
Guaranteed Passive Balancing Transformations for Model
Order Reduction

Joel Phillips
Cadence Berkeley Labs
Cadence Design Systems
San Jose, CA, U.S.A.
jrp@cadence.com

Luca Daniel
EECS Department

University of California Berkeley
Berkeley, CA, U.S.A.

dluca@eecs.berkeley.edu

L. Miguel Silveira
INESC ID - Cadence Euro Labs
IST - Tech. U. Lisbon, Portugal

lms@inesc-id.pt

ABSTRACT
The major concerns in state-of-the-art model reduction algorithms
are: achieving accurate models of sufficiently small size, numer-
ically stable and efficient generation of the models, and preser-
vation of system properties such as passivity. Algorithms such
as PRIMA generate guaranteed-passive models, for systems with
special internal structure, using numerically stable and efficient
Krylov-subspace iterations. Truncated Balanced Realization (TBR)
algorithms, as used to date in the design automation community,
can achieve smaller models with better error control, but do not
necessarily preserve passivity. In this paper we show how to con-
struct TBR-like methods that guarantee passive reduced models
and in addition are applicable to state-space systems with arbitrary
internal structure.

Categories & Subject Descriptors: B.7.2 Simulation, B.8.2 Per-
formance Analysis & Design Aids, I.6 Simulation & Modeling.
General Terms: Algorithms, Performance, Design,
Keywords: Passive reduced order modeling, Truncated balanced
realization.

1. INTRODUCTION
Model reduction has been an active research field in design au-

tomation over the past decade. In an integrated circuits context, ini-
tial interest in model reduction techniques stemmed from efforts to
accelerate analysis of circuit interconnect. More recently, model re-
duction has come to be viewed as a method for generating compact
models from all sorts of physical system modeling tools. Because
of the need to obtain accurate high-order models at reasonable com-
putational cost, the Krylov-subspace model reduction methods [1]
have occupied the forefront of research over the past five years.
Recently it has become apparent that, while very suitable for

analysis of large-scale systems, the models generated from the Kry-
lov techniques such as PRIMA and PVL are not necessarily as
compact (that is, small in order) as is desired [2, 3]. Therefore, an-
other approach, already well-developed in the control literature has
been receiving renewed attention in the electronic design automa-
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tion community: that of Truncated Balanced Realization (TBR) [4].
Truncated balanced realization algorithms (and their close rela-

tives that generate optimal norm approximants [5]) are of impor-
tance in their own right. For small systems, a few hundred states or
so, they generate superior reduced models, as well as computable
bounds on the reduction error. For large systems, direct application
of the techniques used to balance and truncate the systems is com-
putationally infeasible since the computations required have O n3
complexity when performed directly (n is the order of the system to
be reduced). Therefore the TBRmethods are of more interest when
combined with iterative Krylov-subspace procedures. One formu-
lation of this method is to directly solve the large Lyapunov equa-
tions via a Krylov subspace method [6, 7]. The reduced models are
obtained directly from the reduced Lyapunov equation. Another
viewpoint is to obtain an initial reduced model via some initial re-
duction or approximation technique and then further compress it
using a TBR method. This second viewpoint is somewhat more
general since the initial approximation can be generated by any de-
sired method, for example rational fitting [8] or a now standard
Krylov-subspace technique [2, 9].
An issue with the TBR type methods that has not been addressed

in most of the above mentioned works is that they cannot be re-
lied on to preserve passivity. The technique in [2] uses a passivity-
preserving initial reduction, but follows this reduction with a stan-
dard TBR method. There is no guarantee that the second TBR step
will not destroy the passivity of the initial model. More problem-
atic, no means is given in [2] to determine if the final model is
passive – or not.
Less widely appreciated is another dilemma: Krylov methods

