheme.
The design of the optimal quantizer for a stochastic source
has been well studied and is surveyed in [1]. Here, optimal
means the quantizer minimizes the error relative to some
distortion metric (e.g. mean-squared error). In this paper, we
explore optimal quantization for an emerging non-adaptive
compression paradigm called compressed sensing (CS) [2],
[3]. Several authors have studied the asymptotic reconstruction
performance of quantized random measurements assuming a
mean-squared error (MSE) distortion metric [4], [5], [6]. Other
previous work presented modifications to existing reconstruc-
tion algorithms to mitigate distortion resulting from standard
fixed-rate quantizers [7], [6], [8] or modified quantization that
can be viewed as the binning of quantizer output indexes [9].

Our contribution is to reduce distortion from quantization
through design of the quantizer itself. The key observation
is that the random measurements are used as arguments in
a nonlinear reconstruction function. Thus, minimizing the
MSE of the measurements is not equivalent to minimizing
the MSE of the reconstruction. We use the theory for high-
resolution distributed functional scalar quantization (DFSQ)
recently developed in [10] to design quantizers for random
measurements that minimize distortion effects in the recon-
struction. To obtain concrete results, we choose a particular
reconstruction function (lasso [11]) and distributions for the
source data and sensing matrix. However, the process of
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obtaining improvements through DFSQ holds more generally,
and we address the conditions that must be satisfied for sensing
and reconstruction. To concentrate on the central ideas, we
choose signal and sensing models that obviate discussion of
quantizer overload. Also, rather than develop results for fixed
and variable rate in parallel, we present only fixed rate.

The paper begins with background on DFSQ and CS,
including lasso and the homotopy continuation method for
lasso, in Section II. Section III presents the sensing model
we adopt, and Section IV describes quantizer design under
this model. Numerical verification is presented in Section V,
and Section VI gives closing observations.

II. BACKGROUND

We will now present some previous work related to func-
tional scalar quantization and compressed sensing.

In our notation, a random vector is always lowercase and
in bold. A subscript then indicates an element of the vector.
Also, an unbolded vector y corresponds to a realization of the
random vector y. We introduce this to clarify that derivatives
that we compute are of deterministic functions.

A. Distributed functional scalar quantization

In standard fixed-rate scalar quantization [1], one is asked
to design a quantizer Q that operates separably over its com-
ponents and minimizes MSE between a probabilistic source
vector y ∈ R

M and its quantized representation ŷ = Q(y).
The minimum distortion is found using the optimization

min
Q

E
[‖y − Q(y)‖2

]
,

subject to the constraint that the maximum number of quanti-
zation levels for each yi is less than 2Ri . In the high-resolution
case when L is large, we define the (normalized) quantizer
point density function to be λi(t), such that λi(t)δ is the
approximate fraction of quantizer reproduction points for y i

in an interval centered at t with width δ. The optimal point
density for a given source distribution fyi

(·) is

λi(t) =
f

1/3
yi (t)∫

f
1/3
yi (t′)dt′

. (1)

In DFSQ [10], the goal is to create a quantizer that mini-
mizes distortion for some scalar function g(y) of the source
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vector y rather than the vector itself. Hence, the optimization
is now

min
Q

E
[|g(y) − g(Q(y))|2]

such that the maximum number of quantization levels repre-
senting each yi is less than 2Ri . To apply the following model,
we need g(·) and fy(·) to satisfy certain conditions:

C1. g(y) is (piecewise) smooth and monotonic for each y i.
C2. The partial derivative gi(y) = ∂g(y)/∂yi is (piecewise)

defined and bounded for each i.
C3. The joint pdf of the source variables fy(y) is smooth

and supported in a compact subset of R
M .

For valid g(·) and fy(·) pairs, we define a set of functions

γi(t) =
(
E

[
|gi(y)|2 | yi = t

])1/2

. (2)

We call γi(t) the sensitivity of g(y) with respect to the source
variable yi. The optimal point density is then

λi(t) = C
(
γ2

i (t)fyi
(t)

)1/3
, (3)

for some normalization constant C. This leads to a total
operational distortion-rate

D({Ri}) ≈
M∑
i=1

2−2RiE

[
γ2

i (yi)
12λ2

i (yi)

]
. (4)

The sensitivity γi(t) serves to reshape the quantizer, giving
better resolution to regions of yi that have more impact on
g(y), thereby reducing MSE. The theory of DFSQ can be
extended to a vector of functions, where x̂ j = g(j)(y) for 1 ≤
j ≤ N . Since the cost function is additive in its components,
we can show that the overall sensitivity for each component
yi is

γi(t) =
1
N

N∑
j=1

γ
(j)
i (t), (5)

where γ
(j)
i (t) is the sensitivity of the function g (j)(y) with

respect to yi.
Similar results for variable-rate quantizers are also presented

in [10]. However, we will only consider the fixed-rate case in
this paper.

