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Abstract—
The extraction of substrate coupling resistances can be for-

mulated as a first-kind integral equation, which requires only
discretization of the two-dimensional contacts. However, the
result is a dense matrix problem which is too expensive to store
or to factor directly. Instead, we present a novel, multigrid it-
erative method which converges more rapidly than previously
applied Krylov-subspace methods. At each level in the multi-
grid hierarchy, we avoid dense matrix-vector multiplication by
using moment-matching approximations and a sparsification
algorithm based on eigendecomposition. Results on realistic
examples demonstrate that the combined approach is up to an
order of magnitude faster than a Krylov-subspace method with
sparsification, and orders of magnitude faster than not using
sparsification at all.

I. INTRODUCTION

The design of single chip mixed-signal systems is now an ac-
tive area of research, driven by the relentless quest for high-level
integration and cost reduction. A major challenge for mixed-signal
design tools is the accurate modeling of the parasitic noise coupling
through the common substrate between the high-speed digital and
high-precision analog components [22], [11], [15]. Fast switching
logic components inject current into the substrate, causing voltage
fluctuations which can affect the operation of sensitive analog cir-
cuitry through the body effect. Since the bulk substrate behaves
resistively up to a frequency of a few gigahertz [6], [23], it is suf-
ficient to solve Laplace’s equation inside the substrate with proper
boundary and interface conditions. Examples of this approach [11],
[22], [13], [20], [25] includes Finite Element (FEM) and Finite
Difference (FD) methods. Although the resulting linear systems
are sparse, such methods are impractical for complex layouts be-
cause the number of unknowns resulting from three-dimensional
volume-meshing of the entire substrate is too large.

Integral equation based techniques such as the Boundary Ele-
ment Method (BEM) have been applied with some success to the
modeling of substrate coupling [19], [5], [24]. Since only the
two-dimensional substrate contacts are discretized, BEM methods
dramatically reduce the size of the linear system to be solved. How-
ever, they produce dense matrices, which are too expensive to store
or factor directly. To address this difficulty, heuristic partitioning
schemes [7], [19] were proposed to sparsify the matrix inverse by
setting direct admittances to contacts outside a user-defined region
to zero. This approach requires too much user intervention and,
more importantly, results in errors that are difficult to control and
quantify.

Iterative schemes, combined with a sparsification algorithm to
compute dense matrix-vector products efficiently, can be effective
for solving large BEM systems. In [24], GMRES [17], a Krylov-
subspacebased iterative method, was combinedwith a fast multipole
[8] algorithm for substrate resistance extraction. However, accuracy
is compromised since the multipole algorithm cannot handle sub-
strate edge effects. A more serious difficulty is that Krylov-subspace
iterative methods converge slowly when applied to large BEM sys-

tems, which tend to be ill-conditioned [18], [21], [12]. Hundreds of
iterations may be required per solution for large problems.

Multigrid methods, or more generally, multilevel methods, are
known to be the most efficient iterative techniques in the solution
of elliptic partial differential equations (PDE’s) [1], [9], [2] due
to their fast convergence. However, multilevel methods are not
well-developed for first-kind integral equations [12] defined over
complicated geometries, as is our case here. In this paper, we ad-
dress this void by developing a multigrid iterative solver, and then
integrating it with sparsification algorithms specially tuned to ac-
curately account for substrate edge effects. Section II summarizes
the BEM formulation for substrate coupling resistance extraction.
Our new multilevel algorithm is presented in Section III. Com-
putational results are given in Section IV, where comparisons to
Krylov-subpace iterative methods are also made. Finally we give
our conclusions and acknowledgements in Section V.

II. BACKGROUND AND PREVIOUS WORK

In the electrostatic approximation [6], [24], the substrate is mod-
eled as a stratified medium composedof several homogeneous layers
characterized by their conductivities shown in Figure 1. Three con-
tacts are shown in gray. For this work, the substrate backplane is
assumed to be grounded electrically.��
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Fig. 1. 3D substrate profile.