such as PRIMA have practical issues that prevent their wide appli-
cation to systems outside the class of RLC circuits. These methods
rely on congruence transformations to preserve positive-realness
of the matrices that are internal to the state-space representation.
However, whether or not a state-space model represents a passive
system is a property of the input-output transfer function, not a
property of the internal representation. Many passive systems are
not conveniently put into a form for which algorithms such as PRIMA
are applicable: they may have asymmetric or non-positive semidef-
inite system and descriptor matrices. It may not be possible to per-
form a change of basis to a convenient form without destroying
sparse structure that may be present in the system, meaning that for
large-scale systems such an approach is infeasible.
Further, positive realness is not necessarily the right property to

seek. If the state-space model represents scattering (S) parame-
ters of a passive system, the system is passive if the norm of the
S-parameter matrix is bounded by unity, and so even the transfer
function has no relation to positive-realness. Such systems cannot



be reduced by congruence. To the best of our knowledge, no effec-
tive truly general-purpose passivity-preserving algorithms are now
widely available.
In this paper we discuss TBR-like model reduction algorithms

that can preserve system passivity, have computable error bounds,
and, unlike other algorithms such as PRIMA, pose no constraints
on the internal structure of the state-space model. We describe vari-
ants that preserve both positive-realness (useful for systems that
represent Y or Z parameters) and bounded-realness (useful for sys-
tems that represent S parameters). These algorithms can be applied
directly to a given state-space description, or can be used as the
second stage of a Krylov-subspace based procedure [6, 7, 2].

2. BACKGROUND

2.1 State-Space Models
Given a state-space model in descriptor form,

E
dx
dt

Ax t Bu t y t Cx t Du t (1)

where E A n n B n p C p n D p p u t p , model
reduction algorithms seek to produce a similar system with reduced
Ẽ Ã q q B̃ q p C̃ p q , of order qmuch smaller than the
original order n, but for which the outputs y t and ỹ t are approx-
imately equal for inputs u t of interest. Often the transfer func-
tions H s D C sE A 1B and its reduced counterpart H̃ s
is used as a metric for approximation : if H̃ s H s ε for
some given allowable error ε and allowed domain of the complex
frequency variable s, the reduced model is accepted as accurate.

2.2 Passivity
When modeling passive systems – those that cannot produce

energy internally – non-passive reduced models may cause non-
physical behavior later in circuit simulators, such as by generat-
ing energy at high frequencies that causes erratic or unstable time-
domain behavior. If H s represents the Y (admittance) or Z (im-
pedance) parameters of a system, positive-realness of H s implies
that the underlying state-space description is a representation of a
passive system [10]. The function H s is positive-real (PR) if

H s H s (2)
H s is analytic in Re s 0 (3)

H s H s H 0 in Re s 0 (4)

If H s represents the S (scattering) parameter matrix, then to
represent a passive system, it is necessary that H s be bounded-
real [10]. A function H s is bounded-real(BR) if (2) and (3) hold
and in addition

I HH s H s 0 in Re s 0 (5)

2.3 Krylov Methods
Recently developed model reduction methods suitable for appli-

cation to large systems are based on Krylov-subspace techniques.
Mathematically, the reduced models are obtained via a projection
operation

Ẽ WTEV Ã W TAV B̃ WTB C̃ CV (6)

For example, PRIMA [1] constructsV W by using the Arnoldi al-
gorithm, thereby spanning a Krylov subspace of A 1E. Because of
the moment-matching properties of Krylov-subspaces, the reduced
transfer function H̃ s will agree with the original H s up to the
first q derivatives.

The PRIMA algorithm has another interesting property. Given
a starting passive model, if the original state-space model can be
formulated with positive-semidefinite A and E and B CT , then
the transfer function of the final reduced model will be positive-
real, meaning the reduced system is also passive. This is essen-
tially because the projection operation in (6) becomes a congru-
ence transform for W V , and since congruence transforms pre-
serve positive-semi-definiteness, the reduced Ẽ Ã inherit the nu-
merical range properties of their parents, implying that the reduced
function H̃ s is positive-real. Note however that it is entirely pos-
sible to have systems with positive-real H s , and thus underly-
ing passive models, for which the conditions necessary for using
PRIMA do not hold. Such systems cannot be reduced in a guar-
anteed positive-real manner via congruence transformations. Like-
wise, such techniques cannot guarantee bounded-real reduced mod-
els from bounded-real starting systems.