B. Compressed Sensing

CS refers to estimation of a signal at a resolution higher
than the number of data samples, taking advantage of sparsity
or compressibility of the signal and randomization in the
measurement process [2], [3], [12]. We will consider the
following formulation. The input signal x ∈ R

N is K-sparse
in some orthonormal basis Ψ, meaning the transformed signal
u = Ψ−1x ∈ R

N contains only K nonzero elements. Consider
a length-M measurement vector y = Φx, where Φ ∈ R

M×N

with K < M < N is a realization of Φ. The major innovation
in CS (for the case of sparse u considered here) is that recovery
of x from y via some computationally-tractable reconstruction
method can be guaranteed asymptotically almost surely.

Fig. 1: A compressed sensing model with quantization of noisy
measurements y. The vector ynl denotes the noiseless random
measurements.

Many reconstruction methods have been proposed including
a linear program called basis pursuit [13] and greedy algo-
rithms like orthogonal matching pursuit (OMP) [14], [15]. In
this paper, we focus on a convex optimization called lasso
[11], which takes the form

x̂ = arg min
x

(‖y − Φx‖2
2 + μ‖Ψ−1x‖1

)
. (6)

As one sample result, lasso leads to perfect sparsity pattern
recovery with high probability if M ∼ 2K log(N − K) +
K under certain conditions on Φ, μ, and the scaling of the
smallest entry of u [16]. Unlike in [5], our concern in this
paper is not how the scaling of M affects performance, but
rather how the accuracy of the lasso computation (6) is affected
by quantization of y.

A method for understanding the set of solutions to (6) is the
homotopy continuation (HC) method [17]. HC considers the
regularization parameter μ at an extreme point (e.g., very large
μ so the reconstruction is all zero) and slowly varies μ so that
all sparsities and the resulting reconstructions are obtained. It
is shown that there are N values of μ where the lasso solution
changes sparsity, or equivalently N + 1 intervals over which
the sparsity does not change. For μ in the interior of one
of these intervals, the reconstruction is determined uniquely
by the solution of a linear system of equations involving a
submatrix of Φ. In particular, for a specific choice μ∗ and
observed random measurements y,

2ΦT
Jµ∗ΦJµ∗ x̂ + μ∗v = 2ΦT

Jµ∗ y, (7)

where v = sgn(x̂) and ΦJµ∗ is the submatrix of Φ with
columns corresponding to the nonzero elements Jμ∗ ⊂
{1, 2, . . . , N} of x̂.

III. PROBLEM MODEL

Figure 1 presents a CS model with quantization. Assume
without loss of generality that Ψ = IN and hence the random
signal x = u is K-sparse. Also assume a random matrix Φ
is used to take measurements, and additive Gaussian noise
perturbs the resulting signal, meaning the continuous-valued
measurement vector is y = Φx + η. The sampler wants to
transmit the measurements with total rate R and encodes y
into a transmittable bitstream by using encoder Q. Next, a
decoder Q̂ produces a quantized signal ŷ from by. Finally,
a reconstruction algorithm G outputs an estimate x̂. The
function G is a black box that may represent lasso, OMP or
another CS reconstruction algorithm.

We now present a probabilistic model for the input source
and sensing matrix. It is chosen to guarantee finite support on



both the input and measurement vectors, and prevent overload
errors for quantizers with small R.

Assume the K-sparse vector x has random sparsity J
chosen uniformly from all possibilities, and each nonzero
component xi is distributed iid U(−1, 1). This corresponds
to the least-informative prior for bounded and sparse random
vectors. Also assume the additive noise vector η is distributed
iid Gaussian with zero mean and variance σ2. Finally, let
Φ correspond to random projections such that each column
φj ∈ R

M has unit energy (‖φj‖2 = 1). The columns of Φ
thus form a set of N random vectors chosen uniformly on the
unit (M−1)-hypersphere. The cumulative distribution function
(cdf) of each matrix element Φij is described in the following
lemma:

Lemma 1. Assume φj ∈ R
M is a random vector uniformly

chosen on a unit (M − 1)-hypersphere for M ≥ 2. Then the
cdf of each element Φij is

FΦij
(v, M) =

⎧⎨
⎩

1 − T (v, M), 0 ≤ v ≤ 1;
T (−v, M), −1 ≤ v < 0;
0, otherwise,

where

T (v, M) =
Γ(M

2 )√
π Γ(M−1

2 )

∫ arccos(v)

0

(sin θ)M−2
dθ

and Γ(·) is the Gamma function.

We find the pdf of Φij by differentiating the cdf or use a
tractable computational approximation. Since y = Φx,

yi =
N∑

j=1

Φijxj =
∑
j∈J

Φijxj︸ ︷︷ ︸
zij

.