Since the problem is linear, an integral equation defined over � ,
the collection of two-dimensional substrate contacts, can be written�	��
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where

"��
 �

are points on � ,
� �

is the current density on � , and����

;

 � �

is the Green’s function, which must also satisfy the appro-
priate boundary and interface conditions. This is a first-kind inte-
gral equation [12] which forms the basis for the boundary-element
method (BEM) used in [19], [7], [24].

To numerically solve (1), the domain � discretized into # dis-
joint, rectangular panels $&%('�) such that � �+*-,'/. 1 %(' . An example
of panel discretization for a three-contact layout is given in Figure 2.
In the Galerkin scheme [10], the current density on each panel %('
is assumed to be uniform. Then # linear equations are constructed
by evaluating the average potential

�	��

�
over each panel % ' . The

result is a discretized version of (1)0 ��132
� �
2
�
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where
2

and 0 are length- # vectors with
2 ' denoting the total current

on panel4 5 and 076 denoting the average potential on panel 8 . 1 is an#:9;# matrix given by1 ' 6 � 1� ' � 6 �(<>=?�"<A@ ����
 ; 
 � ���
�
�
� � �
3
�

where
� ' and

� 6 are the areas of panels 5 and 8 respectively.
1

is
often called the coefficient-of-potential matrix. We note here that

1
is dense since current injected into any panel 5 produces a non-zero
potential at every other panel 8 . BC D

E
F

Fig. 2. Example of contact discretization.

For the extraction of substrate coupling resistances, the voltages
at the contacts, each corresponding to a circuit node, are specified.
We are required to solve for the detailed current distribution, which
can be summed over each contact to yield the current flow into each
node. This is analogous to the capacitance extraction problem [14].
The linear system (2) is to be solved for

2
given 0 .

The Green’s function
����


;

 � �

for the bounded substrate with
grounded backplane was shown in [6] to be a double infinite series
of cosines in G and H . By truncating

����

;

 � �

to a finite IJ9KI series
and substituting it into (3), it was also shown in [6] that each entry

1 ' 6
can be constructed from linear combinations of appropriate terms
from a two-dimensional IL9;I array $NMPORQS) , which is computed
once and for all with a Type-1 Discrete Cosine Transform (DCT).
Although this allows individual entries of

1
to be computed, direct

solution of (2) still requires T � # 3 � CPU time and T � # 2 � memory
since

1
is dense. This limits the size of the problem to a few hundred

panels. In the next section, we develop an efficient iterative solver
based on multiresolution analysis.

III. MATRIX-FREE, MULTILEVEL SOLUTION OF FIRST-KIND
INTEGRAL EQUATIONS

The efficiency of multigrid iterative methods is a direct result of
the fact that convergence rate is independent of discretization, and
hence problem size. This is to be contrasted with Krylov-subspace
iterative methods, whose convergence rates deteriorate with increas-
ing mesh refinement, or equivalently, worse matrix conditioning.
In this section, we develop a multigrid method for the discretized
first-kind integral equation (2), as well as sparsification techniques
necessary to avoid dense matrix-vector multiplication at each level
in the multilevel algorithm.

To best present the method, we first describe the simpler case of
a uniformly discretized contact that covers the entire substrate. We
then describe the modifications needed for many irregularly shaped
contacts.

A. Basic Multigrid Algorithm for Uniform Grids

In this section, we assume that the integral equation is defined
over the entire substrate U �WV 0 �X�>Y 9 V 0 �[Z\Y�	��

�����(]^� � ��

��������


;
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and that U is discretized into a uniform array of I`9aI panels.
We assume further that I is a power of two, i.e. I �

2 O for

integer b . We refer to this discrete BEM system as a level b , or
fine-grid, representation of (4)

1Kc O�dfe 2Nc O�d � 0 c O�d . The number of
panel unknowns, and hence the size of the linear system, is then#^O � I 2. Suppose we also discretize (4) using a coarser, uniform� Ihg 2 � 9 � Ihg 2 � array of panels, yielding a discrete linear system
of size #^O�i 1

� #^O_g 4. This results in a level
� b>j 1

�
, or coarse-grid,

representation
1Kc O�i 1 dKe 2>c O�i 1 d � 0 c O�i 1 d . See Figure 3 for the two

discretizations.

kXlAmnlAk;kXoqpkXlAmnlAk;k
Fig. 3. Two-level Representation and Restriction for Uniform Grid

Problem.

