Advanced Technologies for Optical Frequency Control and Optical Clocks

Yoel Fink
Thomas Greytak
Erich Ippen
Franz Kaertner
Daniel Kleppner
Leslie Kolodziejski
Jeffrey Shapiro
Franco Wong

Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, MA 02139

Department of Electrical Engineering and Computer Science
Department of Materials Science and Engineering
Department of Physics
<ippen@mit.edu>
Outline

Few-cycle laser development
- Ti:sapphire, Cr:forsterite, Cr:YAG
- Phase sensitive nonlinear optics
- Attosecond-precision laser synchronization

Optical frequency metrology with ultracold hydrogen
- Hydrogen spectroscopy and frequency referencing
- Locking of femtosecond laser comb to single frequency cw laser

Nonlinear optical techniques for comb technology
- Efficient SHG and DFG with chirped-grating PPLN
- 3-to-1 self phase-locked optical frequency divider
- DFG for comb locking to methane-stabilized HeNe laser

Ultra-broadband mirrors and saturable absorbers for few-cycle lasers
- Novel wide-area GaAlAs oxidized mirrors
- Saturable Bragg reflectors for few-cycle lasers

Cylindrical photonic bandgap fibers
- Novel microstructured fiber for nonlinear optics
- Broadband dispersion characteristics of bandgap fibers

Ultra-low-jitter modelocked diode laser
- Locking to visible wavelength reference
5-fs Ti:sapphire Laser

- double-chirped mirrors
- enhanced SPM
- octave-spanning spectrum
- dispersion-managed modelocking
Chirped and Double-Chirped Mirrors

Bragg-Mirror:

\[\text{TiO}_2 / \text{SiO}_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_B/4 \text{- Layers} \]

Chirped Mirror:

Bragg-Wavelength \(\lambda_B \) Chirped

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

Negative Dispersion:

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\text{Air} \]

Double-Chirped Mirror:

Bragg-Wavelength and Coupling Chirped

\[d_h \leq \lambda_B/4 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\text{AR-Coating} \]

\[\text{Air} \]

“Impedance” - Matching

\[\text{Air} \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\text{TiO}_2 / \text{SiO}_2 \]

\[\lambda_B/4 \text{- Layers} \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\text{AR-Coating} \]

\[\text{Air} \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\text{SiO}_2 - \text{Substrate} \]

\[\lambda_2 > \lambda_1 \]
DCM-Pairs Covering One Octave

Designed

Measured

Fabricated by Tschudi Group, Darmstadt

MURI - Technology for Optical Frequency Control and Optical Clocks
5-fs Pulse Characterization

- Nonlinear autocorrelation
- Spectrum
- Recovered amplitude and phase
Pulse-to-Pulse Phase Slip in a Modelocked Laser

\[V_{\text{GROUP}} \neq V_{\text{PHASE}} \]

Modelocked laser

\[\Delta \phi \]

\[2n_0 L/c \]
Phase-Dependent 2nd Harmonic

\textbullet \text{ rf tones reveal } \frac{\partial \phi}{\partial t}

RF spectral power density [dB]

RF Frequency [MHz]

Laser \quad 5 \text{ fs pulse} \quad \rightarrow \quad \text{SHG} \quad \text{Pol.} \quad \text{Filter} \quad \text{PMT}

1160 \text{ nm} \\
+580 \text{ nm} \\
580 \text{ nm}

MURI - Technology for Optical Frequency Control and Optical Clocks
Stopping the Optical Phase Slip

\[mT_{\text{opt}} = T_{\text{rf}} \]

The optical frequency is locked to an exact multiple of the rf rep rate!
Locking an octave by SHG: \[2f_1 = f_2 = f_1 + \frac{mc}{2n_gL} \Rightarrow f_1 = \frac{mc}{2n_gL} \]
Second Harmonic Generation with Octave-Spanning Spectrum

=> Interference between fundamental and 2nd harmonic
Continuum Generation with Microstructured Fiber

Strong guiding shifts the zero-dispersion wavelength to the near visible

Spectrum resulting when 80fs pulses from a Ti:sapphire oscillator are focused into a holey fiber

J. Ranka et al.

MURI - Technology for Optical Frequency Control and Optical Clocks
14 fs Cr:forsterite Laser

- All solid state
- 1.3 µm wavelengths

Recent result: SBR stabilized

Chuboda et.al.