The distribution of each zij is found using derived distribu-
tions. The resulting pdfs can be shown to be iid fz(z), where
z is a scalar random variable that is identical in distribution to
each zij. The distribution of yi is then the K − 1 convolution
cascade of fz(z) with itself. Thus, fy(y) is smooth and
supported for {|yi| ≤ K}, satisfying condition C3 for DFSQ.
Figure 2 illustrates the distribution of yi for a particular choice
of parameters.

The reconstruction algorithm G is a function of the mea-
surement vector y and sampling matrix Φ. We will show
that if G(y,Φ) is lasso with a proper relaxation variable
μ, then conditions C1 and C2 are met. Using HC, we see
G(y,Φ) is a piecewise smooth function that is also piecewise
monotonic with every yi for a fixed μ. Moreover, for every μ
the reconstruction is an affine function of the measurements
through (7), so the partial derivative with respect to any
element yi is piecewise defined and smooth (constant in this
case). Conditions C1 and C2 are therefore satisfied.

IV. OPTIMAL QUANTIZER DESIGN

We now pose the optimal fixed-rate quantizer design as
a DFSQ problem. For a given noise variance σ 2, choose
an appropriate μ∗ to form the best reconstruction x̃ from
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Fig. 2: Distribution fyi
(t) for (K, M, N) = (5, 71, 100). The

support of yi is the range [−K, K], where K is the sparsity
of the input signal. However, the probability is only non-
negligible for small yi.

the unquantized random measurements y. We produce M
quantizers to transmit the elements of y such that the quan-
tized measurements ŷ will minimize the distortion between
x̃ = G(y,Φ) and x̂ = G(ŷ,Φ) for a total rate R. Note G can
be visualized as a set of N scalar functions x̂j = G(j)(ŷ,Φ)
that are identical in distribution due to the randomness in Φ.
Since the sparse input signal is assumed to have uniformly
distributed sparsity and Φ distributes energy equally to all
measurements yi in expectation, we argue by symmetry that
each measurement is allotted the same number of bits and that
every measurement’s quantizer is the same. Moreover, again
by symmetry in Φ, the functions representing the reconstruc-
tion are identical in expectation and we argue using (5) that
the overall sensitivity γcs(·) is the same as the sensitivity of
any G(j)(ŷ,Φ). Computing (3) yields the point density λcs(·).

This is when the homotopy continuation method becomes
useful. For a given realization of Φ and η, we can use HC
to determine how many elements in the reconstruction are
nonzero for μ∗, denoted Jμ∗ . Equation (7) is then used to
find ∂G(j)(y, Φ)/∂yi, which is needed to compute γcs(·). The
resulting differentials can be defined as

G
(j)
i (y, Φ) =

∂G(j)(y, Φ)
∂yi

(8)

=
[(

ΦT
Jµ∗ ΦJµ∗

)−1

ΦT
Jµ∗

]
ji

. (9)

We now present the sensitivity through the following theo-
rem.

Theorem 1. Let the noise variance be σ2 and choose an
appropriate μ∗. Define y\i to be all the elements of a vector y
except yi. The sensitivity of each element yi, which is denoted
γ

(j)
i (t), can be written as

(
EΦ

[
fyi|Φ(t|Φ)

fyi
(t)

Ey\i

[∣∣∣G(j)
i (y,Φ)

∣∣∣2 | yi = t,Φ
]]) 1

2

.



For any Φ and its corresponding J found through
HC, fyi|Φ(t|Φ) is the convolution cascade of
{zij ∼ U(−Φij , Φij)} for j ∈ J . By symmetry arguments,
γcs(t) = γ

(j)
i (t) for any i and j.

Proof: By symmetry arguments, we can consider any j
for the partial derivative in the sensitivity equation without
loss of generality. Noting (8), we define

Γ(j)
i (t, Φ) = Ey\i

[∣∣∣G(j)
i (y,Φ)

∣∣∣2 | yi = t

]
,

and then modify (2) in the following steps:

γ
(j)
i (t) =

(
E

[∣∣∣G(j)
i (y,Φ)

∣∣∣2 | yi = t

]) 1
2

=
(
EΦ

[
Γ(j)

i (t,Φ) | yi = t
]) 1

2

=
(∫

fΦ|yi
(Φ|t)Γ(j)

i (t, Φ)dΦ
) 1

2

=
(

EΦ

[
fyi|Φ(t|Φ)

fyi
(t)

Γ(j)
i (t,Φ)

]) 1
2

.

Plugging in (9) will give us the final form of the theorem.
Given a realization Φ, yi =

∑
j∈J Φijxj =

∑
j∈J zij,

meaning zij ∼ U(−Φij , Φij). The conditional probability
fyi|Φ(y|Φ) can be found by taking the K−1 convolution chain
of the set of density functions representing the K nonzero
zij’s.

