DESIGNING FAST 3-D RF EXCITATIONS BY OPTIMIZING THE NUMBER, PLACEMENT AND WEIGHTING OF SPOKES IN K-SPACE VIA A SPARSITY-ENFORCEMENT ALGORITHM

A. C. Zelinski1, K. Setsompop1, V. K. Goyal1, V. Alagappan1, U. Fontius2, F. Schmitt3, L. L. Wald4,5, and E. Adalsteinsson4,5

1Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, United States, 2A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States, 3Siemens Medical Solutions, Erlangen, Germany, 4Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, United States

\textbf{INTRODUCTION:} Playing sinc-like RFs in the presence of slice-selective gradient trajectories is useful for exciting a thin slice in \mathbb{Z} and is analogous to playing sinc-like “spokes” along k, in excitation k-space. Recently, the use of multiple complex-weighted spokes at different locations in the (k_x,k_z) plane has led to RF pulses that mitigate B_1-inhomogeneity in single-coil excitation systems \cite{1} and reduce excitation time (TE) on multi-channel systems \cite{2}. While placing a tall spoke in k-space does indeed significantly increase pulse duration and minimum TE, it is a necessary tradeoff to ensure a sharp slice profile with low sidelobes. Because of this high temporal cost per spoke, an ideal thin-slice design would be one that used very few spokes while achieving a user-specified excitation in the (x,z) plane with high-fidelity. To achieve this, we propose an algorithm that optimizes the number, placement and weighting of spokes, based on sparse approximation theory. First we show the theory encompasses RF design for multi-channel excitation systems, with single-channel systems as a base case. We then show the method generates fast, high-fidelity slice-selective pulses, achieving near-optimal tradeoff of TE & excitation fidelity. Experiments conducted in a phantom on a 3T Siemens Magnetom TRIO with an 8-channel parallel TX array shows the algorithm’s advantages over traditional (k_x,k_z) spoke placement patterns.

\textbf{METHODS AND RESULTS:} Sparse approximation (SA). The goal of SA is to find a vector or matrix of unknowns with a small number of nonzero elements such that a system of equations approximately holds, e.g., $m = \sum_{j=1}^{n} F_{j} p_j + n \cdot$, where $m, n \in \mathbb{C}^{d} , F_j \in \mathbb{C}^{d \times n}, \psi_j \in \mathbb{C}^{n}$, and $N > M$. This problem is ill-posed because there are infinitely many choices of ψ_j vectors that solve it. But consider enforcing sparsity on the ψ_j, requiring the l_1-norm of each to be small, which is similar to requiring many elements of each ψ_j to equal zero \cite{3}. Suppose we further constrain the ψ_j requiring them to be simultaneously sparse: each of the ψ_j must have nonzeros occurring at a set of indices. With such requirements, the problem is no longer ill-posed. Letting $\Phi = [\psi_1, \ldots, \psi_p]$ a program that finds a simultaneously sparse set of ψ_j, and approximately yields m is as follows: $\min_{\Phi_P} (1 - \lambda) \left\| m - \sum_{j=1}^{n} F_j p_j \right\|_2 + \lambda \left\| \Phi \right\|_1$, where the second term, $\|\Phi\|_1$, is the l_1-norm of the l_2-norms of the rows of Φ, a simultaneously sparse norm that penalizes (rewards) the program when the columns of Φ have dissimilar (similar) sparsity profiles. The first term keeps the residual error down. As λ increases from 0 to 1, sparser solutions are generated while the residual error increases, i.e., λ trades off sparsity with residual error. Because the objective function is convex, there exists an optimal solution Φ that attains the global minimum. Φ may be computed via a Second-Order Cone program. Refer to \cite{3,4} for more details.

\textbf{Proposed algorithm.} Our goal is to excite a thin, sharp slice that approximately equals a user-specified target excitation $m(x,y)$ at $z = z_0$ and zero at $z \neq z_0$. To accomplish this, we must decide on a number of spokes to use, their locations in (k_x,k_z), and weights for each. Using spokes in k will let us obtain a thin slice in \mathbb{Z}. But achieving the in-slice target $m(x,y)$ is more complicated: ideally, many weighted spokes would be placed in (k_x,k_z) such that $m(x,y)$ was almost exactly achieved, but this would require many spokes and result in a long TE. To keep TE short, we must use a small number of spokes, but with few spokes, achieving $m(x,y)$ becomes difficult. Let us define m to be vector of spatial samples of the (x,y,z) excitation in some region of interest (ROI).

