

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c© 2010 Society for Industrial and Applied Mathematics
Vol. 31, No. 6, pp. 4533–4579

SIMULTANEOUSLY SPARSE SOLUTIONS TO LINEAR INVERSE
PROBLEMS WITH MULTIPLE SYSTEM MATRICES AND A

SINGLE OBSERVATION VECTOR∗

ADAM C. ZELINSKI† , VIVEK K. GOYAL† , AND ELFAR ADALSTEINSSON†

Abstract. A problem that arises in slice-selective magnetic resonance imaging (MRI) radio-
frequency (RF) excitation pulse design is abstracted as a novel linear inverse problem with a si-
multaneous sparsity constraint. Multiple unknown signal vectors are to be determined, where each
passes through a different system matrix and the results are added to yield a single observation
vector. Given the matrices and lone observation, the objective is to find a simultaneously sparse set
of unknown vectors that approximately solves the system. We refer to this as the multiple-system
single-output (MSSO) simultaneous sparse approximation problem. This manuscript contrasts the
MSSO problem with other simultaneous sparsity problems and conducts an initial exploration of
algorithms with which to solve it. Greedy algorithms and techniques based on convex relaxation are
derived and compared empirically. Experiments involve sparsity pattern recovery in noiseless and
noisy settings and MRI RF pulse design.

Key words. iterative shrinkage, iteratively reweighted least squares, magnetic resonance imag-
ing excitation pulse design, matching pursuit, multiple measurement vectors, second-order cone pro-
gramming, simultaneous sparse approximation, sparse approximation

AMS subject classifications. 15A29, 34A55, 94A12, 46N10

DOI. 10.1137/080730822

1. Introduction. In this work we propose a linear inverse problem that requires
a simultaneously sparse set of vectors as the solution, i.e., a set of vectors where only
a small number of each vector’s entries are nonzero, and where the vectors’ sparsity
patterns (the locations of the nonzero entries) are equal. Sparsity constraints and
regularizations that promote sparsity have a long history that we will not attempt to
recount; the reader is referred to [15] both for a theoretical result on the numerical
robustness of using sparsity constraints and for references to early empirical work.
While perhaps an old topic, the estimation of sparse or approximately sparse signals
is also an extremely active area of research because of the emergence of compressed
sensing [5, 17] and a multitude of applications for wavelet-domain sparsity of images;
a review of recent developments with an emphasis on algorithms and performance
guarantees is provided by [4].

We call the problem of interest multiple-system single-output (MSSO) simultane-
ous sparse approximation:

(1.1) d ≈
P∑

p=1

Fpgp,

∗Received by the editors July 21, 2008; accepted for publication (in revised form) October 26,
2009; published electronically January 20, 2010. This material is based upon work supported by
the National Institutes of Health under grants 1P41RR14075, 1R01EB000790, 1R01EB006847, and
1R01EB007942; the National Science Foundation under CAREER Grant 0643836; United States
Department of Defense National Defense Science and Engineering Graduate Fellowship F49620-02-
C-0041; the MIND Institute; the A. A. Martinos Center for Biomedical Imaging; Siemens Medical
Solutions; and R. J. Shillman’s Career Development Award.

http://www.siam.org/journals/sisc/31-6/73082.html
†Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts

Avenue, Cambridge, MA 02139 (zelinski@mit.edu, vgoyal@mit.edu, elfar@mit.edu).

4553

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4554 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

where d ∈ CM , Fp ∈ CM×N for each p, and each gp ∈ CN has a common sparsity
pattern or, more precisely, we measure the sparsity level by the number of positions
at which any of the gp’s is nonzero. This name highlights the distinction from the
more common setting of single-system multiple-output (SSMO) simultaneous sparse
approximation:

(1.2) dp ≈ Fgp for p = 1, . . . , P ,

where dp ∈ CM for each p, F ∈ CM×N , and the gp’s again have a common sparsity
pattern. In either case, associated inverse problems are to minimize the simultaneous
sparsity level of the gp’s for a given goodness of fit, to optimize the goodness of fit for a
given sparsity level, or to minimize an objective function that combines goodness of fit
and sparsity level. There is a large and growing literature on SSMO problems, often
using the phrase multiple measurement vectors, but MSSO problems have received
much less attention.

MSSO sparse approximation came to our attention as an abstraction of the place-
ment of spokes in short-duration, slice-selective magnetic resonance imaging (MRI)
radio-frequency (RF) excitation pulse design [70, 73, 74], and we know of no earlier
application. To keep the bulk of the developments applicable generally, we defer a
description of the MRI application until the end of the paper. The paper is focused on
formalizing the MSSO sparse approximation problem and introducing and contrast-
ing several algorithms for finding approximate solutions. We have implemented and
tested three greedy algorithms—generalizing matching pursuit (MP) [44], orthogonal
matching pursuit (OMP) [6, 51, 14, 46, 9, 10], and least squares matching pursuit
(LSMP) [10]—and also algorithms for solving a convex relaxation of the MSSO prob-
lem, applying second-order cone programming (SOCP) [3, 43], and generalizing itera-
tively reweighted least squares (IRLS) [36, 31] and iterative shrinkage [20, 12, 21, 22].
We evaluate the performance of the algorithms across three experiments: the first and
second involve sparsity pattern recovery in noiseless and noisy scenarios, respectively,
while the third deals with MRI RF excitation pulse design.

It is worth noting explicitly that this paper does not provide conditions for op-
timality (i.e., equivalence with a generally intractable sparsity-constrained problem)
of greedy algorithms or convex relaxations, nor does it analyze random ensembles of
problems. The sparse approximation literature is increasingly dominated by these
types of analyses, and we cite these results in the appropriate sections.

The structure of this paper is as follows: in section 2, we provide background
information about ordinary sparse approximation and SSMO sparse approximation.
In section 3, we formulate the MSSO problem. Algorithms for solving the problem
are then posed in section 4. The coverage of some algorithms is very brief; additional
details on these can be found in [70, 72]. Details and results of the numerical ex-
periments appear in section 5. Section 6 highlights the strengths and weaknesses of
the algorithms and presents ideas for future work. Concluding remarks are given in
section 7.

2. Background.

2.1. Single-system single-output (SSSO) sparse approximation. Follow-
ing our naming rubric, ordinary sparse approximation can be called SSSO sparse
approximation for emphasis. The problem can be written as

(2.1) argmin
g ∈ C

N

{
1
2‖d− Fg‖22 + λ‖g‖0

}
, given d ∈ C

M and F ∈ C
M×N ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4555

where ‖ · ‖0 denotes the number of nonzero elements of a vector and λ ∈ (0,∞)
is a control parameter. Varying λ determines the relative importance of fitting the
data d and keeping the solution g sparse. In many applications, λ is set to yield a
specified sparsity or specified residual; it may also have other significance. For general
F, solving (2.1) is NP-hard [13, 46]. Thus, great effort has gone into the design and
analysis of approximate algorithms.

A greedy approach is to iteratively choose one position for a nonzero entry of
g at a time or, equivalently, to pick one column of F at a time. To select the col-
umn of F to maximize the magnitude of the inner product with the current residual
is called matching pursuit (MP) [44], and several more sophisticated variants have
been proposed [6, 51, 14, 46, 9, 10]. Most important among these is orthogonal MP
(OMP), which avoids deleterious interactions from iteration to iteration by working
in the orthogonal complement of all previously selected columns. Notable analyses of
OMP are those in [19, 61], where sufficient conditions are given for OMP to recover
the sparsity pattern of the solution of (2.1). Analyses of OMP for random problem
ensembles are given in [26, 64].

A second approach is to replace ‖ · ‖0 in (2.1) with its relaxation [7, 57]:

(2.2) argmin
g ∈ C

N

{
1
2‖d− Fg‖22 + λ‖g‖1

}
, given d ∈ CM and F ∈ CM×N .

This is a convex optimization and thus may be solved efficiently [3]. Certain conditions
on F guarantee proximity of the solutions to (2.1) and (2.2) [18, 19, 63]. Analyses of
random problem ensembles are given in [53, 67].

Note that (2.2) applies an �1 norm to g, but an �p norm (where p < 1) may
also be used to promote sparsity [31, 7]; this leads to a nonconvex problem and will
not considered in this paper. A problem of the form (2.2) may arise as a proxy for
(2.1) or as the inherent problem of interest. For example, in a Bayesian estimation
setting, (2.2) yields the maximum a posteriori probability estimate of g from d when
the observation model involves F and Gaussian noise and the prior on g is Laplacian.
Similar statements can be made about the relaxations in the following sections.

2.2. Single-system multiple-output (SSMO) simultaneous sparse ap-
proximation. In SSMO, each of P observation vectors dp is approximated by a
product Fgp, where the gp’s are simultaneously sparse. This yields the problem

(2.3) argmin
G ∈ C

N×P

{
1
2‖D− FG‖2F + λ‖G‖0,2

}
, given D ∈ C

M×P and F ∈ C
M×N ,

where D = [d1, . . . ,dP], G = [g1, . . . ,gP], ‖ · ‖F is the Frobenius norm, and ‖ · ‖0,2 is
the number of rows with nonzero �2 norm (i.e., the simultaneous sparsity level).1 This
reduces to (2.1) when P = 1 and is thus also generally computationally intractable.

Greedy algorithms for approximating (2.3) were first developed in [11, 65]. Deter-
ministic conditions for sparsity pattern recovery and average case analyses for greedy
algorithms are both presented in [32].

Analogous to the relaxation (2.2) is

(2.4) argmin
G ∈ C

N×P

{
1
2‖D− FG‖2F + λ‖G‖S

}
, given D ∈ CM×P and F ∈ CM×N ,

1The choice of �2 here is arbitrary; it can be replaced by any vector norm. We write ‖ · ‖0,2
because the relaxation we use subsequently is then naturally ‖ · ‖1,2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4556 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

where

(2.5) ‖G‖S = ‖G‖0,1 =

N∑
n=1

√√√√ P∑
p=1

|G (n, p)|2 =

N∑
n=1

√√√√ P∑
p=1

|gp[n]|2;

i.e., ‖G‖S is the �1 norm of the �2 norms of the rows of the G matrix.2 This latter
operator is a simultaneous sparsity norm: it penalizes the program (produces large
values) when the columns of G have dissimilar sparsity patterns [43]. Fixing λ to
a sufficiently large value and solving this optimization yields simultaneously sparse
gp’s.