Algorithm 1 ( Two-Grid Method (TGM) )

Set r!s 1
�[2ut 1 vc O�d s 0.

Repeat $
Fine-Grid Smoothing:

Solve w c O�dxeuy 2
zc O�d � j 1Kc O�d�e 2ut|{ vc O�d~} 0 c O�d
for y 2 zc O�d .

Compute intermediate guess
2�zc O�d ��2 t|{ vc O�d�} y 2�zc O�d .

Computeresidual � c O�d ��1Kc O�dKe 2
zc O�d j 0 c O�d .
Project to coarse grid � c O�i 1 d ��� � c O�d .
Coarse-Grid Correction:

Solve for y 2 c O�i 1 d in
1 c O�i 1 d e>y 2 c O�i 1 d � � c O�i 1 d .

Project to fine grid y 2 c O�d � % � y 2 c O�i 1 d � .
Update intermediate guess

2ut|{�� 1 vc O�d ��2 zc O�d j y 2 c O�d .
Set r � r } 1.) Until residual norm �7� c O�d ����� .

Solving the fine-grid problem by direct matrix factorization is
impractical for large #�O since

1 c O�d is dense. However, it may be pos-
sible to factor the smaller matrix

1 c O�i 1 d correspondingto the coarse-
grid problem, since #�O�i 1

� #�O_g 4. This motivates our development
of a two-grid method (TGM), in which the problem is solved itera-
tively at level b with the help of direct solution at level

� b�j 1
�
. The

two principal algorithmic components, analogous to TGM for PDE’s
[1], [9], [2], are the smoothing operator and the intergrid transfer, or
restriction-prolongation, operators. In our TGM iteration for solv-
ing
1 c O�d 2 c O�d � 0 c O�d , the error in the r -th iterate,

2 t�{ vc O�d , is smoothed
by carefully solving a series of local problems. This first stage is
typically called “fine-grid smoothing”, and results in an intermediate
guess

2�zc O�d . Next, we compute the residual � c O�d ��1Kc O�d�e 2�zc O�d j 0 c O�d
and project it onto the coarse grid via � c O�i 1 d ��� � c O�d , where

�
is a restriction operator. Then we solve explicitly the coarse-grid
problem

1 c O�i 1 d e � y 2 c O�i 1 d ��� � c O�i 1 d for y 2 c O�i 1 d , and project the
result onto the fine grid via y 2>c O�d � % � y 2>c O�i 1 d � , where % is a pro-
longation operator. Finally, the intermediate guess on the fine grid
is updated to yield the

� r } 1
�
-st iterate

2 t|{A� 1 vc O�d ��2 zc O�d j y 2 c O�d . This
second stage is termed “coarse-grid correction” and is responsible
for “long-range” interactions. The fine-grid smoothing/coarse-grid
correction cycle is repeated until the norm of the residual � c O�d is
below some tolerance. TGM is summarized in Algorithm 1, where
the matrix w is described below.

To derive the smoothingoperator, we first make the important ob-
servation that the BEM matrix

1
is derived from a Green’s function����


;

 � �

that is sharply peaked as

3��
 �

, but is smooth otherwise,
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i.e. � 
 j 
 � �?� � for some distance
�
. We seek an operator splitting

at lev� el b 1Kc O�d � w c O�d } � c O�d � �
5
�

such that w c O�d captures the short-range, sharply-peaked portion of1 c O�d , and � c O�d captures the long-range, smooth portion of
1 c O�d . See

Figure 4 for a rough depiction.

� � �
Fig. 4. Operator Splitting

1�� w } � .