MURI - Technology for Optical Frequency Control and Optical Clocks
20-fs Cr4+:YAG Laser

Nd:YVO\textsubscript{4} Laser – 1064nm

f = 10 cm

DCM

SBR

2-cm Cr4+:YAG

OC

\begin{itemize}
 \item SBR Reflectivity
 \item Wavelength (\textmu m)
 \item Autocorrelation
 \item 20 fs FWHM
\end{itemize}

MURI - Technology for Optical Frequency Control and Optical Clocks
Overlapping Femtosecond Laser Spectra

Ti:Sapphire, Cr:Forsterite and Cr:YAG
A Compact Prismless Ti:sapphire Laser

Octave-spanning spectrum

Future:
- Even more compact
- Scaling to higher repetition rates
- >500 MHz, ring laser

MURI - Technology for Optical Frequency Control and Optical Clocks
Overlapping Femtosecond Laser Spectra

- Compact, prismless octave spanning Ti:sapphire laser
- Stabilized Cr:forsterite laser
- Laser synchronization 300 asec timing-jitter
- Opportunities: extended frequency comb: 600–1600 nm and/or single-cycle pulse generation
The residual out-of-loop timing jitter measured from 10mHz to 2.3 MHz is 300 as (a tenth of an optical cycle)

Output spectrum: 650-1450nm
Optical Frequency Metrology with Ultracold Hydrogen

OVERALL GOAL
To pursue ultraprecise spectroscopy of ultracold atomic hydrogen for:

SCIENCE
• Resolve discrepancies in the theory of quantum electrodynamics
• Better values for fundamental constants
• Test theories of atomic interactions and atomic structure

TECHNOLOGY
• Explore the possibilities for an atomic hydrogen optical clock
• Develop and apply techniques for measuring the frequencies of optical transitions
• Stimulate the development and application of optical frequency combs

IMMEDIATE GOAL
Measure absolute frequencies of transitions such as 2S → 10S (2-photon, 730 nm)
using atomic hydrogen as an optical frequency standard
Spectroscopy with a Hydrogen Optical Clock

Lock to 1S-2S (243 nm)

- Excite 1S→2S transition (known to about 1 part in 10^{14}.)
- Lock 486 nm laser to 1S→2S
- Excite two-photon transition such as 2S→10S
- Measure excitation frequencies with an optical frequency comb, referenced to the 486 nm laser, i.e. referenced to hydrogen
Nonlinear Optical Techniques for Comb Technology

Ultra-broadband SHG with zero group velocity mismatch
• 70 nm bandwidth for 1580 nm → 790 nm in PPKTP

Difference-frequency generation of 3.39 μm
• locking Ti:sapphire laser comb to CH-stabilized HeNe laser
• collaboration between MIT and JILA

3-to-1 frequency divider
• self-phase-locked optical parametric oscillator with cascaded nonlinear interactions in PPLN
• provides phase-locked markers at 532, 798, and 1596 nm
Difference Frequency Generation of 3.39 \(\mu \text{m} \)

- Ti:S fs pulses
- Servo to lock comb spacing to He-Ne
- PPLN difference-frequency generator
- cw 3.39 \(\mu \text{m} \) output
- Phase-locked
- CH-stabilized He-Ne @ 3.39 \(\mu \text{m} \)

N pairs of modes yield \(N^2 \) enhancement
\(N \sim 15,000 \)

MURI - Technology for Optical Frequency Control and Optical Clocks
Self-Phase-Locked OPO Yields 3:2:1 Frequency Markers

- **Pump**: 532 nm
- **Signal**: 798 nm
- **Idler**: 1596 nm

OPO grating
SHG grating

Self-phase locking ($\Delta \omega = 0$)

PZT
Ultra-Broadband Saturable Absorber Mirrors

GOALS

• High index-contrast oxidized mirrors for broadband low dispersion
• In-based absorber optimized for wavelength – integrated on mirror
• Large area for low power density
• Stable, durable structures

PROGRESS

• Integrated broadband SBRs for Cr:YAG and Cr:forsterite lasers
• Dramatic improvement in layer stability with AlGaAs/Al$_x$O$_y$ structures
• Wide area oxidization (>500\,\mu m diameter)

GOALS

GaAs/Al$_x$O$_y$ Mirror

<table>
<thead>
<tr>
<th>delaminated interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
</tr>
<tr>
<td>Al$_x$O$_y$</td>
</tr>
<tr>
<td>GaAs substrate</td>
</tr>
</tbody>
</table>

