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ABSTRACT

Computer simulation is an important toel for improving our under-
standing of biomolecule electrostatics, in part to aid in drug design.
However, the numerical techniques used in these simulation tools
do not exploit fast solver approaches widely used in analyzing inte-
grated circuit interconnects. In this paper we describe one popular
formulation used to analyze biomolecule electrostatics, present an
integral formulation of the problem, and apply the precorrected-
FFT method to accelerate the solution of the integral equations.

1. INTRODUCTION

Biomolecular structure and interactions in an aqueous environ-
ment are determined by a complicated interplay between physi-
cal and chemical forces including solvation, electrostatics, van der
Waals forces, the hydrophobic effect, and covalent bonding. Elec-
trostatic forces have received a great deal of study due to their long-
range nature and the tradeoff between desolvation and interaction
effects [1, 2, 3, 4]. In addition, electrostatic interactions play a sig-
nificant role within a biomolecule as well as between biomolecules,
making the balance between the two vital to the understanding of
macromolecular systems. As a result, much effort has been devoted
to accurate modeling and simulation of biomolecule electrostatics.
One important application of this work is to compute the strength
of electrostatic interactions for a biomolecule in an electrolyte so-
lution, as well as the potential that the molecule generates in space.
There are two valuabie uses for these simulations. First, it provides
a full picture of the electrostatic energetics of a biomolecular sys-
tem, improving our understanding of how electrostatics contribute
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1o stability, function, and molecular interactions [5). Second, these
simulations serve as a tool for molecular design, since electrostatic
complementarity is an important feature of interacting molecules
[6]. Through examination of the electrostatics and potential field
generated by a protein molecule, for example, it may be possible
to suggest improvements to other proteins or drug molecules that
interact with it, or perhaps even design new interacting molecules
de nove |7, 8, 9].

There are two approaches to simulating a proteir macromolecule
in an aqueous solution with nonzero ionic strength. Discrete, atom-
istic approaches based on Monto-Carlo or molecular dynarmics sim-
ulations treat the macromolecule and solvent explicitly at the atomic
Ievel [2, 10, 11, 12, 13, 14]. An enormous number of solvent
molecules are often required to provide reasonable accuracy, par-
ticularly when the electric fields of interest are far away from the
macroscopic surface. In addition, free ions within the solvent are
difficult to model with this approach. In this paper, we adopt in-
stead a mixed discrete-continuum approach based on combining
a continuum description of the macromolecule and solvent with a
discrete description of the atomic charges {2, 15, 16, 17, 18].

Solutions to the mixed discrete-continuum model are mostly com-
puted numerically, using schemes based on finite-difference dis-
cretizations of the model’s underlying partial differential equations {1,
19, 20, 21, 22, 23). In this paper we demonstrate that a2 more effi-
cient procedure can be developed by combining a carefully chosen
integral formulation of the mixed discrete-continuum model with
one of the recently developed fast integral equation solvers [24, 25,
26]. In the following section we will briefly describe a widely used
approximate model of biomolecule electrostatics, and then in Sec-
tion Three we will derive a coupled integral formulation for the
problem [27]. The numerical schemes used for computing solu-
tions to the coupled integral formulation will be described in Sec-
tion Four, and in particular we will give a brief overview of the
precorrected-FFT (pFFT) accelerated methed [28]. Computational
results are given in Section Five, and these resuits will demonstrate
both the strengths and the weaknesses of our current implementa-
tion. Conclusions are presented in Section Six.

2. MIXED DISCRETE-CONTINUUM FOR-
MULATION

One commonly used simplified model for biomolecule electro-
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Figure 1: The continuum model of a solvated protein.

statics was introduced by Tanford and Kirkwood in 1957 [15}. In
this mode] the interior of a protein molecule is approximated as a
collection of point charges in a uniform dielectric material, where
the dielectric constant is typically two to four times larger than the
permittivity of free space. Any surrounding solvent is modeled as
a much higher permittivity electrolyte whose behavior is described
by the Debye-Hiickel theory. The interface between the protein
and the solvent is defined by determining how close the solvent
molecules can approach the biomolecule {29, 30].