Given the convex objective function in (2.4), one may then attempt to find a
solution that minimizes the objective using an IRLS-based [11] or SOCP-based [43]
approach. A formal analysis of the minimization of the convex objective may be found
in [62]. Convex relaxations for this problem are also studied in [25, 28]. A related
approach that may incorporate additional prior information is given in [68], and a
boosting strategy that may be combined with either a greedy algorithm or a convex
relaxation is presented in [45] and analyzed further in [66]. Also applicable to both
greedy algorithms and convex relaxation are results in [8] that are analogous to the
principal results of [19, 61, 63].

3. Multiple-system single-output (MSSO) simultaneous sparse approx-
imation. We outline the MSSO problem in a style analogous to that of SSMO systems
in (2.3), (2.4) and then pose a second formulation that is useful for deriving several
algorithms in section 4.

3.1. MSSO problem formulation. Consider the following system:

(3.1) d = F1g1 + · · ·+ FPgP = [F1 · · ·FP]

⎡⎢⎣ g1
...
gP

⎤⎥⎦ = Ftotgtot,

where d ∈ CM and the Fp ∈ CM×N are known. Unlike the SSMO problem, there are
now only one observation and P different system matrices. Here again we desire an
approximate solution where the gp’s are simultaneously sparse, formally,

min
g1, . . . , gP

‖d− Ftotgtot‖2 subject to (s.t.) the simultaneous K-sparsity of the gp’s,

(3.2)

or an equivalent unconstrained formulation. There are no constraints on the values of
M , N , or P ; i.e., there is no explicit requirement that the system be overdetermined
or underdetermined.

In the first half of section 4, we will pose three approaches that attempt to solve the
MSSO problem (3.2) in a greedy fashion. Another approach is to apply a relaxation
similar to (2.2), (2.4):

(3.3) min
G

{
1
2 ‖d− Ftotgtot‖22 + λ ‖G‖S

}
,

2An �p norm with p < 1 could be used in place of the �1 norm if one is willing to deal with a
nonconvex objective function. Further, an �q norm (with q > 2) rather than an �2 norm could be
applied to each row of G because the purpose of the row operation is to collapse the elements of the
row into a scalar value without introducing a sparsifying effect.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4557

where G and ‖G‖S are the same as in (2.4) and (2.5), respectively. In the second half
of section 4, we will outline four algorithms for solving this relaxed problem.

3.2. Alternate formulation of the MSSO problem. The MSSO problem
can be expressed in an equivalent form using new variables that are simply permuta-
tions of the Fp’s and gp’s. First we define N new matrices:

(3.4) Cn = [f1,n, . . . , fP,n] ∈ C
M×P for n = 1, . . . , N,

where fp,n is the nth column of Fp. Next we construct N new vectors:

(3.5) hn = [g1[n], . . . ,gP [n]]
T ∈ C

P for n = 1, . . . , N,

where gp[n] is the nth element of gp and T is the transpose operation. Using the Cn’s
and hn’s, we have another way to write d:

(3.6) d = C1h1 + · · ·+CNhN = [C1 · · ·CN]

⎡⎢⎣ h1

...
hN

⎤⎥⎦ = Ctothtot.

The relationship between the gp’s and hn’s implies that if we desire to find a set of
simultaneously sparse gp’s to solve (3.1), we should seek out a set of hn’s where many
of the hn’s equal an all-zeros vector, 0. This claim is apparent if we consider the fact
that H = [h1, . . . ,hN] is equal to the transpose of G. This formulation of MSSO has
recently been termed block-sparsity [24, 55] because the nonzero entries of htot come
in contiguous blocks.

Continuing with this alternate formulation, and given our desire to find a solution
where most of the hn’s are all-zeros vectors, we relax the problem as follows:

(3.7) min
htot

{
1
2 ‖d−Ctothtot‖22 + λ

N∑
n=1

‖hn‖2
}
.

The equivalence of
∑N

n=1 ‖hn‖2 and ‖G‖S means that (3.7) is equivalent to (3.3), and
thus, just as in (3.3), the approach in (3.7) finds a set of simultaneously sparse gp’s.

3.3. Differences between the SSMO and MSSO problems. In the SSMO
problem, the ratio of unknowns to knowns is N/M regardless of the number of obser-
vations, P . Increasing P has little effect on the residual error, but it is beneficial for
estimation of a “best” or “correct” sparsity pattern because the simultaneous spar-
sity of the underlying gp’s becomes more exploitable. Empirical evidence of improved
sparsity pattern recovery with increasing P may be found, for example, in [11, 43],
and related theoretical results on random problem ensembles are given in [47, 48].

In contrast, the ratio of unknowns to knowns is not constant with respect to P
in the MSSO problem; rather it is equal to PN/M . As P is increased, it becomes
easier to achieve a small residual, but sparsity pattern recovery becomes harder. This
is supported experimentally in section 5.

3.4. Previous results on MSSO problems. After the initial submission of
this manuscript, algorithms similar to our OMP variation in section 4.2 were intro-
duced as block OMP (BOMP) [24] and parallel OMP (POMP) [41]. (POMP is more
general, and three variations are given in [41].) The speed of these algorithms over
general-purpose convex optimization is demonstrated in [41], and theoretical results

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4558 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

analogous to those for ordinary sparse approximation from [19, 61] are given in [24].
Also, an empirical study of iterative shrinkage approaches to solving mixed-norm
formulations like (3.3) is given in [38].

Another recent work is a random-ensemble analysis of high-dimensional block-
sparse problems in [55]. This work uses the convex relaxation of (3.3) and studies
problem size scalings at which a correct sparsity pattern can be recovered in the
undersampled (M < NP), noiseless (d = Ctothtot for some block-sparse htot) case.

4. Proposed algorithms. We now present algorithms for (approximately) solv-
ing the MSSO problem defined in section 3. Some algorithms are described in more
detail, with pseudocode, in [70, 72].

4.1. Matching pursuit (MP). The classic MP technique first finds the column
of the system matrix that best matches with the observed vector and then removes
from the observation vector the projection of this chosen column. It proceeds to select
a second column of the system matrix that best matches with the residual observation,
and continues doing so until either K columns have been chosen (as specified by the
user) or the residual observation ends up as a vector of all zeros.

Now let us consider the MSSO system as posed in (3.6). In the MSSO context, we
need to seek out which of the N Cn matrices can be best used to represent d when the
columns ofCn undergo an arbitrarily weighted linear combination. The key difference
here is that on an iteration-by-iteration basis, we are no longer deciding which column
vector best represents the observation, but whichmatrix does so. For the kth iteration
of the algorithm, we need to select the proper index n ∈ {1, . . . , N} by solving

(4.1) qk = argmin
n

min
hn

‖rk−1 −Cnhn‖22,

where qk is the index that will be selected and rk−1 is the current residual observation.
For fixed n, the solution to the inner minimization is obtained via the pseudoinverse,
hopt
n = C†

nrk−1, yielding

(4.2) qk = argmin
n

min
hn

‖rk−1 −Cn(C
†
nrk−1)‖22 = argmax

n
rHk−1CnC

†
nrk−1,

where H is the Hermitian transpose. From (4.2) we see that, analogously to standard
MP, choosing the best index for iteration k involves computing and ranking a series
of inner product–like quadratic terms.

4.2. Orthogonal matching pursuit (OMP). In single-vector MP, the residual
rk is orthogonal to the kth column of the system matrix, but as the algorithm continues
iterating, there is no guarantee that the residual remains orthogonal to column k or is
minimized in the least squares sense with respect to the entire set of k chosen column
vectors (indexed by q1, . . . , qk). Furthermore, K iterations of single-vector MP do not
guarantee thatK different columns will be selected. Single-vector OMP is an extension
to MP that attempts to mitigate these problems by improving the calculation of the
residual vector. During the kth iteration of single-vector OMP, column qk is chosen
exactly as in MP (by ranking the inner products of the residual vector rk−1 with the
various columnvectors), but the residual vector is updated by accounting for all columns
chosen up through iteration k rather than simply the last one [46, 10].

To extend OMP to the MSSO problem, we choose matrix qk during iteration k as
in MSSO MP and then, in the spirit of single-vector OMP, compute the new residual
as follows:

(4.3) rk = d− Sk(S
†
kd),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4559

where Sk = [Cq1 , . . . ,Cqk] and S†
kd is the best choice of x that minimizes the residual

error ‖d−Skx‖2. That is, to update the residual we now employ all chosen matrices,
weighting and combining them to best represent d in the least squares sense, yielding
an rk that is orthogonal to the columns of Sk (and thus orthogonal to Cq1 , . . . ,Cqk),
which has the benefit of ensuring that OMP will select a new Cn matrix at each step.

4.3. Least squares matching pursuit (LSMP). Beyond OMP there exists a
greedy algorithm with greater computational complexity known as LSMP. In single-
vector LSMP, one solves N − k + 1 least squares minimizations during iteration k to
determine which column of the system matrix may be used to best represent d [10].

To extend LSMP to MSSO systems, we must ensure that during iteration k we
account for the k − 1 previously chosen Cn matrices when choosing the kth one to
best construct an approximation to d. Specifically, index qk is selected as follows:

(4.4) qk = argmin
n ∈ {1, . . . , N}, n /∈ Ik−1

min
x

‖S(n)
k x− d‖22,

where Ik−1 is the set of indices chosen up through iteration k− 1, S
(n)
k = [Sk−1,Cn],

Sk−1 = [Cq1 , . . . ,Cqk−1
], and x ∈ CPk. For fixed n, the solution of the inner iteration

is xopt = (S
(n)
k)†d; it is this step that ensures the residual observation error will be

minimized by using all chosen matrices. Substituting xopt into (4.4) and simplifying
the expression yields

(4.5) qk = argmax
n/∈Ik−1

dHQ
(n)
k d,

where Q
(n)
k = (S

(n)
k)(S

(n)
k)†.

Algorithm 1 describes the LSMP method. The complexity here is much greater
than that of OMP because N − k + 1 pseudoinversions of an M × Pk matrix are

required during each iteration k. Furthermore, the dependence of Q
(n)
k on both n and

k makes precomputing all such matrices infeasible in most cases. One way to decrease
computation and runtime might be to extend the projection-based recursive updating
scheme of [10] to MSSO LSMP.

Algorithm 1. MSSO Least Squares Matching Pursuit.

Task: greedily choose K of the Cns to best represent d via C1h1 + · · ·+CNhN .

Data and Parameters: d and Cn, n ∈ {1, . . . , N}, are given. K iterations.

Initialize: Set k = 0, I0 = ∅, S0 = [].

Iterate: Set k = 1 and apply:

• qk = argmaxn/∈Ik−1
dH(S

(n)
k)(S

(n)
k)†d, where S

(n)
k = [Sk−1,Cn]

• Ik = Ik−1 ∪ {qk}
• Sk = [Sk−1,Cqk]

• k = k + 1. Terminate loop if k > K or rk = 0. IK ends with T ≤ K elements.