Given (5), we define the smoothing operator as the result of
solving w c O�d~e 2 zc O�d � j�� c O�dxe 2 t|{ vc O�d~} 0 c O�d �

6
�

for the vector
2 zc O�d . Equation (6) defines a fixed-point iteration [21],

since the condition
2 t|{ vc O�d �J2 c O�d , where

2 c O�d is the exact solution
of the fine-grid problem, would lead to

2 zc O�d ��2 c O�d . Since it is
necessary that the above smoothing step be done cheaply, we require
that w c O�d be easy to invert, or that w i 1c O�d has a sparse representation,
since 2 zc O�d � w i 1c O�d eq� j�� c O�dfe 2 t|{ vc O�d~} 0 c O�d[��� �

7
�

Here, we construct directly a sparse matrix w i 1c O�d based on the pre-
conditioner developed in Fastcap [14], a BEM-based capacitance
extraction program. Our particular implementation is outlined as
follows. For each panel 5 , a local coefficient-of-potential matrix1 OR��� involving only panel 5 and its immediate neighbors is con-
structed. For the uniform grid problem, the size of

1 OR��� is at most
9 9 9. This small matrix is easily inverted to yield

1 i 1OR��� , whose
elements from the row corresponding to panel 5 are then extracted
and stamped into corresponding locations in the 5 -th row of w i 1c O�d .
Hence, the matrix w i 1c O�d contains at most 9 non-zero entries per row
and is sparse. We recall that the panel-to-panel interaction coeffi-
cient can be computed inexpensively from a I�9�I DCT array
described in Section II.

Because we do not construct w c O�d directly, it may seem at first
glance that the matrix � c O�d s 1 c O�d j�w c O�d is difficult to obtain. But

by subtracting
� w c O�d e 2 t|{ vc O�d � from (6) and then multiplying through

by w i 1c O�d , the resulty 2 zc O�d � w i 1c O�d eq� j 1 c O�d e 2 t|{ vc O�d~} 0 c O�d �2 zc O�d � 2ut|{ vc O�d~} y 2 zc O�d � (8)

can be used to compute
2�zc O�d . This requires only operators w i 1c O�d and1Kc O�d which are readily available.

In addition to the smoothing operator, we require transfer oper-
ators

�
and % between the two grids. They are trivial in the case of

uniform grids, where a coarse-grid panel, called a parent, is com-
posed of four fine-grid panels, called kids. See Figure 3. Recall
that in the Galerkin formulation,

2 ' is the net current on panel 5 , and0u6 the average potential on panel 8 . For the restriction operator
�

mapping from level b to level
� b�j 1

�
, the net current on a parent

is simply the sum of the currents on the four kids, and the average
potential on a parent is the average of the four kid potentials. The
prolongation operator % mapping from level

� b	j 1
�

to level b is
defined as the adjoint, or transpose, of the restriction

�
[2].

The multigrid method (MGM) is the generalization of the two-
grid method to an arbitrary number of levels, and this is done exactly

as in the standard multigrid literature. Instead of solving the coarse-
grid problem explicitly at level

� b[j 1
�
, which may still be too expen-

sive, we apply a similar smoothing-correction cycle at level
� b�j 1

�
.

In the same manner, the correction cycle at level
� b"j 1

�
becomes a

smoothing-correction cycle at level
� b�j 2

�
, and so on. The integral

equation (4) is now discretized at all levels $Nb Q '�� � �7�7� � b Qf�A  ) . Only
at the coarsest level

� b � b Q '/� � is the system
1Kc O�d 2Nc O�d � 0 c O�d

solved explicitly. Hence, each multigrid iteration is best described
as a recursive function call.

B. Hierarchical Basis Functions for Complicated Domains

For integral equations defined on an arbitrarily shaped region� , we recall that the linear system (2) results from a Galerkin dis-
cretization based on constant strength panels. Figure 2 shows an
example of discretization using square panels of equal size. We
define here the characteristic function, ¡ ' ��

� ,associated with each
panel % ' ¡f' ��

���£¢ 1 g � ' if


! %('
0 otherwise

�
9
�

where
� ' is the area of %(' . The Galerkin coefficients

1 ' 6 given in
(3) is equivalent to the definition1 ' 6 � �n���	� ����
 ; 
 � � e ¡f' ��
�� e ¡ 6 ��
 � ���
�
�
� � �

10
�

where the integrations are now over the entire surface � .¤ ¥ ¦§¨�©[ªu©[«­¬ ¨"©Aª7©A« ¤
Fig. 5. Hierarchical basis functions.