The Tanford and Kirkwood model for a single protein in a sol-
vent is depicted in Figure 1, where Region I corresponds to the in-
terior of the protein and Region II cormesponds to the surrounding
solvent. The electrostatic behavior in Region I, the protein interior,
is governed by a Poisson equation
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where @ is the electrostatic potential, 7 is an evaluation position, 7
is the location of the #* protein point charge, ¢; is the peint charge
strength, n, is the number of point charges, and €; is the dielectric
constant in the protein interior. Note also that & is the standard
Dirac-Delta function.

To determine the electrostatic potential in the solvent, Debye-
Hiickel theory suggests that the electrostatic potential should sat-
isfy a nonlinear Poissen-Boltzmann equation, but the nonlinearity
generates an unnecessari{y complicated model. Instead, the simpler
linearized Poisson-Boltzmann equation, which is also a Helmholtz
equation, is more commonly used, and has been tested extensively
and shown to accurately predict biomolecular properties under a
variety of conditions. Therefore, the electrostatic potential in the
solvent, Region 1l of Figure 1, is presumed to satisfy the Helmbholtz
equation

Vigu(7) -k’ 92(F) =0 (Region ) @)

where  is the inverse Debye screening length.
A wide variety of numerical techniques can be used to compute
solutions to the combination of {1) and (2). For the biomolecule

application, the most commonly used approach is based on the
finite-difference method for discretizing partial differential equa-
tions, with researchers frequently making use of the DelPhi soft-
ware package [1, 19, 20, 21, 22, 23], Although finite-difference
methods have proven to be effective, there are several characteris-
tics of the biomolecule application which are problematic for such
methods. Inaccuracies can be generated when projecting the dis-
crete charges, which appear in (1), on to finite-difference grids. The
problem is particularly troublesome when attempting to compute
reaction forces at those point charge locations [31]. In addition,
the large jump in dielectric constant across the irregularly-shaped
protein-solvent boundary must be treated carefully. Finally, the sol-
vent region is unbounded, at least formally, and must be somehow
truncated before applying a finite-difference method. Modifica-
tions of the basic finite-difference method have been developed to
1esolve many of these difficulties [19, 20, 23, 32, 33], though often
at considerable computational cost.

3. INTEGRALEQUATION FORMULATION

As this section will make clear, numerical methods based on
solving an integral formulation of (1) and (2) can treat point charges,
irregularly shaped regions with large jumps in parameters, unbounded
domains, and the reaction force computation much more naturally
than finite-difference methods. For this reasen, a number of re-
searchers have developed integral formulations {27, 34, 35, 36, 37,
38], but most efforts have only addressed systems with zero ionic
strength (x = 01in (2)). In Juffer et al. {35], an integral formulation
was presented which allows for a general x, but the formulation
uses integrals with hypersingular kernels, and those integrals are
challenging to evaluate accurately. In this work we followed the
approach of Yoon and Lenheff {27], as their approach allows for a
general x and avoids hypersingular kernels.

Even though integral formulations have many advantages for this
application, they are not often used; the avajlable numerical tech-
niques for solving integral equations were too computationally ex-
pensive 10 use on complicated problems, but recently developed
fast algorithms have changed that situation considerably. In this
section we will describe an integral formulation for (1) and (2), and
in the next section we will describe a fast numerical technique for
computing the integral equation sclutions.