3. TRUNCATED BALANCED REALIZATIONS
Complementary model reduction techniques are based on trun-

cated balanced realization. We are mostly interested in applying
TBR procedures as the second stage of a composite model reduc-
tion procedure [2], the first stage being reduction by a Krylov–
based projection method. Note that the most of algorithms in [6, 7],
are essentially equivalent to a first-stage Krylov projection followed
by a second-stage TBR procedure. We first discuss the most com-
monly used approach before presenting passivity-preserving vari-
ants. It is common in this literature to assume E I. When E is
non-singular, the mapping E I A E 1A B E 1B will put
a descriptor system into this form. It is very common in electrical
engineering applications to have situations where E is in fact sin-
gular and this procedure cannot be performed, but in the situations
of interest to us, where an initial projection step has taken place,
usually E is non-singular, and so to facilitate comparisons with the
literature and somewhat simplify the computational procedure, we
will assume the system can be manipulated (possibly implicitly)
into a form where E I. We do emphasize that it is possible to for-
mulate the computational procedure to work with E directly, and
this is necessary when E is singular 1 but we have chosen not to do
this as a matter of convenience.

3.1 Standard Approach
The TBR procedure as first presented in [4] is centered around

information obtained from the controllability GrammianWc, which
can be obtained from solving the Lyapunov equation

AWc WcAT BBT (7)

forWc, and the observability GrammianWo, which can be obtained
from the dual Lyapunov equation

ATWo WoA CTC (8)

Under a similarity transformation of the state-space model,

A T 1AT B T 1B C CT (9)

the state-space model, and the transfer function, are invariant (only
the internal variables are changed). The grammians, however, vary
under the rules

Wc T 1WcT T Wo TTWoT (10)

and so are not invariant. The TBR procedure is based on two ob-
servations about Wo and Wc. First, the eigenvalues of the product
1For example, Eqn. (7), becomes AWcET EWcAT EBBTET .



Algorithm 1. Truncated Balanced Realization (TBR)

1. Solve AWc WcAT BBT for Wc

2. Solve ATWo WoA CTC forWo

3. Compute Cholesky factors Wc LcLTc , Wo LoLTo ,

4. Compute SVD of Cholesky product UΣV LTo Lc
where Σ is diagonal positive
and U V have orthonormal columns

5. Compute the balancing transformations
T LcVΣ 1 2 T 1 Σ 1 2UTLTo

6. Form the balanced realization as
Â T 1AT B̂ T 1B Ĉ CT

7. Select reduced model order and
partition Â B̂ Ĉ conformally

8. Truncate Â B̂ Ĉ to form the reduced realization Ã B̃ C̃

WcWo are invariant. These eigenvalues, the Hankel singular values,
contain useful information about the input-output behavior of the
system. In particular, “small” eigenvalues of WcWo correspond to
internal sub-systems that have a weak effect on the input-output be-
havior of the system and are therefore close to non-observable or
non-controllable or both.
Second, since the Grammians transform under congruence, and

as any two symmetric matrices can be simultaneously diagonalized
by an appropriate congruence transformation, it is possible to find
a similarity transformation T that leaves the state-space system dy-
namics unchanged, but makes Wo and Wc equal and diagonal. In
these coordinates, withWc Wo Σ, we may partition Σ into

Σ
Σ1 0
0 Σ2

(11)

where Σ1 describes the “strong” sub-systems to be retained and Σ2
the “weak” sub-systems to be deleted. Conformally partitioning the
matrices as

A A11 A12
A21 A22

B B1
B2

C C1 C2 (12)

and truncating the model, retaining Ã A11 B̃ B1 C̃ C1 as
the reduced system, therefore has the effect of deleting the “weak”
internal subsystems. A complete TBR algorithm [11] is shown as
Algorithm 1.
We now turn to the question of when TBR procedures produce

passive reduced models.