Compute Weights: x = S†
Kd, unstack x into hq1 , . . . ,hqT ; set remaining hns to 0.

4.4. Iteratively reweighted least squares (IRLS). Having posed three
greedy approaches for solving the MSSO problem, we now turn our attention to-
ward minimizing (3.7), the relaxed objective function. Here, the regularization term
λ is used to trade off simultaneous sparsity with residual observation error.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4560 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

One way to minimize (3.7) is to use an IRLS-based approach [36]. To begin,
consider manipulating the right-hand term of (3.7) as follows:

λ

N∑
n=1

‖hn‖2 = λ

N∑
n=1

‖hn‖22
‖hn‖2 = λ

N∑
n=1

|hn[1]|2 + · · ·+ |hn[P]|2
‖hn‖2

≈ λ

2

N∑
n=1

[h∗
n[1], . . . ,h

∗
n[P]]

⎡⎢⎢⎣
2

‖hn‖2+ε

. . .
2

‖hn‖2+ε

⎤⎥⎥⎦
⎡⎢⎣ hn[1]

...
hn[P]

⎤⎥⎦
=

λ

2

N∑
n=1

hH
nWnhn

=
λ

2

[
hH
1 · · ·hH

N

]⎡⎢⎣ W1

. . .

WN

⎤⎥⎦
⎡⎢⎣ h1

...
hN

⎤⎥⎦ =
λ

2
hH
totWtothtot,

(4.6)

where ∗ is the complex conjugate of a scalar, Wn is a P × P real-valued diagonal
matrix whose diagonal elements each equal 2/(‖hn‖2 + ε), and ε is some small non-
negative value introduced to mitigate poor conditioning of the Wns. If we fix Wtot ∈
RPN×PN by computing it using some prior estimate of htot, then the right-hand
term of (3.7) becomes a quadratic function and (3.7) transforms into a Tikhonov
optimization [58, 59]:

(4.7) min
htot

{
1
2 ‖d−Ctothtot‖22 + λ

2h
H
totWtothtot

}
.

Finally, by performing a change of variables and exploiting the properties of Wtot,
we can convert (4.7) into an expression that may be minimized using the robust
and reliable conjugate-gradient (CG) least squares solver LSQR [50, 49], so named
because it applies a QR decomposition [30] when solving the system in the least
squares sense. LSQR works better in practice than several other CG methods [2]
because it restructures the input system via the Lanczos process [40] and applies a
Golub–Kahan bidiagonalization [29] prior to solving it.

To apply LSQR to this problem, we first constructW
1/2
tot as the element-by-element

square root of the diagonal matrix Wtot and then take its inverse to obtain W
−1/2
tot .

Defining q = W
1/2
tot htot and A = CtotW

−1/2
tot , (4.7) becomes

min
q

{‖d−Aq‖22 + λ‖q‖22
}
.(4.8)

LSQR is formulated to solve the exact problem in (4.8). Calling LSQR with d, λ,

and A yields qopt, and the solution hopt
tot is backed out via W

−1/2
tot qopt.

Algorithm 2 outlines how one may iteratively apply (4.8) to attempt to find a so-
lution that minimizes the original cost function, (3.7). The technique iterates until the
objective function decreases by less than δ or the maximum number of iterations, K, is
exceeded. The initial solution estimate is obtained via pseudoinversion of Ctot (an all-
zeros initialization would cause Wtot to be poorly conditioned). A line search is used
to step between the prior solution estimate and the upcoming one; this improves the
rate of convergence and ensures that the objective decreases at each step. This method
is global in that all PN unknowns are being estimated concurrently per iteration.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4561

Algorithm 2. MSSO Iteratively Reweighted Least Squares.

Task: Minimize { 1
2
‖d−Ctothtot‖22 + λ

∑N
n=1 ‖hn‖2} using an iterative scheme.

Data and Parameters: λ, d, Ctot, δ, and K are given.

Initialize: Set k = 0 and htot,k=0 = (Ctot)
†d (or, e.g., htot,k=0 = 1).

Iterate: Set k = 1 and apply:

• Create Wtot from htot,k−1; construct W
1/2
tot , W

−1/2
tot , and let A = CtotW

−1/2
tot .

• Obtain qtmp by using LSQR to solve minq
{‖d−Aq‖22 + λ‖q‖22

}
.

• Set htot,tmp = W
−1/2
tot qtmp.

• Line search: find μ0 ∈ [0, 1] such that (1− μ)htot,k−1 + μhtot,tmp minimizes (3.7).

• Set htot,k = (1− μ0)htot,k−1 + μ0htot,tmp.

• k = k + 1. Terminate loop when k > K or (3.7) decreases by less than δ.

Finalize: Unstack the last htot solution into h1, . . . ,hN .

4.5. Row-by-row shrinkage (RBRS). The proposed IRLS technique solves
for all PN unknowns during each iteration, but this is cumbersome when PN is large.
An alternative approach is to apply an inner loop that fixes n and then iteratively
tunes hn while holding the other hms (m �= n) constant; thus only P (rather than
PN) unknowns need to be solved for during each inner iteration.

This idea inspires the RBRS algorithm. The term “row-by-row” is used because
each hn corresponds to row n of theGmatrix in (3.3), and “shrinkage” is used because
the �2 energy of most of the hn’s will essentially be “shrunk” (to some extent) during
each inner iteration: when λ is sufficiently large and many iterations are undertaken,
many hn’s will be close to all-zeros vectors.

4.5.1. RBRS for real-valued data. Assume that d and the Cn’s of (3.7)
are real-valued. We seek to minimize the function by extending the single-vector
sequential shrinkage technique of [21] and making modifications to (3.7). Assume
that we have prior estimates of h1 through hN , and that we now desire to update
only the jth vector while keeping the other N − 1 fixed. The shrinkage update of hj

is achieved via

(4.9) min
x

{
1
2

∥∥[ΣN
n=1Cnhn −Cjhj

]
+Cjx− d

∥∥2
2
+ λ ‖x‖2

}
,

where ΣN
n=1Cnhn −Cjhj forms an approximation of d using the prior solution coef-

ficients, but discards the component contributed by the original jth vector, replacing
the latter via an updated solution vector, x. It is crucial to note that the right-hand
term does not promote the element-by-element sparsity of x; rather, it penalizes the
overall �2 energy of x, and thus both sparse and dense x’s are penalized equally if
their overall �2 energies are the same.

One way to solve (4.9) is to take its derivative with respect to xT and find x such
that the derivative equals 0. By doing this and shuffling terms, and assuming we have
an initial estimate of x, we may solve for x iteratively:

(4.10) xi =

[
CT

j Cj +
λ

‖xi−1‖2 + ε
I

]−1

CT
j rj ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4562 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

where rj = d + Cjhj − ΣN
n=1Cnhn, I is a P × P identity matrix, and ε is a small

value that avoids ill-conditioned results.3 By iterating on (4.10) until (4.9) changes
by less than δinner, we arrive at a solution to (4.9), xopt, and this then replaces the
prior solution vector, hj . Having completed the update of the jth vector, we proceed
to update the rest of the vectors, looping this outer process K times or until the
main objective function, (3.7), changes by less than δouter. Algorithm 3 details the
entire procedure; unlike IRLS, here we essentially repeatedly invert P × P matrices
to pursue a row-by-row solution, rather than PN ×PN matrices to pursue a solution
that updates all rows per iteration.

Algorithm 3. MSSO Row-by-Row Sequential Iterative Shrinkage.

Task: Minimize { 1
2
‖d−Ctothtot‖22 + λ

∑N
n=1 ‖hn‖2} using an iterative scheme when all

data is real-valued.

Data and Parameters: λ, d, Cn (n ∈ {1, . . . , N}), δouter, δinner, K, and I are given.

Initialize: Set k = 0 and htot = (Ctot)
†d (or, e.g., htot = 1), unstack into h1, . . . ,hN .

Iterate: Set k = 1 and apply:

• Sweep over row vectors: set j = 1 and apply:

◦ Optimize a row vector: set i = 1 and x0 = hj and then apply:

• xi = [CT
j Cj +

λ

‖xi−1‖2
+ε

I]−1CT
j rj , where rj = d+Cjhj − ΣN

n=1Cnhn.

• i = i+ 1. Terminate when i > I or (4.9) decreases by less than δinner.

◦ Finalize row vector update: set hj to equal the final x.

◦ j = j + 1. Terminate loop when j > N .

• k = k + 1. Terminate loop when k > K or (3.7) decreases by less than δouter.

Finalize: If λ was large enough, several hns should be dense and others close to 0.

4.5.2. Extending RBRS to complex-valued data. If (3.7) contains com-
plex-valued terms, we may structure the row-by-row updates as in (4.9), but because
the derivative of the objective function in (4.9) is more complicated due to the presence
of complex-valued terms, the simple update equation given in (4.10) is no longer
applicable. One way to overcome this problem is to turn the complex-valued problem
into a real-valued one.

Let us create several real-valued expanded vectors,

(4.11) d̃ =

[
Re(d)
Im(d)

]
∈ R

2M , h̃n =

[
Re(hn)
Im(hn)

]
∈ R

2P ,

as well as real-valued expanded matrices,

(4.12) C̃n =

[
Re(Cn) −Im(Cn)
Im(Cn) Re(Cn)

]
∈ R

2M×2P .

Due to the structure of (4.11), (4.12) and the fact that ‖hn‖2 equals ‖h̃n‖2, the

3Equation (4.10) consists of a direct inversion of a P×P matrix, which is acceptable in this paper
because all experiments involve P ≤ 10. If P is large, (4.10) could be solved via a CG technique
(e.g., LSQR).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4563

following optimization is equivalent to (3.7):

(4.13) min
˜h1, . . . , ˜hN

{
1
2

∥∥∥d̃−∑N
n=1 C̃nh̃n

∥∥∥2
2
+ λ

N∑
n=1

‖h̃n‖2
}
.

This means that we may apply RBRS to complex-valued scenarios by substituting
the h̃n’s for the hn’s and C̃n’s for the Cn’s in (4.9), (4.10), and Algorithm 3. (Equa-
tion (4.10) becomes an applicable update equation because (4.9) will consist of only
real-valued terms and the derivative calculated earlier is again applicable.) Finally,

after running the algorithm to obtain finalized h̃n’s, we may simply restructure them
into complex hn’s.

In embedding the complex-valued problem into a larger real-valued problem, we
have demonstrated a fact about simultaneous sparse approximation that seems to
not have been remarked upon previously: by setting P = 1, we see that seeking a
single sparse complex-valued vector is equivalent to seeking two simultaneously sparse
real-valued vectors.