To begin the formulation derivation, first consider that the well-
known fundamental solutions to (1) and (2) are, respectively,

G7) = 4 ®
. e—xi?—ﬂ

The two fundamenta! solutions can be combined with Green’s sec-
ond theorem to generate an integral equations for the potential and
its normal derivative. In particular, the integral equation for Region
1is

o) = [, [6:07) 27 - o) 2 )| a7
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and the equation for Region I is

(= [, [-6m B+ ae 2en| v, ©

467



where 7 is the outward pointing normal as shewn in Figure 1, and
the domain of integration for the integrals, £2, is the boundary sur-
face separating the low permittivity protein interior from the high
permiltivity solvent.

The potentials ¢; and ¢y must satisfy a pair of matching condi-
tions on the boundary surface €. In particular, the electric potential
is continuous and the normal derivative of the potential jumps by
an amount related to the ratio of the dielectric constants,

01(7) = @(F) M
Wiy = 22y, ®

where 7, € Q, and £ = g5/€; is the relative dielectric constant of
the two regions. To enforce these matching boundary conditions,
take the limit of equation (5) as ¥ —+ £ from the inside, and use the
limit of equation (6) as 7 — £ from the outside. In this limit, Gy,
Gy, %(7;;'" and 9% are kernels with integrable singularities, so care
must be taken in carrying out the integrations. Note that that the
potential due to a monopole layer is continuous across the layer,
while the potential due to a dipole layer is discontinuous across the
layer [39].

The results generated by applying the limiting processes to (5)
and (6) yiclds
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where 7, is the position vector of some point on the boundary £
and the integrals are taken to be principal value integrals.
Substituting equations (7) and (8) into (10) and (12) yields a cou-

pled pair of integral equations for ¢; and % on the dielectric in-
terface,

%‘Pl(ﬁ:)'f‘L[‘Pl( a;; (o) ~ 61(70’4) (—’)}
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and
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Equations (13) and (14) can be used to compute ¢; and %';Tl on
Q. Then those surface potentials and their normal derivatives can
be used in (5), (6), (7), and (8) to compute the potentials anywhere.
Therefore, to compute the reaction potentials at the charge loca-
tions, which are needed to determine energy changes, one need

)]
=0. (14)
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only evaluate
o) = [ [n67) S - 0 )| 7.

(15)
4. NUMERICAL SOLUTION

4.1 Discretization Method

A standard piecewise-constant centroid-collocation scheme is used
to discretize (13) and (14) [40]. In the piecewise constant colloca-
tion method, the surface is first discretized into a set of panels, and a
piecewise constant basis function, By, is associated with each panel.
Then, the potentials are represented as a weighted combination of
the panel basis functions. That is,

¢1(fo) ~ Y aBi(Fo) (16)
k

a“” (o) = T hBi(F) an
k

where k is the panel index, and a;, and &;, are weights of individual
basis functions.

The basis function weights are determined by insisting that when
(16) and (17) are substituted for the potential and its normal deriva-
tive in (13) and (14), the resuliing equations are exactly satisfied
for those values of 7, which correspond to panel centroids. The re-
sulting system of equations can be denoted as a matrix of the form

71+fpaﬂ¢1t %?.*d’ ~ Jpanely Gyd? [ } [ E&~1 |1 }
M Loty S2dP 1/E [y, Gad? 0
(18)

where . is the total number of charges inside the protein and | panely
corresponds to an integration over the kth panel surface. Note that
the matrix is only a function of protein geometry and is indépen-
dent of charge locations, making it possible to construct the matrix
operator once and use it repeatedly to soive for different charge
configurations.

4.2 Precorrected-FFT Method

Although the matrix equation in (18) can be readily solved with
Gaussian elimination, and is used for the smaller test cases to dz=mon-
strate the validity of this formulation and to examine convergence
properties, Gaussian elimination is too computationally expensive
to solve practical examples of interest. An alternative approach to
Gaussian elimination is to use an iterative solver such as GMRES
[41), and recent advances in fast algorithms have made this ap-
proach very appealing. Most of these fast methods take advantage
of the fact that an iterative solver is a matrix-implicit algorithm. No
explicit matrix has to be formed or stored; only the calculation of
matrix-vector products is required. An existing precorrected-FFT
algorithm [28] is particularly well suited for this problem and will
be described here.