PROGRESS

AlGaAs/Al$_x$O$_y$ Mirror

<table>
<thead>
<tr>
<th>GaAs/InGaAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al${0.3}$Ga${0.7}$As</td>
</tr>
<tr>
<td>Al$_x$O$_y$</td>
</tr>
<tr>
<td>GaAs substrate</td>
</tr>
</tbody>
</table>
Issues Affecting the Distributed Bragg Reflector

Oxidation of AlGaAs Layers

- Edges of mesa less oxidized than at center
- Mirror bandwidth a function of position

GaAs/InGaAs

Al_xO_y

$\text{Al}_{0.3}\text{Ga}_{0.7}\text{As}$

GaAs substrate

99μm from mesa edge

13μm from mesa edge

R946, 5 hr, 415 C
Oxidized 11/13/2002

R946, 5 hr, 415 C
Oxidized 11/13/2002

MURI - Technology for Optical Frequency Control and Optical Clocks
Issues Affecting Saturable Absorber

Sensitivity to Oxidation Time

Sensitivity to Oxidation Temperature

Sensitivity to Growth Temperature

Center = ~3mm from wafer edge

Center = ~11.4mm from wafer edge

Center = ~18.4mm from wafer edge

MURI - Technology for Optical Frequency Control and Optical Clocks
OmniGuide Mirror Fibers

primary gap centered around 1.5 µm
Bandgap Fiber with and without Defect

Regular OmniGuide structure

Modified (defect) structure

MURI - Technology for Optical Frequency Control and Optical Clocks
Mirror-guide Dispersion Characteristics

Bandgap fiber

Fiber with cavity mode

Dispersion D (ps/nm-km)

Vacuum wavelength (μm)

Metallic

LH

1.55 μm

ZD

MURI - Technology for Optical Frequency Control and Optical Clocks
Modelocked External External Cavity Diode Laser

- 500 \(\mu \text{m} \) gain section
- 50 \(\mu \text{m} \) saturable absorber section
- \(\lambda = 1547\text{nm} \), \(f = 9.35 \text{ GHz} \)
- BPF = 0.7 nm : \(\tau = 6.7 \text{ ps} \)
- BPF = 5 nm : \(\tau = 3 \text{ ps} \)

NEC external cavity MLLD

MURI - Technology for Optical Frequency Control and Optical Clocks
Residual Phase Noise Measurement

- Vector signal analyzer for low frequency offsets (1-10 MHz)
- RF spectrum analyzer for high frequency offsets (10 MHz – 4.5 GHz)

(RF analyzer after mixer has higher sensitivity than for direct detection.)
Single-Sideband Phase Noise - Results

- Hybrid MLLD, 9GHz, 6.7 ps, Poseiden SBO
- Vector signal analyzer (0 – 10 MHz)
- RF spectrum analyzer (10 MHz – 4.5 GHz)

![Graph showing phase noise data for spectrum and vector signal analyzers.]

Integrated timing jitter from 10 Hz to 4.5 GHz = 86 fs

1kHz – 10MHz : 40 fs

154 fs including all noise spurs
SBO jitter = 5.6 fs (10 Hz to 10 MHz)
Synchronization of Modelocked Diode Laser to Visible Standard

MIT-JILA collaboration

MURI - Technology for Optical Frequency Control and Optical Clocks
MIT-JILA collaboration

MURI - Technology for Optical Frequency Control and Optical Clocks

Timing Jitter Spectral Density of Stabilized MLLD

20 fs jitter (1Hz – 10 MHz)
Outline

Few-cycle laser development
• Ti:sapphire, Cr:forsterite, Cr:YAG
• Phase sensitive nonlinear optics
• Attosecond-precision laser synchronization

Optical frequency metrology with ultracold hydrogen
• Hydrogen spectroscopy and frequency referencing
• Locking of femtosecond laser comb to single frequency cw laser

Nonlinear optical techniques for comb technology
• Efficient SHG and DFG with chirped-grating PPLN
• 3-to-1 self phase-locked optical frequency divider
• DFG for comb locking to methane-stabilized HeNe laser

Ultra-broadband mirrors and saturable absorbers for few-cycle lasers
• Novel wide-area GaAlAs oxidized mirrors
• Saturable Bragg reflectors for few-cycle lasers

Cylindrical photonic bandgap fibers
• Novel microstructured fiber for nonlinear optics
• Broadband dispersion characteristics of bandgap fibers

Ultra-low-jitter modelocked diode laser
• Locking to visible wavelength reference