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Abstract
One difficulty associated with computer simulation of micromachined devices is that the devices are typically geometrically

complicated and innately three-dimensional. For this reason, attempts to exploit existing finite-element based tools for microma-
chined device simulation has proved difficult. Instead, micromachine device designers have been early adopters of the recently
developed fast solvers for integral equations. In this paper the author will describe a little of the history of these methods, prima-
rily to point the interested reader to the relevant literature.
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1. Introduction

Simulating a micromachined device, like the
electromechanical resonator in Fig. 1, is extremely
computationally challenging. One issue that makes simulation
difficult is that the resonator’s behavior is governed by the
coupling between electrostatic, elastic and fluidic forces. The
second issue is the computational expense of calculating the
domain-specific forces in such a geometrically complicated
example. Forces that require resolution of the geometry’s
exterior, such as electrostatic or fluidic forces, are particularly
expensive to compute.

Fig. 1: A Comb Resonator Example.

When the equations that describe the exterior problem are
linear and space invariant, as is typically the case for
electrostatic and magnetic forces and can be the case for
fluidic forces, an integral formulation of the problem will
exist. Such formulations use Greens functions to eliminate the
problem’s exterior and typically involve only surface
quantities. Such a formulation seems ideal when computing
traction forces or electrostatic pressures on surfaces, but the

integral formulation generates a particular numerical
difficulty. Discretized integral equations generate dense
matrices which are expensive to form and solve.

In the past decade, fast techniques have been developed for
solving the systems of equations generated by discretized
integral equations. One of the earliest practical programs
using these fast techniques was developed to compute 3-D
capacitances and electrostatic forces [8, 9]. Recent extensions
have appeared, such as programs for computing inductance
[11] or fluid drag [12], as well as algorithm improvements
such as better adaptivity, higher-order elements and improved
efficiency for high accuracy [13, 10].

In this brief paper we will try to make clear what is being
exploited to develop these fast algorithms. We will try to
present the differences in various approaches, but we will not
present any complete algorithms. Instead, we will refer the
reader to the relevant literature. In the follwing section we
describe the basic approach to developing fast algorithms for
solving integral equations, and show that the key computation
is forming matrix-vector products. In sections 3 and 4, we
describe two classes of methods for fast matrix-vector
computation, one based on multiresolution and the other
based on diagonalization. Finally, in section 5, we show some
computation results to demonstrate the effectiveness of these
methods.

2. The Fast Solver Approach

As an example, consider the first-kind integral equation
problem,

(1)

where  is a point on the surface, and  is the a known
surface potential, and where  is the space invariant
Greens function. For example, in electrostatics
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The simplest discretization of (1) is to divide the surfaces into
 flat panels over which the charge density is assumed

constant. Then, the charges are determined by insisting (1) be
exactly satisfied at a collection of collocation points.
Typically, the collocation points, denoted by ’s, are selected
to be the centroids of each panel. The resulting discretized
system is

(2)

where  is the -length vector of panel charges,  is the -
length vector of known centroid potentials, and

.

If direct factorization is used to solve (2), then the memory
required to store the matrix will grow like  and the matrix
solve time will increase like . If instead, a preconditioned
Krylov-subspace method like GMRES [1] is used to solve
(2), then it is possible to reduce the solve time to order  but
the memory requirement will not decrease.

In order to develop algorithms that use memory and time that
grows more slowly with problem size, it is essential not to
form the matrix explicitly. Instead, one can exploit the fact
that Krylov-subspace methods for solving systems of
equations only require matrix-vector products and not an
explicit representation of the matrix. For example, note that
for  in (2), computing  is equivalent to computing 
potentials due to  sources and this can be accomplished in
nearly order  operations [2-4]. Several researcher
simultaneously observed the powerful combination of
discretized integral equations, Krylov-subspace methods, and
fast matrix-vector products [5-7]. Such methods are now
referred to, somewhat pejoratively, as fast solvers.

3. Fast Matrix-Vector Products using Multireso-
lution

Multiresolution methods for rapidly computing matrix-vector
products can best be understood by considering the simple
example of determining potentials at  collocation points
due to  charged panels, as shown in Fig. 2. The matrix ,
which relates the panel charges to the collocation point
potentials, is  and dense. Therefore, determining the

 potentials requires  operations.

Fig. 2: A Cluster of collocation points seperated from a cluster of
panels.