3.2 Symmetrizable Systems
It turns out that there is a special system case, of relevance to

integrated circuits applications, for which the standard TBR pro-
cedure (Algorithm 1) always produces positive-real reduced mod-
els. Suppose that the state-space model is symmetric, that is A
AT B CT , and furthermore A is negative-semidefinite. Since
Re sI A 1

2 A AT A 0, the system is positive-real.
From Eqns. (7) and (8) it follows that Wo Wc. From inspecting
step 5 in Algorithm 1, we find that T 1 TT . Thus the similar-
ity transformation is a congruence transformation. The reduced Ã
must be negative-semidefinite, and we will likewise have B̃ C̃T .
Therefore the reduced system is positive-real. This would seem to
be a similar situation as we have in PRIMA, but it is actually far

Algorithm 2. Positive-Real TBR (PR-TBR)

1. Solve Eqns. (13)-(15) for Xc and their duals for Xo.

2. Proceed with steps 3-8 in Algorithm 1,
with Xc for Wc and Xo for Wo.

more general. The reason is that the balancing transformation is
essentially unique as explained in [4], meaning that we have the
following broader result:

THEOREM 1. Suppose a state-space system is transformable
under similarity to a system of the form in Eqn. (1), with E
ET A AT A 0. A reduced model generated via Algorithm 1
is positive-real.

In contrast, the positive-realness preserving properties of congru-
ence transformations depend on the coordinate system used and
are not preserved under similarity transformations.
Some systems that fall into the symmetrizable class are RL and

RC circuits in MNA form, and reductions of such forms via con-
gruence. All systems, however, do not fall into this class, and more
powerful techniques are needed to preserve passivity in TBR meth-
ods.

3.3 Positive Real Conditions
We will show in Section 5 that the TBR procedure of Algo-

rithm 1 does not necessarily produce passive models. In making
assessments about passivity, we require a tool that can assess the
positive-realness of a state-space model in a global manner. One
such tool is the positive-real lemma [10], which states that H s is
positive-real if and only if there exist matrices Xc XTc Jc Kc such
that the Lur’e equations:

AXc XcAT KcKTc (13)
XcCT B KcJTc (14)

JcJTc D DT (15)

are satisfied, and Xc 0 (Xc is positive-semidefinite). Xc is anal-
ogous to the controllability Grammian. In fact, it is the controlla-
bility Grammian for a system with the input-to-state mapping given
by the matrix Kc. It should not be surprising that there are a dual set
of Lur’e equations for Xo XTo 0 Jo Ko that are obtained from
Equations (13)-(15) by the substitutions A AT B CT CT B.
The dual equations have a corresponding observability quantity
Xo 0 for a positive-real H s . It is easy to verify that Xc Xo trans-
form under similarity transformation just asWc Wo (Eqn. 10), that
their eigenvalues are invariant, and in fact in most respects they
behave as the GrammiansWc Wo.

3.4 GuaranteedPassiveBalancedTruncations
It should be clear than the Lur’e equations can be solved for the

quantities Xc Xo which may then be used as the basis for a TBR
procedure. We present this as Algorithm 2 and call it PR-TBR, as
it preserves positive-realness of the transfer function.

THEOREM 2. Algorithm 2 applied to systems with positive-real
transfer functions produces reduced models with positive-real trans-
fer functions.

PROOF. From the form of the partitioning, (11) and (12), like-
wise partitioning either Kc or Ko, it is clear that the reduced system,



Algorithm 3. Bounded-Real TBR (BR-TBR)

1. Solve Eqns. (19)-(21) and their duals for Xc Xo.

2. Proceed with steps 3-8 in Algorithm 1,
with Xc for Wc and Xo for Wo.

in the PR-balanced coordinates, satisfies

A11Σ1 Σ1AT11 K1KT1 (16)
Σ1CT1 B1 K1JTc (17)

JcJTc D DT (18)

Therefore the reduced system satisfies the Lur’e equations with
positive semi-definite Σ1 (Σ1 0 as Σ 0). By the positive-real
lemma, the reduced system is positive-real.