4.6. Column-by-column shrinkage (CBCS). We have also developed a dual
of RBRS—a technique that sequentially updates the columns of G (i.e., the gp’s) in
(3.1), (3.3) rather than its rows (the hn’s). This approach yields a separable op-
timization and reduces the overall problem to simply repeated element-by-element
shrinkages of each gp. For a detailed derivation and pseudocode, see [70, 72].

4.7. Second-order cone programming (SOCP). We now propose a seventh
and final algorithm for solving the MSSO problem as given in (3.3). We branch
away from the shrinkage approaches that operate on individual columns or rows of
the G matrix and again seek to concurrently estimate all PN unknowns. Rather
than using an IRLS technique, however, we pursue an SOCP approach, motivated by
the fact that second-order cone programs may be solved via efficient interior point
algorithms [56, 60] and are able to encapsulate conic, convex-quadratic [1], and linear
constraints. (Quadratic programming is not an option because the gp’s, Fp’s, and d
may be complex.)

Second-order conic constraints are of the form a = [a1, . . . , aN]T such that

(4.14) ‖[a1, . . . , aN−1]
T‖2 ≤ aN .

The generic format of an SOC program is

(4.15) min
x

cTx s.t. Ax = b and x ∈ K,

where K = RN
+ × L1 × · · · × LN , RN

+ is the N -dimensional positive orthant cone
and the Lns are second-order cones [1]. To convert (3.3) into the second-order cone
format, we first write

min
G

{
1
2s+ λ1Tt

}
s.t. z = dtot − Ftotgtot, ‖z‖22 ≤ s,

and ‖[Re(g1[n]), Im(g1[n]), . . . , Re(gP [n]), Im(gP [n])]
T‖2 ≤ tn,

(4.16)

where n ∈ {1, . . . , N} and t = [t1, . . . , tN]T. The splitting of the complex elements of
the gp’s mimics the approach used when extending CBCS to complex data, and (4.16)
makes the objective function linear, as required. Finally, in order to represent the
‖z‖22 ≤ s inequality in terms of second-order cones, an additional step is needed. Given

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4564 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

that s = 1
4 (s+ 1)2 − 1

4 (s− 1)2, the inequality may be rewritten as zHz+ 1
4 (s− 1)2 ≤

1
4 (s + 1)2 and then expressed as a conic constraint: ‖[zT, 1

2 (s − 1)]T‖2 ≤ 1
2 (s + 1)

[1, 42]. Applying these changes yields

min
{

1
2s+ λ1Tt

}
s.t. z = dtot − Ftotgtot,

‖[zT, u]T‖2 ≤ v, u = (s− 1)/2, v = (s+ 1)/2, s ≥ 0, and

‖[Re(g1[n]), Im(g1[n]), . . . , Re(gP [n]), Im(gP [n])]
T‖2 ≤ tn,

(4.17)

which is a fully defined second-order cone program that may be implemented and
solved numerically. There is no algorithm pseudocode for this technique because
having set up the variables in (4.17), one may simply plug them into an SOCP solver.
In this paper we implement (4.17) in SeDuMi (Self-Dual-Minimization) [56], a free
software package consisting of MATLAB and C routines.

5. Experiments and results. Our motivation for solving MSSO sparse approx-
imation problems comes from MRI RF excitation pulse design. Before turning to this
problem in section 5.3, we present several synthetic experiments. These experiments
allow comparisons among algorithms and also empirically reveal some properties of
the relaxation (3.3). Theoretical exploration of this relaxation is also merited but is
beyond the scope of this manuscript. One work in this area is [55].

Experiments were performed on a Linux server with a 3.0-GHz Intel Pentium IV
processor. The system has 16 GB of random access memory, ample to ensure that none
of the algorithms requires the use of virtual memory and to avoid excessive hard drive
paging. MP, LSMP, IRLS, RBRS, and CBCS are implemented in MATLAB, whereas
SOCP is implemented in SeDuMi. The runtimes could be reduced significantly by
implementing the methods in a completely compiled format such as C. Note: OMP is
not evaluated because its performance always falls in between that of MP and LSMP.

5.1. Sparsity pattern estimation in a noiseless setting.

5.1.1. Overview. We now evaluate how well the algorithms of section 4 estimate
sparsity patterns when the underlying gp’s are each strictly and simultaneously K-
sparse and the observation d of (3.1) is not corrupted by noise. This caricatures
a high signal-to-noise ratio (SNR) source localization scenario, where the sparsity
pattern indicates locations of emitters and our goal is to find the locations of these
emitters [34, 39, 42, 43].

We synthetically generate real-valued sets of Fp’s and gp’s in (3.1), apply the
algorithms, and record the fraction of correct sparsity pattern entries recovered by
each. We vary M in (3.1) to see how performance at solving the MSSO problem varies
when the Fp’s are underdetermined vs. overdetermined and also vary P to see how
rapidly performance degrades as more system matrices and vectors are employed.

5.1.2. Details. For all trials, we fix N = 30 in (3.1) and K = 3, which means
each gp vector consists of 30 elements, three of which are nonzero. We consider
P ∈ {1, 2, . . . , 8} and M ∈ {10, 15, . . . , 40}. For each of the 56 fixed (M,P) pairs,
we create 50 random instances of (3.1) over which to report the average performance.
Each of the 2 800 instances is constructed with the sparsity pattern chosen uniformly at
random and the nonzero entries of the gp’s drawn from the standard normal N (0, 1)
distribution. The columns of the Fp’s are chosen independently from the uniform
distribution on the RM unit sphere.

MP and LSMP are applied by iterating untilK elements are chosen or the residual
approximation is 0. If fewer than K terms are chosen, this hurts the recovery score.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4565

10 20 30 40

0.2

0.4

0.6

0.8

1

P = 1

M

A
vg

 F
ra

c
R

ec

socp
cbcs
rbrs
irls
lsmp
mp

10 20 30 40

0.2

0.4

0.6

0.8

1

P = 2

M

A
vg

 F
ra

c
R

ec

socp
cbcs
rbrs
irls
lsmp
mp

10 20 30 40

0.2

0.4

0.6

0.8

1

P = 3

M

A
vg

 F
ra

c
R

ec

socp
cbcs
rbrs
irls
lsmp
mp

10 20 30 40

0.2

0.4

0.6

0.8

1

P = 4

M

A
vg

 F
ra

c
R

ec

socp
cbcs
rbrs
irls
lsmp
mp

10 20 30 40

0.2

0.4

0.6

0.8

1

P = 5

M

A
vg

 F
ra

c
R

ec

socp
cbcs
rbrs
irls
lsmp
mp

10 20 30 40

0.2

0.4

0.6

0.8

1

P = 6

M

A
vg

 F
ra

c
R

ec

socp
cbcs
rbrs
irls
lsmp
mp

10 20 30 40

0.2

0.4

0.6

0.8

1

P = 7

M

A
vg

 F
ra

c
R

ec

socp
cbcs
rbrs
irls
lsmp
mp

10 20 30 40

0.2

0.4

0.6

0.8

1

P = 8

M

A
vg

 F
ra

c
R

ec

socp
cbcs
rbrs
irls
lsmp
mp

Fig. 5.1. Sparsity pattern estimation in a noiseless setting. Subplots depict average fraction
of sparsity pattern elements recovered over 50 trials of six algorithms as M is varied. P is fixed
per subplot, and N = 30 and K = 3 for all trials. Data is generated as described in section 5.1.2.
Recovery scores for IRLS, RBRS, CBCS, and SOCP assume that a good choice of λ is known. For
large M , all algorithms exhibit high recovery rates; for large P , small M , or both, the algorithms
that seek to minimize (3.3), (3.7) generally outperform those that greedily pursue a solution.

For IRLS, RBRS, CBCS, and SOCP, we approximate a λ oracle as follows: loop
over roughly 70 λ’s in [0, 2], running the given algorithm each time. For each of the
estimated ĝtot’s (that vary with λ), estimate a sparsity pattern by noting the largest

�2 energy rows of the associated Ĝ matrix.4 Remember the highest fraction recovered
across all λ’s.

5.1.3. Results. Each subplot of Figure 5.1 depicts the average fraction of re-
covered sparsity pattern elements vs. the number of knowns, M , for a fixed value
of P , revealing how performance varies as the Fp ∈ R

M×N matrices go from being
underdetermined to overdetermined.

Recovery trends. As the number of knowns M increases, recovery rates improve
substantially, which is sensible. For large M and small P , the six algorithms behave
similarly, consistently achieving nearly 100% recovery. For large P and moderate M ,
however, sparsity pattern recovery rates are dismal—as P increases, the underlying
simultaneous sparsity of the gp’s is not enough to combat the increasing number of
unknowns, PN . As M is decreased and especially when P is increased, the per-
formance of the greedy techniques falls off relative to that of IRLS, RBRS, CBCS,
and SOCP, showing that the convex relaxation approach itself is a sensible way to
approximately solve the formal NP-hard combinatorial MSSO simultaneous sparsity

4This could be described as thresholding the output of the original computation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4566 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

Table 5.1

Average algorithm runtimes for noiseless sparsity pattern estimation. For several fixed (M,P)
pairs, each algorithm’s average runtime over the corresponding 50 trials is given in units of millisec-
onds; N = 30 and K = 3 for all trials (runtimes of the latter four algorithms are also averaged over
the multiple λ runs per trial). MP is substantially faster than the other techniques, as expected. For
larger problems, e.g., (M,P) = (10, 8), the runtimes of both RBRS and CBCS are excessive relative
to those of the other convex minimization techniques, IRLS and SOCP.

(M,P)

Algorithm (10,8) (20,1) (30,5) (40,8)

MP 5.4 1.8 2.6 4.0
LSMP 11.4 5.6 15.6 27.6
IRLS 92.6 10.1 73.2 175.0
RBRS 635.7 36.0 236.8 401.6
CBCS 609.8 7.1 191.4 396.3
SOCP 44.3 37.0 64.3 106.5

problem. Furthermore, the behavior of the convex algorithms relative to the greedy
ones coincides with the studies of greedy vs. convex programming sparse approxima-
tion methods in single-vector [7, 10] and SSMO contexts [11]. LSMP tends to perform
slightly better than MP because it solves a least squares minimization and explicitly
considers earlier chosen rows whenever it seeks to choose another row of G.

Convergence. Across most trials, IRLS, RBRS, CBCS, and SOCP converge
rapidly and do not exceed the maximum limit of 500 outer iterations. The excep-
tion is CBCS when M is small and P = 8: here, the objective function frequently
fails to decrease by less than the specified δ = 10−5.