If the Greens function, , is the free-space
electrostatics Greens function, , then the  matrix can
be well approximated by a low rank matrix. The easiest way
to show this is to consider the singular value decomposition

of ,

(3)

where  and  are orthonormal matrices and  is the
diagonal matrix of singular values of . In Fig. 3, the largest
20 singular values of the  are plotted for various separation
distances. For this example, 100 randomly placed collocation
points and panels were used.

Fig. 3: The Singular Values of the Matrix Relating the Cluster of
Panels to the Cluster of Collocation Points for different seperation
distances.  and  are as defined in Fig. 2.

Note that in the figure, the singular values of  are
decreasing very rapidly, particularly when the clusters are
further apart. This makes it clear that for an approximate
representation of  not all the singular vectors are needed.
Instead, one could represent  approximately using only 
singular values as

(4)

where ,  are the  matrices which are
the first  columns of  and  respectively and  is
the  diagonal submatrix of . For example, one can see
from the graph in Fig. 3 that if one part in one thousand
accuracy is required,  should be larger than 15 if the cluster
radius is one third of the separation distance, but  can be
less than 5 if the cluster radius is one twelfth of the separation
distance. Very effective general algorithms have been
developed using the singular-value decomposition in a
hierarchical fashion [16].

One of the difficulties in using the SVD approach is that the
dense interaction matrix must first be computed before the
low rank approximation can be formed. Heuristics can be
used to avoid forming the matrix completely, but such
approaches correspond roughly to a second technique
diagrammed in Fig. 4.

In this second approach, the charged panels are represented
by projecting them onto the grid of  point charges on the
right-hand side of Fig. 4, and the collocation point potentials
are interpolated from  potentials from the left-hand side grid
points. The interaction between panels and collocation points
is then represented by an interaction between the right- and
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left-hand grid points. This grid-based approach corresponds
to representing the  matrix in the form

(5)

where  is the number of grid points,  and
 are the  projection and interpolation

matrices, and  is the  matrix representing
computing the left-hand grid potentials from the right-hand
grid of charges.

Fig. 4: The Singular Values of the Matrix Relating the Cluster of
Panels to the Cluster of Collocation Points for different seperation
distances.

There are many ways to project onto the grid, including
polynomial interpolation [15], moment matching [25], and
point matching [23]. Also, rather than surrounding the panels
and collocation points with each grid, one could shrink the
grids to single points in the center of each cluster. This
limiting process will, in effect, represent the panels and
collocation points with higher derivatives at a single point
rather than evaluations at multiple points. Using these
derivative representations lead to what are referred to as fast
multipole algorithms [3].

As a final note, compare (4) to (5). These equations make it
clear that the  singular vectors effectively project the
panels onto a reduced representation, and the 
singular vectors effectively interpolate the potentials from
that representation.

4. Fast Matrix-Vector Products Using Diagonal-
ization

In both the SVD and grid-based approaches described above,
the cost of computing  potentials from  charges is
reduced from order  to order . Therefore, these
methods are efficient only if  is much smaller than . The
plot of the singular values of  for the  Greens function
in Fig. 3 makes it clear that  will be very small indeed. This
pleasing result is not true for all Greens functions.

For problems in acoustics or full-wave electromagnetics, the
Greens function is the Helmholtz Greens function

(6)

where  and  is the frequency of interest. For the
Helmholtz Greens function, reconsider the  matrix, which
again relates the  panel charges to the  collocation point
potentials in the clusters example from Fig. 2. In Fig. 5, the
largest 20 singular values of the  computed using the
Helmholtz Greens function are plotted for a fixed separation

distance, , and for ,  and .

As is clear from Fig. 5, for the  case the singular
values of  are not decreasing quickly. A good
approximation to  in this case would involve using almost
all the singular vectors, implying  would be nearly equal to

 and the cost of multiplying by  would still be order .
Note in the graph that the  case corresponds to the
electrostatic Greens function, and its singular values are
dropping rapidly.

Fig. 5: The Singular Values of the Matrix Relating the Cluster of
Panels to the Cluster of Collocation Points for different frequencies.

It is still possible to improve the efficiency of the matrix-
vector product in the Helmholtz case, but not by using the
SVD. Instead, consider again the grid projection strategy
diagrammed in Fig. 4. For the Helmholtz case, it is likely that
the number of grid points required will be order , so grid
projection seems to have the same problem as using the SVD.
However, if the grid points are laid out uniformly then
computing the  grid potentials from  grid charges can be
performed in  operations using the Fast Fourier
transform (FFT) [25].

