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ABSTRACT

Padé approximation is an often-used method for re-
ducing the order of a finite-dimensional, linear, time
invariant, signal model. It is known to suffer from
two problems: numerical instability during the com-
putation of the Padé coefficients and lack of guaran-
teed stability for the resulting reduced model even
when the original system is stable. In this paper, we
show how the numerical instability problem can be
avoided using the Arnoldi algorithm applied to an
appropriately chosen Krylov subspace. Moreover,
we give an easily computable sufficient condition on
the system matrix that guarantees the stability of
the reduced model at any approximation order.

1. INTRODUCTION

Consider the discrete-time, linear, time-invariant
(LTI) system

x(t) Ax(t—1)+bu(t—1) (1)
y(t) = c=(t)

where t € {1,2,...},z(t),b,c’ € R™ u(t),y(t) €
R, and A € R**" We will assume this system
both reachable and observable, which means that
the ranks of the reachability matrix

(b, Ab,..., A" 'b)
and observability matrix
(cT, TAT .., cT(A""l)T)

are both equal to n. The transfer function of this
linear system is G(z) = z~te(I, — 271 A)~1b, where
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I, is the identity matrix of order p. The rational
function G(z) can also be written as the power series

oo oo
G(z) = Z cAkbz_,k_1 = ngz_k_l, 2)
k=0 k=0

where the scalars gg 2 cA*b are called the Markov
coefficients of (1). When wu(t) is an impulse, y(t) =
g(t),t > 0, and the absolute summablity of the se-
quence ¢(t) is equivalent to the stability of the trans-
fer function G(z) in the bounded-input/bounded-
output sense. We denote by A; the i-th eigenvalue
of A and define the spectral radius of A as p(A) =
max{|A;],1'< ¢ < n}. The stability of the the LTI
system (1) is then equivalent to p(A4) < 1. In this
paper, we will speak interchangeably of the stability
of the transfer function or the stability of its system
matrix A.

Assuming that the dimension of the state space
n is very large and that we are given an integer ¢ <
n, the Padé approximation method aims at finding
a triplet (A,b,¢) € R7*? x R1*! x R1%¢ such that
the transfer function G(z) = 2~ 1&(I,—2z~'A)~ b of
the reduced system approximates the transfer func-
tion G(z) in the sense that there is perfect matching
between the coefficients of the Markov coefficients
of the original and reduced models up to a certain
order m, l.e.,

Gr=cAb=cA'b =g, 0<k<m-—1.

It is important to point out that this matching con-
dition corresponds to the requirement that the tran-
stent behavior of the original and the reduced-order
models be the same. This is because the expansion
of the transfer function G(z) given in Equation 2
is accomplished in the neighborhood of z=1 = 0. If
we were to require the matching to be at steady-
state, then we will have to formulate the matching
condition in terms of Markov coefficients obtained
from an expansion of G(z) in the neighborhood of



= 1. This aspect of the problem will be ad-
dressed elsewhere.

The classical procedure ({1}, Chapter 3) to find
the approximate transfer function is to solve a Han-
kel linear system in which the Hankel matrix is
based on the Markov coefficients of (1) and the
unknowns are the coefficients of the rational func-
tion G(z). This procedure suffers from two main
problems. The first is computational and is related
to the computation of the Markov coefficients of
the original system. This computation involves the
power iterations of the large system matrix 4. It is
well known ([2], Chapter 7), that for » € R" the it-
erates Afp converges generically to the eigenvector
of A corresponding to the eigenvalue of the largest
magnitude. In other words, the Markov coefficients
become close to each other, thus making the Hankel
system very ill-conditioned [3].

Another more fundamental problem is that even
when the LTI system (1) is stable and the compu-
tations are well-conditioned, there is no guarantee
that the resulting reduced order system G(s) will
be stable. This instability could occur even when
the original system is an FIR filter, i.e, H(z) =
S hiz* ([1], Example 3. 9).

In this paper, we address these two problems
and show that the Arnoldi algorithm (see [4] and
the references therein) provides a numerically stable
way for obtaining a reduced-order model. We also
show that when the system matrix A is normal and
stable, the Arnoldi reduced-order matrix A is guar-
anteed stable at any approximation order ¢. When
A is not normal, we provide an easily computable
sufficient condition for guaranteeing the stability of
A at any approximation order q.

2. REDUCED-ORDER MODEL

The computation of the Markov coefficients in-
volves the power iterates A*b. It is therefore nat-
ural to consider the Krylov subspace K (A,b) =
span{b, Ab, A’b,---, A7 'b}. Because of the reach-
ability a.ssumptlon, thls subspace is of dimension
q. The essence of the Arnoldi algorithm is to use
the Gram-Schmidt procedure to build an orthonor-
mal basis V'; = {v1,vs,...,v,} of the Krylov sub-
space ICg(A, b). At the k-th step of the algorithm as
shown in (2.1), a unit-norm vector vy is constructed
such that v; is orthogonal to Kx_1(A4, b).