Runtimes. For several fixed (M,P) pairs, Table 5.1 lists the average runtimes
of each algorithm across the 50 trials associated with each pair. For IRLS, RBRS,
CBCS, and SOCP, runtimes are also averaged over the many λ runs. Among the
convex minimization methods, SOCP seems superior given its fast runtimes in three
out of four cases. Peak memory usage is not tracked here because it is difficult to do
so when using MATLAB for such small problems; it will be tracked during the third
experiment where the system matrices are vastly larger and differences in memory
usage across the six algorithms are readily apparent.

Some details on how IRLS, RBRS, CBCS, and SOCP differ in the objective
functions that they achieve are provided in [70, 72].

5.2. Sparsity pattern estimation in the presence of noise.

5.2.1. Overview. We now modify the scenario of section 5.1 to include additive
white Gaussian noise in the observation d. The simultaneous sparsity levelK and SNR
(in dB) are varied across sets of Monte Carlo trials. The variance of each component
of the noise is related to the SNR as follows:

(5.1) σ2 =
1

M
‖dtrue‖22 · 10−SNR/10.

This noise measure is analogous to that of [11].

5.2.2. Details. We fix N = 30, M = 25, and P = 3, and consider SNR ∈
{−10,−5, 0, . . . , 25, 30} and K ∈ {1, 3, 5, 7, 9}. For each fixed (SNR,K) pair, we
generate 100 random instances over which to report the average performance. The
gp’s and Fp’s are generated as in section 5.1.2. The algorithms are applied as before,
with the exception that IRLS, RBRS, CBCS, and SOCP use a fixed λ as described
below.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4567

−10 0 10 20 30

0.2

0.4

0.6

0.8

1

K = 1

SNR (dB)

A
vg

 F
ra

c
R

ec

−10 0 10 20 30

0.2

0.4

0.6

0.8

1

K = 3

SNR (dB)

A
vg

 F
ra

c
R

ec

−10 0 10 20 30

0.2

0.4

0.6

0.8

1

K = 5

SNR (dB)

A
vg

 F
ra

c
R

ec

socp cbcs rbrs irls lsmp mp

−10 0 10 20 30

0.2

0.4

0.6

0.8

1

K = 7

SNR (dB)

A
vg

 F
ra

c
R

ec

−10 0 10 20 30

0.2

0.4

0.6

0.8

1

K = 9

SNR (dB)

A
vg

 F
ra

c
R

ec

Fig. 5.2. Sparsity pattern estimation in the presence of noise. Each subplot depicts the average
fraction of recovered sparsity pattern elements vs. SNR for a fixed K, revealing how well the algo-
rithms recover the K elements of the sparsity pattern amidst noise in the observation. Each data
point is the average fraction recovered across 100 trials; data is randomly generated as described in
section 5.2.2. N , M , and P are always fixed at 30, 25, and 3, respectively. For each (SNR, K) pair,
a “good” λ is chosen by denoising a few cases by hand and then using this fixed λ for 100 fresh
denoising trials. Performance degrades with increasing K and decreasing SNR. For large K, the
greedy algorithms perform worse than IRLS, SOCP, RBRS, and CBCS, whereas the latter four
methods perform essentially identically across all (SNR, K) combinations.

Control parameter selection. Before running the overall experiment, we generate
three noisy observations for each (SNR,K) pair. We then apply IRLS, RBRS, CBCS,
and SOCP, tuning the control parameter λ by hand until finding a single value that
produces reasonable solutions. All algorithms then use this fixed λ for all 100 tri-
als with the (SNR,K) pair under consideration. Thus, in contrast to the noiseless
experiment, we no longer assume an ideal λ is known for each denoising trial.

5.2.3. Results. Each subplot of Figure 5.2 depicts the average fraction of re-
covered sparsity pattern elements vs. SNR for a fixed K, revealing how well the six
algorithms are able to recover the sparsity pattern amid noise.

Recovery trends. When K = 1, we see from the upper-left subplot of Figure 5.2
that all algorithms have essentially equal performance for each SNR. Recovery rates
improve substantially with increasing SNR, which is sensible. For each algorithm,
we see across the subplots that performance generally decreases with increasing K;
this too is as expected. For low SNRs, e.g., −5 dB, all algorithms tend to perform
similarly, but the greedy algorithms perform increasingly worse than the others as K
goes from moderate to large and SNR surpasses zero dB. In general, MP performs
worse than LSMP, and LSMP in turn performs worse than IRLS, SOCP, RBRS, and
CBCS, while the latter four methods exhibit essentially the same performance across
all SNRs and K’s. Overall, Figure 5.2 shows that convex programming algorithms
are superior to greedy methods when estimating sparsity patterns in noisy situations;
this coincides with data collected in the noiseless experiment in section 5.1, as well as
the empirical findings of [10, 11].

Convergence. CBCS typically requires more iterations than the other techniques

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4568 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

in order to converge. At times, it fails to converge to within the specified δ = 10−5,
similarly to how it behaves during the noiseless experiment of section 5.1.

Runtimes. Across all denoising trials, MP, LSMP, IRLS, RBRS, CBCS, and
SOCP have average runtimes of 3.1, 25.1, 57.2, 247.0, 148.5, and 49.2 milliseconds.
It seems that SOCP is best for denoising given that it is the fastest algorithm among
the four methods that outperform the greedy ones. IRLS is nearly as fast as SOCP
and thus is a close second choice for sparsity pattern estimation.

This experiment is extended with a discussion of mean-squared error of the esti-
mates in [70, 72].

5.3. MRI RF excitation pulse design.

5.3.1. Overview. For the final experiment we study how well the six algorithms
design MRI RF excitation pulses. In the interest of space and because the conversion
of the physical problem into an MSSO format involves MRI physics and requires
significant background, we only briefly outline how the system matrices arise and
why simultaneously sparse solutions are necessary. A complete formulation of the
problem for engineers and mathematicians is given in [70, 71]; MRI pulse designers
may refer to [74]. We limit our evaluation here to fidelity of the designed excitations.
Related papers provide results from a real system for head-shaped water phantom
imaging [74] and in vivo human brain imaging [73].

5.3.2. Formulation. Consider an MRI experiment in which thin slices are de-
sired in a spatial dimension defined to be the z direction. Thin-slice imaging is a
dominant use of RF excitation in clinical MRI. For the purposes of this paper, the
design of an MRI RF excitation pulse reduces to the following problem: assume that
we are given M points in the two-dimensional (2-D) (x, y) spatial domain, r1, . . . , rM ,
along with N points in a 2-D “Fourier-like” domain, k1, . . . ,kN . Each rm equals
[xm, ym]T, a point in space, while each kn equals [kx,n, ky,n]

T, a point in the Fourier-
like domain, referred to as “k-space.” The rm’s and kn’s are in units of centimeters
(cm) and inverse centimeters (cm−1), respectively. The kn’s are Nyquist-spaced rel-
ative to the sampling of the rm’s and may be visualized as a 2-D grid located at
low kx and ky frequencies (where “kx” denotes the frequency domain axis that corre-
sponds to the spatial x axis). Under a small-tip-angle approximation, energy placed
at one or more points in k-space produces a pattern in the spatial domain; this pat-
tern is related to the k-space energy via a “Fourier-like” transform [52]. Assume that
we place an arbitrary complex weight gn ∈ C (i.e., both a magnitude and phase)
at each of the N locations in k-space. Let us represent these weights using a vector
g = [g1, . . . , gN]T ∈ CN . In an ideal setting (i.e., using the small-tip-angle approxima-
tion [52] as mentioned above and neglecting coil transmission profiles), the following
holds:

(5.2) m = Ag,

where A ∈ CM×N is a known dense Fourier matrix5 and the mth element of m ∈ CM

is the image that arises at rm, denoted m(rm), due to the energy deposition along the
N points on the k-space grid as described by the weights in the g vector. The energy
deposition in the kz dimension is along sinc-like pulse segments that do not enter our
design process because the z dependence and (x, y) dependence of the desired excita-
tion are separable. A formulation that considers three dimensions more generally is
presented in [70, sect. 5.2].

5Formally, A(m,n) = jγeirm·kn , where j =
√−1 and γ is a known lumped gain constant.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4569

The goal now is to form a desired (possibly complex-valued) spatial-domain image
d(r) at the given set of spatial-domain coordinates (the rm’s) by placing energy at
some of the given kn locations while obeying a special constraint on how the energy
is deposited. To produce the spatial-domain image, we will use a “P -channel MRI
parallel excitation system” [37, 54]—each of the system’s P channels is able to deposit
energy of varying magnitudes and phases at the k-space locations and is able to
influence the resulting spatial-domain pattern m(r) to some extent. Each channel
p has a known “profile” across space, Sp(r) ∈ C, that describes how the channel
influences the magnitude and phase of the resulting image at different spatial locations.
For example, if S3(r5) = 0, then the third channel is unable to influence the image
that arises at location r5, regardless of how much energy it deposits along k1, . . . ,kN .
The special constraint mentioned above is that the system’s channels may visit only a
small number of points in k-space—they may deposit energy only at K 	 N locations.

We now finalize the formulation: first, we construct P diagonal matrices Sp ∈
CM×M such that Sp(m,m) = Sp(rm), m = 1, . . . ,M . Now we assume that each
channel deposits arbitrary energies at each of the N points in k-space and describe
the weighting of the k-space grid by the pth channel with the vector gp ∈ CN . Based
on the physics of the P -channel parallel excitation system, the overall imagem(r) that
forms is the superposition of the profile-scaled subimages produced by each channel:

(5.3) m = S1Ag1 + · · ·+ SPAgP = F1g1 + · · ·+ FPgP = Ftotgtot,

where m = [m(r1), . . . ,m(rM)]T. Essentially, (5.3) refines the model of (5.2) by in-
corporating multiple excitation channels and accounting for coil transmission profiles
{Sp(r)}Pp=1 that are not necessarily constant across r.

Recalling that our overall goal is to deposit energy in k-space to produce the
image d(r), and given the special constraint that we may deposit energy only among
a small subset of the N points in k-space, we arrive at the following problem:

(5.4) min
g1, . . . , gP

‖d−m‖2 s.t. the simultaneous K-sparsity of the gp’s,

where d ∈ CM = [d(r1), . . . , d(rM)]T ∈ CM and m is given by (5.3). That is, we seek
out K < N locations in k-space at which to deposit energy to produce an image m(r)
that is close in the �2 sense to the desired image d(r). Strictly and simultaneously
K-sparse gp’s are the only valid solutions to the problem.

One sees that (5.4) is precisely the MSSO system given in (3.2), and thus the
algorithms posed in section 4 are applicable to the pulse design problem. In order
to apply the convex minimization techniques (IRLS, SOCP, RBRS, and CBCS) to
this problem, the only additional step needed is to retune any given solution estimate
ĝtot(alg, λ) into a strictly and simultaneously K-sparse set of vectors.