The expectation in Theorem 1 is difficult to calculate but
can be approached through L Monte Carlo trials on Φ, η, and
x. For each trial, we can compute the partial derivative using
(9). We denote the Monte Carlo approximation to that function
to be γ

(L)
cs (·). Its form is

γ(L)
cs (t) =

1
L

L∑
�=1

(
fyi|Φ(t|Φ�)

fyi
(t)

[
G

(j)
i (y�, Φ�)

]2
) 1

2

, (10)

with i and j arbitrarily chosen. By the weak law of large
numbers, the empirical mean of L realizations of the random
parameters should approach the true expectation for L large.

We now substitute (10) into (3) to find the Monte Carlo ap-
proximation to the optimal quantizer for compressed sensing.
It becomes

λ(L)
cs (t) = C

(
γ(L)
cs (t)fyi

(t)
)1/3

, (11)

for some normalization constant C. Again by the weak law of
large numbers, λ

(L)
cs (t)

p−→ λcs(t) for L large.

V. EXPERIMENTAL RESULTS

We compare the CS-optimized quantizer, called the “sensi-
tive” quantizer, to a uniform quantizer and “ordinary” quan-
tizer which is optimized for the distribution of y through (1).
This means the ordinary quantizer would be best if we want
to minimize distortion between y and ŷ, and hence has a flat
sensitivity curve over the support of y. The sensitive quantizer
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Fig. 3: Estimated sensitivity γcs(t) via Monte Carlo trials and
importance sampling for (K, M, N) = (5, 71, 100).
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Fig. 4: Estimated point density functions λcs(t), λord(t), and
λuni(t) for (K, M, N) = (5, 71, 100).

λcs(t) is found using (11) and the uniform quantizer λuni(t)
is constant and normalized to integrate to 1.

If we restrict ourselves to fixed-rate scalar quantizers, the
high-resolution approximation for quantization distortion (4)
can be used. The distortion for an arbitrary quantizer λ q(t)
with rate R is

D(R) ≈ 2−2RE

[
γ2
cs(yi)

12λ2
q(yi)

]

= 2−2R

∫
γ2
cs(t)fyi

(t)
12λ2

q(t)
dt. (12)

Using 1000 Monte Carlo trials, we estimate γcs(t) in
Figure 3. Note that the estimate is found through importance
sampling since there is low probability of getting samples
for large yi in Monte Carlo simulations. The sensitivity is
symmetric and has peaks away from zero because of the
structure in (9). The resulting point density functions for the
three quantizers are illustrated in Figure 4.

Experimental results are performed on a Matlab testbench.
Practical quantizers are designed by extracting codewords
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Fig. 5: Results for distortion-rate for the three quantizers with
σ2 = 0.3 and μ = .01. We see the sensitive quantizer has the
least distortion.

from the cdf of the normalized point densities. In the approx-
imation, the ith codeword is the point t such that∫ t

−∞
λcs(t′)dt′ =

i − 1/2
2Ri

,

where Ri is the rate for each measurement. The partition points
are then chosen to be the midpoints between codewords.

We compare the sensitive quantizer to uniform and ordinary
quantizers using the parameters σ2 = 0.3 and μ = 0.1. Results
are shown in Figure 5.

We find the sensitive quantizer performs best in experimen-
tal trials for this combination of σ2 and μ at sufficiently high
rates. This makes sense because λcs(t) is a high-resolution
approximation and should not necessarily perform well at very
low rates. Numerical comparisons between experimental data
and the estimated quantization distortion in (12) are similar.

VI. FINAL THOUGHTS AND FUTURE WORK

We present a high-resolution approximation to an optimal
quantizer for the storage or transmission of random measure-
ments in a compressed sensing system. We integrate ideas
from functional scalar quantization and the homotopy contin-
uation view of lasso to find a sensitivity function γcs(·) that
determines the optimal point density function λcs(·) of such
a quantizer. Experimental results show that the operational
distortion-rate is best when using this so called “sensitive”
quantizer.

Our main finding is that proper quantization in compressed
sensing is not simply a function of the distribution of random
measurements (using either high-resolution approximation or
practical algorithms like Lloyd-Max). Rather, quantization
adds a non-constant effect, called functional sensitivity, on

the distortion between the lasso reconstructions of random
measurements and its quantized version. In the case of lasso
reconstruction, the homotopy continuation method allows us
to find the sensitivity analytically or through Monte Carlo
simulations.

A significant amount of work can still be done in this area.
Parallel developments could be made for variable-rate quan-
tizers. Also, this theory can be extended to other probabilistic
signal and sensing models, and CS reconstruction methods that
satisfy DFSQ conditions.
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