After ¢ steps, the Arnoldi algorithm returns a
set of ¢ orthonormal vectors, as the columns of the
matrix V; € R™*¢, and a ¢ X ¢ upper Hessenberg
matrix H, = [h; ;]. These two matrices satisfy the

4 * )
Algorithm 2.1 (Arnoldi Algorithm)

arnoldi(input A,b,q;
output V,,vg41, Hy,heq1,,)

{1 =5/l
for (j=1; j<=g¢; j+4) {

w = Av;

for (i=1; i<=j—-1; i++) {
ki = wlv;
w=w—h;;v;

}

hjt1i = |lwll2

if (hjy1,; 709 {

vjir1 = w/hjya;

}

Vq =[v1-- v

=(hij), 4,5=1,---,q

following relationship:
AV, =V, H,+ hq+1,q”q+lefqr 3)

where e, is the g-th unit vector in R", and vy41 €
R™ is orthonormal to the columns of V4. Using
the fact that VTV = Iq, we can write the above
equation as
VqTAV,, =H,. (4)

As noted in [5], the above equation defines a congru-
ence transform that allows H  to inherit the passiv-
ity of A whenever the latter matrix is symmetric.

Furthermore, using the fact that V,e; = b/||b||2,
it can be easily seen that after ¢ steps of an Arnoldi
process,

AFb = |b]|;A* Voey = ||Bll2V, HEe1, 0 <k < g1,
(5)

which yields

cA*b = |bl|lzcV,He;, 0<k<g-1. (6)

Therefore, if we choose for the reduced-order model
the triplet (A, b, &) = (H,, e1,||b|2cV}), the origi-
nal system and the reduced-order system will have ¢



of their Markov coefficients matched. The transfer
function of the reduced-order model is then

G(2) = o bllacV, (I — 27 Hy) " er (D)

Note that the state-space realization of the Arnoldi
reduced-order model comes naturally in a system
Hessenberg form [6]. This algorithm has been suc-
cessfully used in [4] to produce reduced-order mod-
els for a variety of very large linear circuits encoun-
tered in the analysis and simulation of VLSI inter-
connect.

3. STABILITY

From now on we make the assumption that the
system matrix A is stable, ie., its spectral radius
p(A) < 1. We would like to find under what con-
ditions the reduced matrix A = H ¢ is itself stable.
Formula (4) will be essential in answering this ques-
tion.

Case 1: A is symmetric. The symmetric case
occurs very often in practice especially in the con-
text of scientific computing [3, 4]. When A is sym-
metric, (4) implies that the upper Hessenberg ma-
trix H, is symmetric and therefore tridiagonal. We
denote the g real eigenvalues of H, by > Xa >
o> :\q. Because both A and H, are symmetric,
we can use the Rayleigh-Ritz quotients ([7}, p. 176)
to conclude that Amax = Amax = Amin 2 Amin-

In other words, when A is symmetric, the spec-
tral radius of A satisfies p(4) < p(4) < 1, ie,
the stability of the reduced-order model is guaran-
teed at any order whenever the original matrix A is
stable.

In fact, using the theory of Paige-Kaniel (21,
Chapter 9), we can obtain much sharper results
about the location of the eigenvalues of H, with
respect to those of A.

Case 2: A is normal. A symmetric matrix is
a special case of a normal matrix, i.e., a matrix
that commutes with its transpose. However, nor-
mal matrices do not satisfy the Rayleigh-Ritz vari-
ational formulas for eigenvalues. Moreover, nor-
mality is not preserved under the projection for-
mula (4). Notwithstanding these facts, the con-
cept of the numerical radius ([8], p. 7) defined as
- r(A) = max{|z*Az|, z*z = 1} can be used to
prove the following

Theorem 3.1 Assume the matriz A is normal and
stable. Then p(A) < 1, i.e., the reduced-order model
is stable at any order.

Let us first establish some basic properties for the -
numerical radius of a matrix.

Proposition 3.2 Let M be an arbitrary, square,
complez matriz of order n. Then the p(M) < r(M).
Moreover, if the matriz U € R"*7 has orthonormal
columns, (UTU =1,) , then r(UTMU) < r(M).

Proof. To prove the first part, let z be an eigen-
vector of unit 2-norm corresponding to the eigen-
value, Amagz, of the largest magnitude of M. Then

|z* M z|

llxmaz‘|z*z = IAma:z:I

< max{|lz*Mz|, z*x = 1} = r(M).