As demonstrated in the above formulation, the boundary element
method often involves the solution of an integral equation of the
following form:

o) = [ Ko7, a9

where K(7;#) is a known kemel. Given a potential distribution
(7}, one desires to find the corresponding charge distribution a(7}.
In the context of matrix-implicit iterative methods, what is impor-
tant is the ability to efficiently compute the potential distribution



for some charge distribution 6{7). Although charge-potential ter-
minology has been used here, this is for illustration purposes only;
they can be any general variables, such as those in the mairix equa-
tion (18), and the kernel K(F;#) does not have to be the usual TF‘—%"{
implied by the charge-potential relationship.

Figure 2: A pictoriat representation of the precorrected FFT
algorithm (image courtesy of J. Phillips)

The biomolecule electrostatic model has two integral equations
with different kernels, and therefore the fast method for computing
matrix-vector products must be kernel independent. Kemel inde-
pendence is a key feature of the precorrected-FFT algorithm, and it
is a property not shared with the more commonly used versions of
the fast multipole method [25. 26, 42].

The algorithm can be summarized in four steps, as shown in Fig-
ure 2, where a given set of panels from a discretized surface are
superimposed on a uniform grid. First, panel charges are projected
onto their associated grid points, in what is called the projection
step. Second, given the distribution of grid charges, the grid po-
tential can be calculated using a convolution of the Green’s func-
tion (the kernel) and the grid charges; this convolution is efficiently
computed using the fast Fourier transform (FFT). Third, grid poten-
tials are interpolated back onto the panels, a step known as interpo-
lation. In the fourth step, called precorrection, nearby interactions
are computed directly, with a correction factor that removes the
coniributions from the grid. All four steps—projection, interpola-
tion, FFT convolution, and precorrection—possess sparse represen-
tations, and so the algorithm is very efficient in both speed (roughly
©(nlogn)) and memory (roughly @(n)), where n is the number of
panels. This is a tremendous improvement over traditional meth-
ods for discretizing the integral equations, which generate dense
matrices and therefore require n? memory and »? operations for
matrix-vector multiplication.

5. COMPUTATIONAL RESULTS

Simulation results from four test cases are presented below. The
first case is a hypothetical spherical molecule whose analytical re-
sults [43) for the reaction potential are known. A direct factoriza-
tion of the matrix equation in (18) was implemented in Matlab [44]
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Figure 3: Convergence of the reaction potential of a spherical
molecule to the analytical result as the discretization is refined.

to aid the convergence analysis and verify the validity of this formu-
lation. However, &(n?) memory requirements limited the size of
this simulation problem to not much more than 1000 panels (2000
unknowns) for a computer with 1 GB of memory.

An accelerated GMRES solver with the pFFT implementation
was developed to demonstrate the formulation on realistic exam-
ples and was used in each of the remaining test cases. Note that
not only can the matrix equation in {18) be accelerated with pFFT,
but the calculation of the reaction potential (15) can be accelerated
also. The good conditioning of this integral equation formulation is
illustrated by the rapid convergence of GMRES in the sphere exam-
ple. The subsequent examples are simulations of a water molecule,
an organic molecule in solvent, and protein macromolecules. The
solvation free energy, which is simply one half of the inner product
of the charge values with the vector of the potentials at the charge
points, is compared with those obtained from the finite-difference
solver DelPhi [1, 19, 20, 21, 22, 23].

5.1 Analytical Reaction Potential of a Spheri-
cal Molecule

A spherical molecule of radius 1 A, in aqueous salt sclution, with
asingle charge located at various radial distances, was simulated. A
dielectric constant of 1 was used inside the molecule, and a dielec-
tric constant of 20 was used externally; ¥ = 3471 in this example.
The reaction potential calculated at the charge location was com-
pared with the analytic resuit for three cases, at radial distances rc of
04,05 A, and 0.9 A, as shown in Figure 3. As the charge moved
closer to the molecular surface, the relative error also increased.
All three cases exhibiied reasonable convergence properties as the
discretization was refined.