We emphasize that Theorem 2 holds regardless of the internal
form of the state-space system. Again, this is not true for congru-
ence based procedures. Finally, we note that, just as for TBR, error
bounds are available for PR-TBR (see [12] where a similar tech-
nique was proposed). A discussion of those bounds is beyond the
scope of this paper, but we will state that in most cases we tried,
the bounds obtained are competitive with those of TBR.

3.5 Bounded-Real Conditions
To obtain equivalent TBR procedures that guarantee a final trans-

fer function that is bounded-real, useful when working with trans-
fer functions representing S-parameters, we need the bounded real
equations

AYc YcAT BBT KoKTo (19)
YcCT BD KTo Jo (20)

JoJTo I DTD (21)

and corresponding dual equations that are satisfiedwithYc 0 Yo
0 if the system transfer function is bounded-real. Algorithm 3 per-
forms truncated balanced realization while guaranteeing the bound-
edness of the reduced transfer function 2.

3.6 A hybrid approach
In many cases, while not guaranteed by construction, it is often

the case that the TBR approximants produced by Algorithm 1 turn
out to be positive-real. Therefore we propose Algorithm 4, which
performs the TBR procedure, solves the positive-real (or bounded-
real) equations on the reduced model to check its passivity, and
if it turns out not to be passive, discard it and proceeds to Algo-
rithm 2 (or Algorithm 3). There is an advantage in this procedure
as often the TBR approximates are more accurate for a given order
than PR-TBR. Because of the cubic scaling of cost, it is relatively
cheap, compared to the cost of the TBR reduction, to check a re-
duced model for passivity since the reduced system is presumably
of lower order. As often the TBR models are passive, the net effect
of the composite algorithm is to approximately double the cost in
the worst case, versus usually getting better models at smaller cost
(PR-TBR “costs” more than TBR) in the more-common average
case.
Algorithm 4, which appropriately combines all of the previously

presented algorithms, can be used as generic flow for generating
accurate guaranteed passive reduced-order models of systems with
arbitrary structure.
2The bound does not have to be unity; it can be any positive con-
stant.

Algorithm 4. Hybrid TBR

1. Perform Algorithm 1

2. Using the reduced model matrices Ã B̃ C̃,
solve Eqns. (13)-(15) for X̃c (or Eqns. (19)-(21)).

3. if Eqns. (13)-(15) (or Eqns. (19)-(21)) are solvable
and Xc 0, then terminate and return Ã B̃ C̃.
else discard TBR-reduced model and proceed with
Algorithm 2 (or 3).

4. COMPUTATIONAL CONSIDERATIONS
Solution of the Lur’e equations and solution of algebraic Riccati

equations (AREs) are closely related. An overview of basic numer-
ically robust computational procedures is given in [13]. Extensions
of the positive-real lemma are available for models in the descrip-
tor form where E is singular such that the transfer function cannot
be put into the standard form [14]. To obtain a simpler procedure,
consider the matrix pencil λE A ,

E
I 0 0
0 I 0
0 0 0

A
A 0 B
0 AT CT
C BT D DT

(22)

Suppose that via some means we have computed an invariant sub-
space Z 2n p n that satisfies EZΛ AZ, Λ n n , of the
special form

Z
I
X
X̃

(23)

where I X n n X̃ p n . Then from the invariance condi-
tion EZΛ AZ, it can be verified that X is indeed the solution to
Eqns. (13)-(15). To compute an invariant subspace of such a special
form, the rank-p singularity of the pencil is first compressed [13]
using a QR factorization of A to reduce the dimension of the pencil
to 2n. Then, we find an invariant subspace Zr 2n n (for example
via the QZ method) of the form

Zr
X1
X2

(24)

X can be computed as X X2X 1
1 . For a positive-definite X , we

need the subspace that corresponds to stable eigenvalues of the pen-
cil.
Two more issues deserve our attention even though, for space

limitations, we cannot discuss them in detail. The TBR technique
in Algorithm 1 often leads to reduced models that present a mis-
match in DC gains when compared to the original unreduced model,
as the algorithm tends to perform better at high frequencies than
at DC. Transformation to the reciprocal system [15], which maps
s 0 into s ∞, can help produce better approximations at low
frequencies, as can frequency weighting.
The second issue is related to computational cost. While the cost

of all balancing procedures presented is in principle cubic (due to
the need for solving Lyapunov-type equations), such cost is not
overwhelming if the algorithm is being applied to a system that
results from a prior reduction. Furthermore, even if that is not the
case, one can still directly solve the large Lyapunov equations via
a Krylov subspace method [6, 7], and obtain the reduced models
directly from the reduced Lyapunov equation.