Aside. An alternative approach to deciding where to place energy at K locations
in k-space is to compute the Fourier transform of d(r) and decide to place energy at
(kx, ky) frequencies where the Fourier coefficients are largest in magnitude [69]. This
method does yield valid K-sparse energy placement patterns, but empirically it is
always outperformed by the convex minimization approaches [73, 71, 74]; thus we do
not delve into the Fourier-based method in this paper.

5.3.3. Experimental setup. Using an eight-channel system (i.e., P = 8) whose
profile magnitudes (the Sp(r)’s) are depicted in Figure 5.3, we will design pulses to
produce the desired image shown in the left subplot of Figure 5.4. We sample the
spatial (x, y) domain at M = 356 locations within the region where at least one of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4570 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

20

0

40

60

80

100

120

140

160

180

nT
 /

vo
lt

|S1(r)| |S2(r)| |S3(r)| |S4(r)|

|S5(r)| |S6(r)| |S7(r)| |S8(r)|

Fig. 5.3. Profile magnitudes of the eight-channel parallel excitation MRI system. Here the
magnitudes of the Sp(r)s are depicted for p = 1, . . . , 8; 356 samples of each Sp(r) are taken within
the nonzero region of influence and stacked into the diagonal matrix Sp used in (5.3). Across space,
the Sp(r)s are not orthogonal—their regions of influence overlap each other to some extent.

Magnitude = 2
Phase = 90o

Magnitude = 1
Phase = 0o

Gray Region = FOX
5 0 0.5

5

0

0.5

kx [cm-1]

k y
 [c

m
-1

]

Fig. 5.4. Desired image and k-space grid. Left image: desired complex-valued image, d(r).
Medium-gray region = FOX; other regions denote locations where we want image to be nonzero
with the given magnitudes and phases. Sampling d(r) at the 356 locations within FOX allows us
to construct d in (5.3). Right subplot: 15 × 15 grid of N = 225 candidate k-space locations,
k1, . . . ,k225, at which the P channels may deposit energy and thus influence the resulting image.
The physical constraints of the MRI excitation process force us to place energy at only a small
number of grid locations.

the profiles in Figure 5.3 is active; this region of interest is referred to as the field
of excitation (FOX) in MRI literature.6 The spatial samples are spaced by 0.8 cm
along each axis, and the FOX has a diameter of roughly 20 cm. Given our choice of
r1, . . . , r356, we sample the S(r)’s and d(r) and construct the Sp’s and d. Next, we
define a grid of N = 225 points in (kx, ky)-space that is 15 × 15 in size and extends
outward from the k-space origin. The points are spaced by 1

20 cm−1 along each k-space
axis, and the overall grid is shown in the right subplot of Figure 5.4. Finally, because
we know the 356 rm’s and 225 kn’s, we construct the 356×225 matrix A in (5.2), (5.3)
along with the Fp’s in (5.3). We now have all the data we need to apply the algorithms
and determine simultaneously K-sparse gp’s that (approximately) solve (5.4).

We apply the algorithms and evaluate designs where the use of K ∈ {1, . . . , 30}
candidate points in k-space is permitted (in practical MRI scenarios, K up to 30 is

6Sampling points outside of the FOX where no profile has influence is unnecessary because an
image can never be formed at these points no matter how much energy any given channel places
throughout k-space.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4571

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

2

4

6

8

10

12

14

K

L 2 E
rr

or

L
2
 Error vs. K

socp
cbcs
rbrs
irls
lsmp
mp

10
−6

10
−4

10
−2

10
0

10
−1

10
0

10
1

10
2

10
3

objFun vs. λ

λ

ob
jF

un

socp
cbcs
rbrs
irls

Fig. 5.5. MRI pulse design results. Left subplot: �2 error vs. K is given for MP, LSMP, IRLS,
RBRS, CBCS, and SOCP. For fixed K, LSMP consistently outperforms the other algorithms. Right
subplot: objective function values vs. λ when SOCP, CBCS, RBRS, and IRLS attempt to minimize
(3.3), (3.7). SOCP and IRLS converge and seem to minimize the objective; RBRS does so as well
for most λ’s. CBCS routinely fails to converge even after 10 000 iterations, and thus its solutions
yield extremely large objective function values.

permissible). Typically, the smallest K that produces a version of d(r) to within some
�2 fidelity is the design that the MRI pulse designer will use on a real system.

To obtain simultaneously K-sparse solutions with MP and LSMP, we set K = 30,
run each algorithm once, remember the ordered list of chosen indices, and back out
every solution for K = 1 through K = 30.

For each convex minimization method (IRLS, SOCP, RBRS, and CBCS), we ap-
ply the following procedure: first, we run the algorithm for 14 values of λ ∈ [

0, 14
]
,

storing each resulting solution, ĝtot(alg, λ). Then, for fixed K, to determine a simulta-
neously K-sparse deposition of energy on the k-space grid, we apply the retuning pro-
cess to each of the 14 solutions, obtaining 14 strictly simultaneously K-sparse retuned

sets of solution vectors, ĝ
(K)
tot (alg, λ). The one solution among the 14 that best mini-

mizes the �2 error between the desired and resulting images, ‖d−Ftotg
(K)
tot (alg, λ)‖2,

is chosen as the solution for the K under consideration. Essentially, we again assume
we know a good value for λ when applying each of the convex minimization methods.
To attempt to avoid convergence problems, RBRS and CBCS are permitted 5 000 and
10 000 maximum outer iterations, respectively (see below).

5.3.4. Results.

Image �2 error vs. number of energy depositions in k-space. The left subplot of
Figure 5.5 shows the �2 error vs. K curves for each algorithm. As K is increased, each
method produces images with lower �2 error, which is sensible: depositing energy at
more locations in k-space gives each technique more degrees of freedom with which to
form the image. In contrast to the sparsity pattern estimation experiments in sections
5.1 and 5.2, however, here LSMP is the best algorithm: for each fixed K considered in
Figure 5.5, the LSMP technique yields a simultaneously K-sparse energy deposition
that produces a higher-fidelity image than all other techniques. For example, when
K = 17, LSMP yields an image with �2 error of 3.3. In order to produce an image with
equal or better fidelity, IRLS, RBRS, and SOCP need to deposit energy at K = 21
points in k-space and thus produce less useful designs from an MRI perspective. CBCS
fares the worst, needing to deposit energy at K = 25 grid points in order to compete
with the fidelity of LSMP’s K = 17 image.

Closer look: Objective function vs. λ. The right subplot of Figure 5.5 shows how
well the four convex minimization algorithms minimize the objective function (3.3),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4572 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

Table 5.2

Algorithm runtimes and peak memory usage for MRI pulse design. Each algorithm’s runtime
and peak memory usage are listed. The runtimes of the latter four algorithms are averaged over
the 14 λ’s per trial. MP is again faster than the other techniques, but consumes more memory
because of its precomputation step [70, 72]. IRLS and SOCP are quite similar performance-wise and
minimize the convex objective function equally well (see Figure 5.5), but we see here that IRLS is
approximately 1.9 times faster and uses 1.4 times less peak memory than SOCP, making the former
the superior technique among the convex methods.

Algorithm Runtime Peak memory usage (MB)

MP 11 sec 704
LSMP 46 min 304
IRLS 50 sec 320
RBRS 87 min 320
CBCS 3.3 hr 320
SOCP 96 sec 432

(3.7) before retuning any solutions and enforcing strict simultaneous K-sparsity. For
each fixed λ, SOCP and IRLS find solutions that yield the same objective function
value. RBRS’s solutions generally yield objective function values equal to those of
SOCP and IRLS, but at times lead to higher values: in these cases RBRS almost
converges but does not do so completely. Finally, for many λ’s, CBCS fails to con-
verge and yields extremely large objective function values. Some additional detail on
convergence behavior is provided in [70, 72].

Runtimes and peak memory usage. Setting K = 30, we run MP and LSMP and
record the runtime of each. Across the 14 λ’s, the IRLS, RBRS, CBCS, and SOCP
runtimes are recorded and averaged. The peak memory usage of each algorithm is also
noted; these statistics are presented in Table 5.2. In distinct contrast to the smaller-
variable-size experiments in sections 5.1 and 5.2 where all four convex minimization
methods have relatively short runtimes (under one second), here RBRS and CBCS are
much slower, leaving IRLS and SOCP as the only feasible techniques among the four.
Furthermore, while LSMP does indeed outperform IRLS and SOCP on an �2 error
basis (as shown in Figure 5.5), the runtime statistics here show that LSMP requires
order-of-magnitude greater runtime to solve the problem—therefore, in some real-life
scenarios where designing pulses in less than 5 minutes is a necessity, IRLS and SOCP
are superior. Finally, in contrast to section 5.1’s runtimes given in Table 5.1, here
IRLS is 1.9 times faster than SOCP and uses 1.4 times less peak memory, making it
the superior technique for MRI pulse design since IRLS’s �2 error performance and
ability to minimize the objective function (3.3), (3.7) essentially equal those of SOCP.

Closer look: Images and chosen k-space locations for K = 17. To conclude
the experiment, we fix K = 17 and observe the images produced by the algorithms
along with the points at which each algorithm chooses to deposit energy along the
grid of candidate points in (kx, ky)-space. Figure 5.6 illustrates the images (in both
magnitude and phase) that arise due to each algorithm’s simultaneously 17-sparse set
of solution vectors,7 while Figure 5.7 depicts the placement pattern chosen by each
method. From Figure 5.6, we see that each algorithm forms a high-fidelity version of
the desired image d(r) given in the left subplot of Figure 5.4, but among the images,
LSMP’s most accurately represents d(r) (e.g., consider the sharp edges of the LSMP
image’s rectangular box). MP’s and CBCS’s images are noticeably fuzzy relative

7Each image is generated by taking the corresponding solution gtot, computing m in (5.3),
unstacking the elements of m into m(r), and then displaying the magnitude and phase of m(r).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4573
M

ag
n

it
u

d
e

MP LSMP IRLS

P
h

as
e

L2 Error = 4.3 L2 Error = 3.3 L2 Error = 3.9

M
ag

n
it

u
d

e

RBRS CBCS SOCP

P
h

as
e

L2 Error = 3.9 L2 Error = 4.6 L2 Error = 3.9

Fig. 5.6. MRI pulse design: Images per algorithm for K = 17. Each algorithm is used to
solve the MRI pulse design problem using 17 energy depositions along the k-space grid, attempting
to produce an image close to the desired one, d(r), given in the left subplot of Figure 5.4. From
each set of simultaneously 17-sparse solution vectors, we calculate the resulting image via (5.3)
and display both its magnitude and phase. LSMP’s image best resembles the desired one; IRLS’s,
RBRS’s, and SOCP’s images are nearly as accurate; MP’s and CBCS’s images lack crisp edges,
coinciding with their larger �2 errors.