1l

To prove the second part, note that under the as-
sumption UTU = I, {Uy,y € R, y'y = 1} C
{z € R", z*x = 1}. Therefore {y*UTMUy, y'y=
1} C {=* Mz, z*a = 1}, and it follows that
r(UTMU) < r(M).
0

We also need the following Lemma for the numerical
radius of a normal matrix.

Lemma 3.3 Assume the matriz M is normal. Then
its numerical radius is equal to ils spectral radius,
i.e., (M) = p(M).

Proof. If the matrix is normal, then it is diag-
onalizable with a unitary matrix, i.e., there exists
U € C**" such that URU = I, and M = UY AU,
where A is the diagonal matrix of the complex eigen-
values of M. Then we have

r(M) = max{le*Mz|, ="z = 1}
max{|z* U7 AU=|, =*z = 1}
= max{|v*Av|, v'v =1}
< |Amas] = p(M).
Using the first part of Proposition 3.2, we conclude
that r(M) = p(M). |
Now, to the proof of Theorem 3.1.

Proof. The theorem results readily from the fol-
lowing sequence of inequalities

p(A) < r(A) <r(A) < p(4) <L,

where the first and second inequalities are due to the
second and the first parts of Proposition 3.2, respec-
tively, while the third results from the normality
assumption and Lemma 3.3, and the last inequal-
ity is just the stability assumption on the original
systems. 0

Theorem 3.1 therefore means that for any normal,
stable matrix A the reduced-order system matrix A
is guaranteed stable at any order ¢ < n.



Case 3: A is not normal. When A is not nor-
mal, a sufficient condition on the size of the coeffi-
cients of the matrix A can be imposed to get guar-
anteed stability at any order. Indeed, we have

Theorem 3.4 Assume [|A|; + ||Allc < 2. Then
p(A) <1, i.e., the reduced-order model is stable at
any order. Moreover the assumption is necessary
for all stable matrices of the form A = aP, where
P is a permutation matriz and |o| < 1.

Proof. As in the > proof of Theorem 3.1, we have
the inequalities p(A) < r(A) < r(A), resulting
from the Proposition 3.2. On the other hand, the
numerical radius of any matrix is always no greater
than the average of its £! and £*° norms, i.e., r(A4) <
3 (1Al + [|Aljco)- This latter fact can be derived
from a generalization of Gershgorin’s disk theorem
applied to the field of values {z*Ax € C,z*x =
1}. A complete proof can be found in ([§], p. 31-
33). Combining these inequalities along with the
assumptions leads to the conclusion that for any or-
der ¢ < n, p(A) < 1, which means that the reduced-
order model 18 stable at any order.

To show the necessity of the assumption for A =
aP, A = aP, where P is a permutation matrix
and |o] < 1, note that for a permutation matrix,
we have [|Pl}; = [|P|lo = 1, which implies that
2(HAH1+||A||0<,) =lo| < 1. Note that a permutation
matrix is normal, and therefore r(P) = p(P) = 1.
0

Another instance where the condition of the above
theorem is necessarily satisfied is when the matrix
A = a8, where |a| < 1 and S is a doubly stochas-
tic matrix, i.e., both its row and column sums are
equal to 1. A celebrated theorem due to Birkhoff
([7], Theorem 8.7.1) states that a doubly stochastic
matrix is a convex combination of permutation ma-
trices. This fact can be used to prove that 7(S) <
L= 3((ISlls +1ISlls)- In other words, r(A) < 1,
and the Arnoldi-based reduced-order models will be
guaranteed stable at any order.

The importance of the numerical radius stems
from the fact that for any matrix A € R®*® and
any isometry V € R™**¢ (VIV = I,), we have
r(VTAV) < r(A). This latter inequality is in gen-
eral not satisfied by the spectral radius. It is also
worthwhile noting that if a Lanczos-type algorithm
[3, 9] is used to derive the reduced-order matrix A,
a guaranteed-stability result similar to Theorem 3.4
is in general not possible. This is because the matri-
ces V; and W, produced by the Lanczos algorithm
such that VTAWq = H, do not allow us to con-
clude that r(Hq) <r(A).

4. CONCLUSION

The contributions of this paper are twofold. F irst,
we have used the Arnoldi algorithm to show how
a reduced-order model can be obtained without ex-
plicitly solving the ill-conditioned Hankel linear sys-
tem of the classical Padé approximation procedure.
Then we have established some results regarding
the guaranteed stability of the reduced model. Al-
though this paper has addressed only single-input/
single-output systems, all our conclusions remain
valid for the multiple-input/multiple-output case.
Indeed, the block Arnoldi algorithm [4] could be
used to obtain the reduced-order model, while the
stability results continue to hold since they depend
solely on Equation (4) and the system matrix A.
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