5. RESULTS
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Figure 1: Minimum eigenvalue of transfer functions used to
illustrate non-positive-real reduced model generated by stan-
dard TBR procedure. Solid line shows original (positive-real)
order-26 transfer function, dashed line shows TBR result of or-
der 7, dashed-dot line shows PR-TBR result of order 7. Note
negative sign of TBR results indicating non-positive-realness.

In this section we show examples that illustrate the relevance of
the various algorithms presented in this paper.

5.1 A non-passive ROM generated by TBR
First we demonstrate empirically that standard TBR (Algorithm 1)

can generate models that are not passive by examining a 26-state
lumped circuit model of a crystal filter. We generated all the pos-
sible TBR models of orders 1-26, and used the positive real lemma
to inspect them for positive-realness (equivalent to passivity in this
case). Several of the models were found to be non-passive (see
Figure 1). We then generated all the possible PR-TBR models. All
were found to be positive-real as expected.

5.2 A symmetrizable system
Our first example is a spiral inductor modeled with the magne-

toquasistatic electromagnetic tool FASTHENRY. This example ap-
peared in [2]. The initial system of around 1500 states is reduced to
an initial 60-state positive-real model using PRIMA. Since this or-
der is still considered excessive, the model is then further reduced
using TBR. In [2], it was commented that the reduced models after
the TBR procedure appeared to be passive, but no explanation was
given. Here we have rigorously checked, using the positive-real
lemma, that the models were indeed passive, and gave a proof as to
why that should be the case.

5.3 Abounded-real example fromrational func-
tion fitting

In the next example we consider the bounded-real variant of the
TBR procedure (BR-TBR). First, a rational fitting method was used
to fit a high-order model to tabulated 2-port S-parameter data orig-
inating from a full-wave EM field solver. The fitting algorithm,
which has provision for automatic estimation of model order, was
tuned to a conservative setting, and generated an order-42 initial
model that was nearly an exact fit to the data in the given frequency
range. The resulting 42-state model was much larger than desired
for final simulation, so the BR-TBR procedure was used to reduce
the model to six states. The results are shown in Figure 2. The
reduced model had norm bounded by unity, indicating that the re-
duced model represented a passive element. Several models of or-
ders six to eight were also generated by both TBR and congruence
transform strategies, but all hadH∞ norms ranging from 1.05 to 1.9,
i.e. they were not passive.
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Figure 2: Magnitude of rational function fit and reduced model
for S-parameters tabulated by full-wave field solver. Solid line
shows initial data and order-42 rational fit (complete overlap).
Dashed line shows order-6 reduced model obtained via BR-
TBR.

10−2 100 102
10−12

10−10

10−8

10−6

10−4

10−2

100

102

frequency

imp
eda

nce

Exact 
TBR   
PR−TBR

10−2 100 102
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Exact 
TBR   
PR−TBR

a) b)

Figure 3: Left: Magnitude of Y12 for LC line. Right: Minimum
eigenvalue of symmetric part of reduced model transfer function.
Note that the minimum eigenvalue the TBR model drops below
zero for some frequencies, indicating non-passivity.