The explicit use of characteristic functions allows us to construct
coarser-level representations of the integral equation defined over
complicated geometries. For simplicity, let us assume that at the
finest level b Qf�[  , each panel coincides with a cell on the regularI®9^I grid, where I �

2 O/¯n°7± . Of course, not all of the I 2 cells
are occupied by panels. A panel at a coarser level b � $ � b Qx�A  j
1
�A� �7�u� � 0 ) is defined in the following manner. At each level b , the

substrate is represented by a regular 2 O 9 2 O array of level- b cells. For
each non-empty level- b cell, a level- b panel is defined as the union
of all finest-level panels within that cell. The r -th panel at level b
is denoted by % c O�d{ , and is associated with a characteristic function¡ c O�d{ defined similarly as in (9). Given the set of hierarchical basis

functions $N¡ c O�d{ ) , we can now easily define discrete representations
of the integral equation

1 c O�d e 2 c O�d � 0 c O�d at each level b , where the
Galerkin matrix elements

1 c O�d' 6 are computed as1 c O�d' 6 ��� � � � ����

;


��� e ¡ c O�d' ��

� e ¡ c O�d6 ��

�����
�
�
�
� �

11
�

Figure 5 shows a finest-grid discretization at level 5 being mapped
into a coarse representation with only four panels at level 1. An
efficient, hierarchical algorithm for the actual computation of the
integrals in (11) is described in the next section.

C. Sparsification via Eigendecomposition and Moment-Matching

In this section, we first describe how to compute the matrix-
vector product

1 c O/¯n°�±²d e 2 c O/¯P°�±²d efficiently at the finest level via

22



an eigendecomposition technique. Then we propose a moment-
matching³ algorithm which is used in conjuction with eigendecom-
position to compute

1 c O�d e 2 c O�d efficiently at at all coarser levelsb � $ � b Qf�A  j 1
�A� �7�7� � 0 ) .

We first define a surface eigenfunction ´ ��

� as an eigenfunction
of the integral operator defined over the entire substrate surfaceU �µV 0 �[�>Y 9 V 0 �XZ\Y¶ e ´ ��
��~� �(] ´ ��
 � ������
 ; 
 � ���
� � � 
! U � �

12
�

It has been shown [4] that the surface eigenfunctions are´ ' 6 � G � H ��� cos � 5|·qG� � cos � 8
·�HZ � � �
13
�

where the eigenvalues
¶ ' 6 are given in [7], [6]. Although the eigen-

functions in (13) also appear in [7], [6], they were used only to
construct the panel-to-panel interaction coefficients

1 ' 6 . The dense
matrix-vector multiplication

1 e 2 still requires T � # 2

< �
operations

in [7], where # < is the number of panels. In contrast, we use the
eigenfunctions to expand the global current density ¸ � G � H � and
show that the

1 e 2 product can be computed in T � 2 e I 2 e log2

� I ���
operations using the DCT. If we assume that all panels are minimum
sized cells on the IL9;I substrate grid, and that 10% of the cells
are occupied by actual panels (i.e. # < �¹� 0 � 1 � I 2), then the cost
of computing the dense

1 e 2 product directly is T � 0 � 01 9�I 4 � .
At I �

128, eigendecomposition is already an order of magnitude
faster than direct multiplication.

We define a prototype characteristic function centered about the
origin in one dimensionº � � G �P�£¢ I»g � if � Gq�
¼ � g 2 I

0 otherwise
� �

14
�

It is then clear that the panel characteristic functions ¡ ' � G � H � can be
obtained by combining and shifting

º � � G � and
ºS½7� H � . The global

current density resulting from a Galerkin panel discretization is then¸ � G � H �¾��¿ÁÀ i 1'�. 0

¿ÂÀ i 16 . 0

2 ' 6 e º ��Ã G�j�Ä 5 } 1 g 2 Å �I Æ eºS½ Ã HSj Ä 8 } 1 g 2 Å ZI Æ � (15)

If we can expand ¸ � G � H � in (15) in terms of the eigenfunctions¸ � G � H �P�ÈÇÉ '/. 0

ÇÉ 6 . 0

� ' 6 ´ ' 6 � G � H �-� �
16
�

i.e. if the coefficients $ � ' 6 ) can be quickly computed, then (12)
immediately leads toÊË� G � H �~� ÇÉ '�. 0