RBRS CBCS SOCP

MP LSMP IRLS

5 0 0.5
5

0

0.5

5 0 0.5
5

0

0.5

5 0 0.5
5

0

0.5

5 0 0.5
5

0

0.5

5 0 0.5
5

0

0.5

5 0 0.5
5

0

0.5

kx [cm-1]

k y
 [c

m
-1

]

Fig. 5.7. MRI pulse design: Energy deposition patterns per algorithm for K = 17. Each algo-
rithm’s placement of energy in k-space is displayed. LSMP branches out to moderate kx frequencies
and high ky frequencies, partly explaining the superiority of its image in Figure 5.6. IRLS, RBRS,
and SOCP succeed in branching out to higher ky frequencies, but do not place energy at |kx| � 0.
MP and CBCS fail to spread their energy to high spatial frequencies, and thus their images in
Figure 5.6 lack distinct edges and appear as “low-pass filtered” versions of d(r).

to the others. The placements in Figure 5.7 give insight into these performance
differences. Here, LSMP places energy at several higher frequencies along the ky and
kx axes, which ensures the resulting rectangle is narrow with sharp edges along the
spatial y and x axes. In contrast, CBCS fails to place energy at moderate-to-high
(kx, ky)-space frequencies and thus cannot produce a rectangle with desirable sharp
edges, while MP branches out to some extent but fails to utilize high ky frequencies.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4574 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

IRLS, RBRS, and SOCP branch out to higher ky frequencies but not to high kx
frequencies, and thus their associated rectangles in Figure 5.6 are sharp along the y
axis but exhibit less distinct transitions (more fuzziness) along the spatial x axis. In
general, each algorithm has determined 17 locations at which to place energy that yield
a fairly good image, and each has avoided the computationally impossible scenario of
searching over all N -choose-K (225-choose-17) possible placements.

6. Discussion.

6.1. MRI pulse design vs. denoising and source localization. The MRI
pulse design problem in section 5.3 differs substantially from the source localization
problem in section 5.1, the denoising experiment in section 5.2, and other routine
applications of sparse approximation (e.g., [16, 7, 27, 22, 10, 11, 43]). It differs not
only in purpose but in numerical properties, the latter of which are summarized in
Table 6.1. While this list will not always hold true on an application-by-application
basis, it does highlight general differences between the two problem classes.

Table 6.1

Unique trends of the MRI pulse design problem. This table highlights differences between the
MRI problem and standard denoising and source localization applications. Items here will not always
be true, instead providing general highlights about each problem class.

MRI pulse design Denoising and source localization

• Fp’s overdetermined • Fp’s underdetermined
• No concept of noise: given d is dtrue • Noisy: given d is not dtrue

• Sweep over λ useful • Ideal λ unknown
• Metric: ‖d−m‖2 • Metrics: ‖gtot − ĝtot‖2 and/or fraction

of recovered sparsity pattern terms

6.2. Merits of row-by-row and column-by-column shrinkage. Even
though LSMP, IRLS, and SOCP tend to exhibit superior performance across different
experiments in this manuscript, RBRS and CBCS are worthwhile because, unlike the
former methods that update all PN unknowns concurrently, the shrinkage techniques
update only a subset of the total variables during each iteration.

For example, RBRS as given in Algorithm 3 updates only P unknowns at once,
while CBCS updates but a single scalar at a time [70, 72]. RBRS and CBCS are
thus applicable in scenarios where P and N are exceedingly large and tuning all PN
parameters during each iteration is not possible. If storing and handling M × PN or
PN × PN matrices exceeds a system’s available memory and causes disk thrashing,
RBRS and CBCS, though they require far more iterations, might still be better options
than LSMP, IRLS, and SOCP in terms of runtime.

6.3. Future work.

6.3.1. Efficient automated control parameter selection. A fast technique
for finding ideal values of λ is an open problem. It might be useful to investigate sev-
eral approaches to automated selection such as the “L-curve” method [33], universal
parameter selection [20], and min-max parameter selection [35].

6.3.2. Runtime, memory, and complexity reduction. As noted in sec-
tion 4, LSMP’s computation and runtime could be improved upon by extending the
projection-based recursive updating schemes of [10, 11] to MSSO LSMP. In regard
to the MRI design problem, runtime for any method might be reduced via a mul-
tiresolution approach (as in [43]) by first running the algorithm with a coarse k-space

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4575

frequency grid, noting which energy deposition locations are revealed, and then run-
ning the algorithm with a grid that is finely sampled around the locations suggested
by the coarse result. This is faster than providing the algorithm a large, finely sam-
pled grid and attempting to solve the sparse energy deposition task in one step. An
initial investigation has shown that reducing the maximum frequency extent of the
k-space grid (and thus the number of grid points, N) may also reduce runtime without
significantly impacting image fidelity [74].

6.3.3. Shrinkage algorithm convergence improvements. When solving the
MRI pulse design problem, both RBRS and CBCS required excessive iterations and
hence exhibited lengthy runtimes. To mitigate these problems, one may consider ex-
tending parallel coordinate descent (PCD) shrinkage techniques used for SSSO sparse
approximation (as in [21, 22]). Sequential subspace optimization (SESOP) [23] might
also be employed to reduce runtime. Combining PCD with SESOP and adding a line
search after each iteration would yield sophisticated versions of RBRS and CBCS.

6.3.4. Multiple-system multiple-output (MSMO) simultaneous sparse
approximation. It may be useful to consider a combined problem where there are
multiple observations as well as multiple system matrices. That is, assume we have
a series of J observations, d1, . . . ,dJ , each of which arises due to a set of P simulta-
neously K-sparse unknown vectors g1,j , . . . ,gP,j

8 passing through a set of P system
matrices F1,j , . . . ,FP,j and then undergoing linear combination, as follows:

(6.1) dj = F1,jg1,j + · · ·+ FP,jgP,j =

P∑
p=1

Fp,jgp,j for j = 1, . . . , J.

If Fp,j is constant for all J observations, then the problem reduces to

(6.2) dj = F1g1,j + · · ·+ FPgP,j = Ftotgtot,j for j = 1, . . . , J,

and we may stack the matrices and terms as follows:

(6.3) [d1, . . . ,dJ] = Ftot

[
gtot,1, . . . ,gtot,J

]
.

Having posed (6.1), (6.2), (6.3), one may formulate optimization problems similar to
(2.4), (3.3) to determine simultaneously sparse gp,j ’s that solve (6.3). Algorithms
for solving such problems may arise by combining the concepts of SSMO algorithms
[11, 43, 65, 62] with those of the MSSO algorithms posed earlier.

7. Conclusion. We defined the linear inverse MSSO simultaneous sparsity prob-
lem where simultaneously sparse sets of unknown vectors are required as the solution.
This problem differed from prior problems involving multiple unknown vectors be-
cause, in this case, each unknown vector was passed through a different system matrix
and the outputs of the various matrices underwent linear combination, yielding only
one observation vector.

To solve the proposed MSSO problem, we formulated three greedy techniques
(MP, OMP, and LSMP) along with algorithms based on IRLS, iterative shrinkage,
and SOCP methodologies. The MSSO algorithms were evaluated across noiseless and
noisy sparsity pattern estimation experiments as well as an MRI pulse design exper-
iment; for sparsity pattern recovery, algorithms that minimized the relaxed convex

8The K-term simultaneous sparsity pattern of each set of gp,j ’s may or may not change with j.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4576 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

objective function outperformed the greedy methods, whereas in the MRI pulse design
experiment, greedy LSMP exhibited superior performance.

When deriving RBRS for complex-valued data, we showed that seeking a single
sparse complex-valued vector is equivalent to seeking two simultaneously sparse real-
valued vectors: we mapped single-vector sparse approximation of a complex vector to
the MSSO problem, increasing the applicability of algorithms that solve the latter.

Overall, while improvements upon these seven algorithms (and new algorithms
altogether) surely do exist, this manuscript has laid the groundwork of the MSSO
problem and conducted an initial exploration of algorithms with which to solve it.

Acknowledgments. The authors thank D. M. Malioutov for assistance with the
derivation step that permitted the transition from (4.16) to (4.17) in section 4.7, as
well as K. Setsompop, B. A. Gagoski, V. Alagappan, and L. L. Wald for collecting the
experimental coil profile data in Figure 5.3. The authors also gratefully acknowledge
discussions on related work with A. C. Gilbert, R. Maleh, and D. Yoon.

REFERENCES

[1] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algo-
rithms, and Engineering Applications, MPS/SIAMSer. Optim. 2, SIAM, Philadelphia, 2001.

[2] A. Bjorck and T. Elfving, Accelerated Projection Methods for Computing Pseudoinverse
Solutions of Systems of Linear Equations, Technical report LiTH-MAT-R-1978-5, Depart-
ment of Mathematics, Linköping University, Linköping, Sweden, 1978.

[3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press,
Cambridge, UK, 2004.

[4] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse solutions of systems of equa-
tions to sparse modeling of signals and images, SIAM Rev., 51 (2009), pp. 34–81.

[5] E. J. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal
encoding strategies?, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406–5425.

[6] S. Chen, S. A. Billings, and W. Luo, Orthogonal least squares methods and their application
to non-linear system identification, Int. J. Control, 50 (1989), pp. 1873–1896.

[7] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit,
SIAM J. Sci. Comput., 20 (1998), pp. 33–61.

[8] J. Chen and X. Huo, Theoretical results on sparse representations of multiple-measurement
vectors, IEEE Trans. Signal Process., 54 (2006), pp. 4634–4643.

[9] S. Chen and J. Wigger, Fast orthogonal least squares algorithm for efficient subset model
selection, IEEE Trans. Signal Process., 43 (1995), pp. 1713–1715.

[10] S. F. Cotter, J. Adler, B. D. Rao, and K. Kreutz-Delgado, Forward sequential algorithms
for best basis selection, IEE Proc. Vision Image Signal Process., 146 (1999), pp. 235–244.

[11] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, Sparse solutions to lin-
ear inverse problems with multiple measurement vectors, IEEE Trans. Signal Process., 53
(2005), pp. 2477–2488.

[12] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp.
1413–1457.

[13] G. Davis, Adaptive Nonlinear Approximations, Ph.D. thesis, New York University, New York,
1994.

[14] G. Davis, S. Mallat, and Z. Zhang, Adaptive time-frequency decomposition, Opt. Eng., 33
(1994), pp. 2183–2191.