5.4 A PEEC Connector
This example features a connector structure from Teradyne Inc.

composed of 18 pins with a ground shield around and between
the conductors. This structure was previously used [3] to illus-
trate a PEEC formulation based on PRIMA that generates passive
reduced-order models. While the resulting model was indeed prov-
ably passive, disappoint reductions were reported, due mostly to the
inability of the PRIMA algorithm to zero-in on the relevant modes
of the system. In fact volume discretization of the interior of the
conductors in order to properly model skin-effect leads to the ap-
pearance of various internal subsystems that have negligible effect
in the structure impedance but which can fool the PRIMA algo-
rithm. In [9] the same example was used to illustrate a two-step
algorithm for RLC order reduction based on PRIMA followed by
TBR, in an apparent attempt to solve the above problem. Signifi-
cant order reductions were reported after the 2nd step of reduction
as TBR is able to determine that those modes are not observable



nor controllable. While this clearly shows that further reduction af-
ter the PRIMA stage is possible and indeed desirable, passivity was
no longer guaranteed in the final, smaller models.
Here we have used the same example and checked the passiv-

ity of reduced-order models of various orders. We believe that the
modes that are being discarded by TBR are related to the inter-
nal subsystems resulting from skin-effect modeling. As such the
character of the problem after the initial PRIMA reduction is pre-
dominantly RL, a type of system for which we know that TBR is
passive(see Section 3.2). Once more we generated all the possi-
ble TBR models for the system obtained after the PRIMA reduc-
tion and used the positive real lemma to inspect them for positive-
realness (again equivalent to passivity in this case). Due to the
almost symmetric nature of the systems, almost all the models we
obtained were found to be passive. However, models of order 19
and 29 were found to be non-passive, a problem if the model is
to be used in time-domain simulations. This example shows once
more that TBR can indeed lead to large reductions in model-order
but can produce non-physical models. The example also presents
a strong case for using the generic flow presented earlier (see Sec-
tion 3.6 and Algorithm 4). Since the majority of the TBR-produced
models are likely to be passive it is advantageous to obtain such
a model, check it for passivity and only compute the PR-TBR al-
gorithm if that check fails (alternatively compute another model of
slightly different order and check it, which is cheap since TBR es-
sentially produces models of all orders simultaneously).

5.5 An RLC Line
For our next example we use a 40-segment uniform RLC line that

is L-dominated. The values of the line were chosen to be R 25,
C L 0 39894. For the purpose of comparison we computed
25th order models using both TBR and PR-TBR. Figure 3-a) shows
the low-frequency behavior of the exact line impedance as well as
that obtained using the two models. For this particular case it turns
out that PR-TBR performs much better than regular TBR in terms
of the model error. More important, however is the result shown in
Figure 3-b) where we plot the minimal eigenvalue of the symmetric
part of the transfer function as a function of frequency. As can be
seen from the plot, the minimal eigenvalue for the TBR model can
go below zero at some frequencies which implies that the model is
non-passive and may produce non-physical responses when used in
time-domain simulations. In fact, on this example, almost none of
the models produced by TBR were passive. Only very high order
models exhibiting an almost exact match to the transfer function
over the entire frequency axis were passive. In contrast, all the
models produced by the PR-TBRmethod were found to be passive,
as expected.

6. CONCLUSION
In this paper we presented a family of algorithms that can be used

to compute guaranteed passive, reduced-order models of control-
lable accuracy for state-space systems with arbitrary internal struc-
ture.
The algorithms presented are similar to the well-known truncated

balanced realization (TBR) techniques and share some of their ad-
vantages, such as computable error bounds. However, unlike stan-
dard TBR techniques, the algorithms presented have been shown
to produce provably passive reduced-order models. In addition,
unlike other techniques known to also produce passive reduction,
the algorithms presented pose no constraints on the internal struc-
ture of the state-space. They are thus equally well applicable to
systems that represent for instance Y or Z parameters as well as
systems that represent S parameters. An hybrid algorithm was also

presented where a TBR model is first computed, then checked for
passivity and the passive-TBR algorithm is only used if that check
fails.
We have experimented with our techniques in a large number of

settings and have shown that they can be used as standalone proce-
dures or as part of second step reductions for systems with a large
number of unknowns, perhaps replacing the usual TBR procedure.
We have thus applied our method to obtain reduced models of var-
ious structures, namely the two-port impedance of a crystal filter,
a spiral inductors, a large connector and an RLC line. All models
were found to be accurate and passive. All previously known tech-
niques failed to produce acceptable models in some of the examples
used.
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