The number of iterations required to reach convergence with
PFFT acceleration is shown in Table 1, for two charge locations,
atre=0A andr. =0.9A. Although no preconditioner was used
in these test cases, GMRES converged reasonably quickly and the
iteration count remained fairly constant as the number of panels in-
creased. The conditioning of this formulation is evident and adop-
tion of a preconditioner will further improve performance.

5.2 Solvation Free Energy of a Water Molecule
The pFFT implementation of the linearized Poisson-Boltzmann



Number of Surface Panels | GMRES iteration count
re=00A] r.=09A

192 8 25

972 19 43

4800 16 44

6912 16 46

10800 18 48

Table 1: GMRES convergence of pFFT-acccelerated implemen-
tation

equation was then applied to cases that cannot be solved analyti-
cally, such as a small polyatomic molecule like water (H,0). The
geometry of water used is that based on the TIP3P model [45]. Two
hydrogen atoms of radius 1.0 A were bonded to an oxygen atom
of radius 1.4 A with bond lengths of 0.9572 A and a bond angle of
104.52 degrees. The oxygen atom had a charge of -0.834 and the
hydrogen atoms had charges of +0.417 in units of electron charge.
The molecular surface of the water molecule was triangulated with
the program MSMS [46] using a probe radius of 1.4 A. An ionic
strength of 0.145 M was used, equivalent to k = 0.124 A~1 at
25° C. No Stern layer was used, aliowing the ionic strength to reach
the molecular surface. A dielectric constant of 4 was used for the
interior of the water molecule, and a dielectric constant of 80 was
used externally. Figare 4 shows the relationship between molecular
surface discretization and solvation free energy.

" . L . s " L "
] 2000 4000 6000  BOOD 10000 12000 14000 18000
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Figure 4: Simulation of a solvated water molecule.

5.3 Solvation Free Energy of a Hi Charged
Small Organic Moftgcyule ghly 8

The next application of the pFFT solver was to a highly charged
small organic molecule with 26 atoms, the transition state analog
(TSA) of the protein enzyme chorismate mutase. The geometry of
this smal! molecule was taken directly from an X-ray crystal struc-
ture, and can be obtained from the Protein Data Bank (PDB) as
accession number 1ECM. The radii used were 1.0 A for hydro-
gens, 1.4 A for oxygens, 2.0 A for aliphatic carbons, and 1.7 A
for carbonyl or vinyl carbons. The charges used were derived from
quantum mechanical calculations. The molecular surface of the
TSA molecule was triangulated with the program MSMS [46], us-
ing a probe radius of 1.4 A for water. An ionic strength of 0.145 M
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was used, equivalent to k = 0.124 A~1 at 25° C. No Stern layer was
used, allowing the ionic strength to reach the molecular surface. A
dielectric constant of 4 was used inside the TSA molecule and 2
dielectric of 80 was used externally. Figure 5 shows the relation-
ship between the surface discretization level and the solvatior: free
energy calculated. The potential distribution en the molecular sur-
face is shown in Figure 6, and is based on a surface mesh of 10162
panels.

Y

¥

oS5 1 1.5 2 25 as
number of panals

x it

Figure 5: Simulation of a solvated TSA molecule.

Figure 6: Potential distribution on the surface of a solvated
TSA molecule.