Just using the FFT to compute grid potentials from grid
charges is insufficient to reduce the cost of multiplying by 
below order . To see this, examine the representation of

,

(7)

where  is used to denote that the grid potentials are
computed from the grid charges using the FFT. The
interpolation and projection operations, which project 
panels onto  point charges and interpolate  grid
potentials on to  collocation points respectively, each
require  operations. However, if the potential due to a
cluster of panels will be evaluated for many clusters of
collocation points, the cost of projection can be amortized
over many ’s. In addition, there is a dual savings for
interpolation.

Using the FFT makes the grid-to-grid operation "more
diagonal", and exploiting this diagonalization is at the heart
of specialized algorithms for solving high frequency
Helmholtz problems [20-22].
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5. A Few Comments and Results

Many of the mature fast solvers are for  kernels and use
multipole expansions. More recently there has been interest in
developing techniques which are Greens function
independent, and a variety of approaches have appeared.
There is the panel clustering idea [6], a multigrid style
method [15], a technique based on the singular-value
decomposition [16], and approaches based on using wavelet-
like methods [17-19].

For problems with oscillatory kernels, such as acoustic or
electromagnetic scattering, there are specialized multipole
algorithms [20-22], but these techniques collapse numerically
at low frequencies. The techniques that are effective for
general kernels are based on projecting to a global uniform
grid and using the FFT [4,23,24]. Global FFT-based
techniques, unfortunately, have efficiency problems for
inhomogenous geometries.

The Greens function generality of fast solver algorithms
based on using the FFT globally have made such techniques
the method of choice for many applications. In the
subsections below, we describe a few results using such a fast
solver approach.

5.1. Stokes Flow Analysis of a Comb

In order to determine the quality factor of a comb-drive
resonator packaged in air, it is necessary to determine the
drag force on the comb. The small spatial scale of
micromachined combs implies that flow in these devices
typically have very low Reynolds numbers, and therefore
convection can often be ignored. In addition, fluid
compression can be ignored for devices which use lateral
actuation, like many of the comb-drive based structures
fabricated using micromachined polysilicon. The result of
these two simplifications is that fluid damping forces on
laterally actuated microdevices can be accurately analyzed by
solving the incompressible Stokes equation, rather than by
solving the compressible Navier-Stokes equation.

The simplification to the Stokes equation certainly makes
analysis of fluid damping in microdevices much more
computationally tractable. However, analysis of an entire
comb in a reasonable period of time only recently became
possible due to the extension of an accelerated boundary-
element method [23] to computing Stokes flow solutions[12,
26].

As an example, consider the comb in Fig. 6. The number of
unknowns in the system exceeds 50,000, and yet the
accelerated Stoke’s flow solver finished in under 20 minutes.
If direct methods were used instead, the simulation would
have taken weeks.

Fig. 6: A discretized comb drive resonator over a substrate.

5.2. Coupled Electromechanical Analysis of Comb Levita-
tion

In order to determine levitation in a Comb drive, it is
necessary to solve a coupled electromechanical problem. In
this subsection we present results from our multilevel-
Newton coupled electromechanical code. The program uses
the precorrected-FFT accelerated integral equation solver
with planar triangular panels to compute the electrostatic
forces. A finite-element, mixed rigid/elastic mechanical
analysis program using 20 noded isoparametric brick
elements is used to compute displacments. The multilevel-
Newton method uses pressure sensitivites to improve
efficiencies [27].

An 18 finger PolySi resonator (YM = 150 GPa, PR = 0.3) Fig.
7 is supended with 400  beams with a uniform depth of
1.94  and finger dimensions  . The movable
structure and the ground electrode are kept at 0 V and a non
zero voltage is applied to the driving electrodes which
interdigitate with the movable fingers at the sides.

The effect of varying the width of the suspension beam was
investigated Fig. 8. Each load step in the simulation took
about 70 minutes of CPU time (Sun Ultra 30). Without the
fast electrostatic solver, the simulation would have lasted for
weeks.

6. Conclusions

In this brief paper the authors described some of the history of
fast methods for solving integral equations. The authors
would like to thank the many students who have developed
codes using fast solvers including Keith Nabors, Joel Phillips,
Matt Kamon, Michael Chou, Narayan Aluru, and Joe
Kanapka. This work was supported by the DARPA composite
CAD program, the DARPA muri program, and grants from
the Semiconductor Research Corporation.
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Fig. 7: Comb drive resonator.

Fig. 8: Levitation.
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