[15] D. L. Donoho, Superresolution via sparsity constraints, SIAM J. Math. Anal., 23 (1992), pp.
1309–1331.

[16] D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 41 (1995), pp.
613–627.

[17] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
[18] D. L. Donoho, For most large underdetermined systems of equations, the minimal �1-norm

near-solution approximates the sparsest near-solution, Comm. Pure Appl. Math., 59
(2006), pp. 907–934.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4577

[19] D. L. Donoho, M. Elad, and V. N. Temlyakov, Stable recovery of sparse overcomplete
representations in the presence of noise, IEEE Trans. Inform. Theory, 52 (2006), pp. 6–18.

[20] D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika,
81 (1994), pp. 425–455.

[21] M. Elad, Why simple shrinkage is still relevant for redundant representations?, IEEE Trans.
Inform. Theory, 52 (2006), pp. 5559–5569.

[22] M. Elad, B. Matalon, and M. Zibulevsky, Image denoising with shrinkage and redundant
representations, in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), Vol. 2, 2006, pp. 1924–1931.

[23] M. Elad, B. Matalon, and M. Zibulevsky, Coordinate and subspace optimization methods
for linear least squares with non-quadratic regularization, Appl. Comput. Harmon. Anal.,
23 (2007), pp. 346–367.

[24] Y. C. Eldar and H. Bölcskei, Block-sparsity: Coherence and efficient recovery, in Proceed-
ings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
Taipei, Taiwan, 2009, pp. 2885–2888.

[25] Y. C. Eldar and H. Rauhut, Average Case Analysis of Multichannel Sparse Recovery Using
Convex Relaxation, 2009; available online from http://www.arxiv.org/abs/0904.0494v1.

[26] A. K. Fletcher and S. Rangan, Orthogonal matching pursuit from noisy random measure-
ments: A new analysis, in Proceedings of the Neural Information Processing Systems
Conference, Vancouver, Canada, 2009.

[27] A. K. Fletcher, S. Rangan, V. K. Goyal, and K. Ramchandran, Denoising by sparse
approximation: Error bounds based on rate-distortion theory, EURASIP J. Appl. Signal
Process., 2006 (2006), 26318.

[28] M. Fornasier and H. Rauhut, Recovery algorithms for vector-valued data with joint sparsity
constraints, SIAM J. Numer. Anal., 46 (2008), pp. 577–613.

[29] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
SIAM J. Numer. Anal., 2 (1965), pp. 205–224.

[30] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, 1983.

[31] I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using
FOCUSS: A recursive weighted norm minimization algorithm, IEEE Trans. Signal Pro-
cess., 45 (1997), pp. 600–616.

[32] R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheynst, Atoms of all channels,
unite! Average case analysis of multi-channel sparse recovery using greedy algorithms, J.
Fourier Anal. Appl., 14 (2008), pp. 655–687.

[33] P. C. Hansen, Regularization tools: A Matlab package for analysis and solution of discrete
ill-posed problems, Numer. Algorithms, 6 (1994), pp. 1–35.

[34] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques,
Prentice–Hall, Englewood Cliffs, NJ, 1993.

[35] I. M. Johnstone, On minimax estimation of a sparse normal mean vector, Ann. Statist., 22
(1994), pp. 271–289.

[36] L. A. Karlovitz, Construction of nearest points in the Lp, p even, and L∞ norms. I, J.
Approx. Theory, 3 (1970), pp. 123–127.

[37] U. Katscher, P. Bornert, C. Leussler, and J. S. van den Brink, Transmit SENSE, Magn.
Reson. Med., 49 (2003), pp. 144–150.

[38] M. Kowalski and B. Torrésani, Structured sparsity: From mixed norms to structured shrink-
age, in SPARS’09—Signal Processing with Adaptive Sparse Structured Representations,
Saint-Malo, France, 2009.

[39] H. Krim and M. Viberg, Two decades of array signal processing research. The parametric
approach, IEEE Signal Process. Mag., 13 (1996), pp. 67–94.

[40] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators, J. Research Nat. Bur. Standards, 45 (1950), pp. 255–282.

[41] R. Maleh, D. Yoon, and A. C. Gilbert, Fast algorithm for sparse signal approximation
using multiple additive dictionaries, in SPARS’09—Signal Processing with Adaptive Sparse
Structured Representations, Saint-Malo, France, 2009.

[42] D. M. Malioutov, A Sparse Signal Reconstruction Perspective for Source Localization with
Sensor Arrays, Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA,
2003.

[43] D. M. Malioutov, M. Çetin, and A. S. Willsky, A sparse signal reconstruction perspective
for source localization with sensor arrays, IEEE Trans. Signal Process., 53 (2005), pp.
3010–3022.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4578 A. C. ZELINSKI, V. K. GOYAL, AND E. ADALSTEINSSON

[44] S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans.
Signal Process., 41 (1993), pp. 3397–3415.

[45] M. Mishali and Y. C. Eldar, Reduce and boost: Recovering arbitrary sets of jointly sparse
vectors, IEEE Trans. Signal Process., 56 (2008), pp. 4692–4702.

[46] B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM J. Comput., 24
(1995), pp. 227–234.

[47] S. Negahban and M. J. Wainwright, Joint support recovery under high-dimensional scal-
ing: Benefits and perils of �1,∞-regularization, in Proceedings of the Neural Information
Processing Systems Conference, Vancouver, Canada, 2008.

[48] G. Obozinksi, M. J. Wainwright, and M. I. Jordan, High-dimensional support union re-
covery in multivariate regression, in Proceedings of the Neural Information Processing
Systems Conference, Vancouver, Canada, 2008.

[49] C. C. Paige and M. A. Saunders, Algorithm 583. LSQR: Sparse linear equations and least
squares problems, ACM Trans. Math. Software, 8 (1982), pp. 195–209.

[50] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse
least squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.

[51] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition, in Conference Record
of the Twenty-Seventh Asilomar Conference on Signals, Systems, and Computers, Vol. 1,
Pacific Grove, CA, 1993, pp. 40–44.

[52] J. M. Pauly, D. Nishimura, and A. Macovski, A k-space analysis of small-tip-angle excita-
tion, J. Magn. Reson., 81 (1989), pp. 43–56.

[53] S. Rangan, A. K. Fletcher, and V. K. Goyal, Asymptotic Analysis of MAP Estimation via
the Replica Method and Applications to Compressed Sensing, 2009; available online from
http://www.arxiv.org/abs/0906.3234v1.

[54] K. Setsompop, L. L. Wald, V. Alagappan, B. A. Gagoski, F. Hebrank, U. Fontius, F.

Schmitt, and E. Adalsteinsson, Parallel RF transmission with 8 channels at 3 Tesla,
Magn. Reson. Med., 56 (2006), pp. 1163–1171.

[55] M. Stojnic, F. Parvaresh, and B. Hassibi, On the reconstruction of block-sparse signals
with an optimal number of measurements, IEEE Trans. Signal Process., 57 (2009), pp.
3075–3085.

[56] J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,
Optim. Methods Softw., 11/12 (1999), pp. 625–653.

[57] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Royal Statist. Soc. Ser. B,
58 (1996), pp. 267–288.

[58] A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method,
Dokl. Akad. Nauk SSSR, 151 (1963), pp. 501–504 (in Russian).

[59] A. N. Tikhonov and V. A. Arsenin, Solution of Ill-Posed Problems, Winston & Sons, Wash-
ington, DC, 1977.

[60] K. C. Toh, M. J. Todd, and R. H. Tutuncu, SDPT3—a MATLAB software package for
semidefinite programming, version 1.3, Optim. Methods Softw., 11/12 (1999), pp. 545–581.

[61] J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inform.
Theory, 50 (2004), pp. 2231–2242.

[62] J. A. Tropp, Algorithms for simultaneous sparse approximation: Part II: Convex relaxation,
Signal Process., 86 (2006), pp. 589–602.

[63] J. A. Tropp, Just relax: Convex programming methods for identifying sparse signals in noise,
IEEE Trans. Inform. Theory, 52 (2006), pp. 1030–1051.

[64] J. A. Tropp and A. C. Gilbert, Signal recovery from random measurements via orthogonal
matching pursuit, IEEE Trans. Inform. Theory, 53 (2007), pp. 4655–4666.

[65] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, Algorithms for simultaneous sparse approx-
imation: Part I: Greedy pursuit, Signal Process., 86 (2006), pp. 572–588.

[66] E. van den Berg and M. P. Friedlander, Joint-Sparse Recovery from Multiple Measure-
ments, 2009; available online from http://www.arxiv.org/abs/0904.2051v1.

[67] M. J. Wainwright, Sharp thresholds for high-dimensional and noisy sparsity recovery using
�1-constrained quadratic programming (Lasso), IEEE Trans. Inform. Theory, 55 (2009),
pp. 2183–2202.

[68] D. P. Wipf and B. Rao, An empirical Bayesian strategy for solving the simultaneous sparse
approximation problem, IEEE Trans. Signal Process., 55 (2007), pp. 3704–3716.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MSSO SIMULTANEOUS SPARSE APPROXIMATION 4579

[69] C. Y. Yip, J. A. Fessler, and D. C. Noll, Advanced 3D tailored RF pulse for signal recovery
in T∗

2-weighted functional magnetic resonance imaging, Magn. Reson. Med., 56 (2006),
pp. 1050–1059.

[70] A. C. Zelinski, Improvements in Magnetic Resonance Imaging Excitation Pulse Design, Ph.D.
thesis, Massachusetts Institute of Technology, Cambridge, MA, 2008.

[71] A. C. Zelinski, V. K. Goyal, E. Adalsteinsson, and L. L. Wald, Sparsity in MRI RF
excitation pulse design, in Proceedings of the 42nd Annual Conference on Information
Sciences and Systems, Princeton, NJ, 2008, pp. 252–257.

[72] A. C. Zelinski, V. K. Goyal, and E. Adalsteinsson, Simultaneously Sparse Solutions to
Linear Inverse Problems with Multiple System Matrices and a Single Observation Vector,
2009; available online from http://www.arxiv.org/abs/0907.2083v1.

[73] A. C. Zelinski, L. L. Wald, K. Setsompop, V. Alagappan, B. A. Gagoski, V. K. Goyal,

and E. Adalsteinsson, Fast slice-selective radio-frequency excitation pulses for mitigating
B+

1 inhomogeneity in the human brain at 7 Tesla, Magn. Reson. Med., 59 (2008), pp. 1355–
1364.

[74] A. C. Zelinski, L. L. Wald, K. Setsompop, V. K. Goyal, and E. Adalsteinsson, Sparsity-
enforced slice-selective MRI RF excitation pulse design, IEEE Trans. Med. Imaging, 27
(2008), pp. 1213–1229.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