\textbf{Analogy between spokes and Diracs in 2-D Fourier domain.} Placing a spoke in (k_x,k_z) with some arbitrary complex weight ϕ is analogous to placing a weighted-Dirac delta, $\delta(k_x,k_z)$, in the 2-D Fourier domain. Since spokes are expensive in terms of pulse duration, each δ is also expensive. Using this analogy, our goal is now: using a small number of complex-weighted δ's in 2-D Fourier space, ensure that their 2-D Fourier transform is close to $m(x,y)$ at all points in the region of interest.

\textbf{Base case ($P = 1$) formulation.} Assume a finite grid of discrete points exists in (k_x,k_z), each of which is a Dirac delta that produces a complex exponential in the spatial domain. An arbitrary choice of complex weights at different points on the grid results in the weighted grid by a Fourier transform. Arranging the complex weights into the vector ϕ, the following holds: $r = D \cdot A \cdot p = F \cdot p$, where r is a vector of spatial samples of the resulting $m(x,y)$ excitation in the ROI, D is a diagonal matrix of samples of the coil sensitivity pattern in the ROI, and $A_{\psi_j} = \exp(j2\pi k_{x}n_{x}[m]k_{z}n_{z}[m])$ \cite{5}. If the i-th element of ϕ, is nonzero, this corresponds to a spike at $(k_{x}n_{x},k_{z}n_{z})$. Thus, a sparse ϕ, that results in an r close to m is ideal: it implies a short, high-fidelity excitation.

\textbf{Extension to parallel systems ($P > 1$).} For parallel systems, the formulation extends as follows: $r = D_{\text{parallel}} \cdot A_{\text{parallel}} \cdot p = F \cdot p$, with the constraint that the ϕ, must be simultaneously sparse, which way that the RF pulses along each of the P coils (the $b_{d}(t)$ waveforms) must each play along the same k-space trajectory. This constraint arises because the system’s set of gradients determines a unique k-space trajectory $k(t)$. If the ϕ, were not simultaneously sparse, it would imply the RFs are concurrently played along different k-space trajectories, which is not possible.

\textbf{Step I: determine spoke locations.} Using as few points on the frequency grid as possible, we want to attain the user-specified m within the thin-slice, i.e., we want to find a simultaneously sparse Φ matrix such that the residual error term $\left\| m - \phi \right\|_1 = \left\| m - \sum_{j=1}^{n} F_j p_j \right\|_1$ is small. Finding this Φ is accomplished by fixing λ and solving the optimization program above. With the proper choice of λ, a simultaneously sparse, globally optimal Φ matrix is found that keeps the residual error down.

\textbf{Step II: keep T spokes and determine PT weights.} Since each row of Φ that contains nonzeros corresponds to a spoke that must be traversed in k-space, we zero out all but T rows of Φ, keeping those with the largest l_2-energy. Thus, T is a control parameter explicitly trading off the number of spokes, and hence TE, with excitation fidelity. Since all but T rows of Φ equal zero, the affine system of equations is now reduced to $r = \sum_{j=1}^{n} F_{j,T} p_j$, where each $F_{j,T}$ is a truncated matrix whose columns correspond to the T columns of F_j that remain after discarding all but T rows of Φ. Now, Φ_{T} is recalculated to attain an excitation closer to m, i.e., the weights at each of the T spoke locations are retuned for each of the P coils in a least-squares sense via the pseudo-inverse of $[F_{1,T}, \ldots, F_{T,T}]$.

\textbf{Step III: generate an RF pulse set.} At this point, T spokes have been placed in k-space at points on the (k_x,k_z) grid implicitly defined by the ϕ_j. Further, P weights have been determined for each spoke (one per excitation coil). With this information, a set of RF pulses may be designed using the method in \cite{2}.

\textbf{Results.} The proposed method was compared to a non-optimized spoke placement on a grid within a fixed radius. Experiments were conducted in a phantom in a 3T Siemens Magnetom TRIO equipped with an 8-channel TX array. Each method used 20 spokes and both attempted to excite the dual-space bifurcation target shown above.