5.4 Solvation Free Energy of Protein Macro-
molecules

An E. coli chorismate mutase {ECM) protein macromolecule
with 3210 atoms was also simulated with the pFFT solver. The
ECM protein has two TSA molecules bound with quantum me-
chanical charges and two water molecules bound with TIP3P charges.
Similarly to the other test cases, MSMS was used to triangulate
the molecular surface of the water molecule. An ionic strength of
0.145 M was used, equivalent to k =0.124 A~ at 25° C. Ne Stern
layer was used, allowing the ionic strength to reach the molecular
surface. A dielectric constant of 4 was used for the interior of the
TSA molecule, and a dielectric of 80 was used externally. Figure



Protein Esotvation (kcal/mol) time
# of dielectric panels | # of salt panels | pFFT DelPhi pFFT DelPhi
Water 17204 9330 -1.14 -3.17 5 minutes | 3 hours
TSA 34114 5842 -34.62 | -34.75 | 10 minutes | 3 hours
ECM 82868 18596 -646.42 | -653.88 | 2.5hows | 3.5 hours
Table 2: Solvation free energies calculated by pFFT solver and DelPhi.
Protein Energy Calculated
# atoms | # of dieleciric panels | # of salt panels (kcal/mol)
ECM 3210 82868 18596 Egolvation | 64642
Barnase 1107 43298 21284 Egesolvation | 51.06
Barstar 839 35978 17434 Eaesolvation | 40.11
Barnase-Barstar | 1946 68592, 31728 Einteraction | -82.65
Complex Evinding 8.53

Table 3: Solvation free energies calculated by pFFT solver.

7 shows the convergence of the solvation free energy with refined
molecular surface discretization.

Barnase, barstar, and the bamase-barstar complex were also sim-
ulated using the pFFT solver, and the energies calculated are listed
in Table 3.

=740 |

L s L
2 k3 4 & & T 13 9
TuMbar of paneds x10*

Figure 7: Simulation of a solvated ECM macromolecule.

5.5 Comparison to DelPhi

DelPhi is a popular finite-difference scheme based simulation
tool for solving the linearized Poisson-Boltzmann equation, and is
used both in academic and industry settings. Table 2 compares
the results for the three molecules described previously and illus-
trates the time savings of the pFFT-accelerated integral equation
formulation. An ionic strength of 0.145 M was used as before. A
Stern layer of 2 A was also used in all three cases here. The first
column lists the number of discretization panels for the dielectric
interface, and the second column lists the number of discretization
panels for the salt interface (i.e., the Stern layer). The discretiza-
tion used in DelPhi was 257 grids per Angstrom. The two solvers
agree to within 1%. The pFFT solver is one order of magnitude
faster than DelPhi for smalier molecules like water and TSA. The
speed improvement is less significant in the ECM case for two rea-

sons. First, no preconditioners were used in any of the examples,
so convergence is slow for large macromolecules with complicated
geometries (such as ECM). Work is underway to devise and im-
plement an efficient preconditioner that can significantly improve
simulation time. Second, the surface discretization software has
difficulty triangulating complicated geometries such as the ECM
macromolecular surface; some of the generated panels have ex-
tremely high aspect ratios, which can cause problems for the pFFT
sojver. This tessellation problem may also be responsible for the
discrepancy in solvation free energies calculated by DelPhi and the
PFFT solver. We are currently examining methods to improve the
quality of the surface discretizations.

6. CONCLUSION

In this paper we presented an integral-equation based approach
for computing numerical solutions to the mixed discrete-continuum
model of biomolecule electrostatics. The new approach combines a
carefully chosen integral formulation of the mixed discrete-continuum
model with 2 kernel-independent precorrected-FFT accelerated in-
tegral equation soiver. Computational results from our new ap-
proach, on both simple and more complicated geometries, were
compared to analytic results and to the widely used finite-difference
based DelPhi program. The results clearly indicate that the new
simulator can be as much as thirty times faster than Delphi, though
our new program generated disappointing results in some cases.
These preliminary results are encouraging and indicate a potential
application of this formulation. More rigorous test cases are being
designed and studied, and further optimization of the pFFT imple-
mentation is under investigation.
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