ÇÉ 6 . 0

¶ ' 6 � ' 6 ´P' 6 � G � H � � �
17
�

Given the potential everywhere (17), the average panel potentialÊ <uÌ
at the

� % �A2²� position in the cell array isÊ <uÌ � ¿ Ç'�. 0

¿ Ç6 . 0 Í ' 6 ¶ ' 6 � ' 6 cos Î � % } 1 g 2 � ·q5I Ï e
cos Î �Ð2 } 1 g 2 � ·�8# Ï �

(18)

where Í ' 6 are normalization coefficients. It can be shown [4] that if
(16) and (18) are truncated to a finite series, the IÑ9SI coefficients

$ � ' 6 ) can be computed via a forward Type-2 DCT, and then theIÒ9;I array $ Ê <NÌ ) via an inverse Type-2 DCT.
To calculate a single Galerkin coefficient

1 c O�d' 6 between two
coarse-grid panels defined by (11), it is sufficient to perform a dou-
ble summation of the panel-to-panel coefficients

1 c O ¯n°7± d' 6 at the
finest level. However, this leads to an T � # 2

< �
algorithm. Instead,

we make the observation that when two coarse panels % c O�d' and % c O�d6
are “well-separated”, their interaction coefficient

1 c O�d' 6 can be com-
puted approximately by leaving out much of the detail in the char-
acteristic functions ¡ c O�d' and ¡ c O�d6 . Similar ideas have been used
extensively in multipole-accelerated algorithms[16], [14], [24]. For
the multipole approximation used in [24], it was necessary to as-
sume a substrate Green’s function which has translational invariance
and which can be fitted to a sum of polynomials in

�
1 g �N� , where��� � 
 j 
 � � . In contrast, we develop here a fast moment-matching

method which can be used in combination with the DCT to accel-
erate the coarse-grid computations and account properly for all the
substrate boundary effects.

Fig. 6. Moment-matched representation of coarse panel.

If we are interested in the potential at a panel % c O�d6 far from% c O�d' , it may suffice to approximate ¡ c O�d' by distributing the current
uniformly over the entire level- b cell as shown in Figure (6) on the
left. This idea can be refined by matching higher-order moments
of the characteristic function ¡ c O�d' with a regular 2

{ 9 2
{

array of
characteristic functions associated with the cells at level

� b } r � .
For the choice r � 2, each coarse panel is associated with a set of
4 9 4

�
16 coefficients, as shown in Figure (6) on the right. If we

let ¡ c O�d' be the approximate characteristic funtion generated from
the 4 9 4 cell array, the moment matching conditions require that

the moments Ó t_Ô vÕ
Ö and Ó t_Ô vÕ
Ö defined byÓ t_Ô vÕ
Ö �+� ¡ c O�d' G Õ H Ö � G � H � Ó t_Ô vÕ
Ö ��� ¡ c O�d' G Õ H Ö � G � H �a� 19
�

match exactly up to a certain order × . The Cartesian moments
defined in (19) for each order × requires that Ø }hÙ � × and thatØ takes on all values $ 0

� �7�7� � ×-) . It can be shown that the if the
Cartesian moments match up to order × , then the difference between

the the potentials generated by ¡ c O�d' and ¡ c O�d' is of order
�
1 g � Ô>� 1 � ,

but the proof is too long to state here.
Since each coarse-grid panel % c O�d' is now associated with 16

geometric coefficients, and since these coefficients correspond to
cell currents at level

� b } r � , it is possible to compute the
1 c O�d 2 c O�d

product in a matrix-free manner by using the DCT on a 2 O �Ú{ 9 2 O �Ú{
grid, similar to the finest level computation. However, since the
nearest-neighbor panel interactions are not well approximated by
moment matching, they are computed directly.

IV. COMPUTATIONAL RESULTS

We present numerical experiments comparing two iterative
methods for solving (2): our new multigrid (MG) algorithm and
the standard Generalized Minimal RESidual algorithm (GMRES
[17]) without preconditioning. Since (2) results from a first-kind
integral operator (1), the smallest eigenvalues of the matrix

1 c O�d ap-
proach zero with increasing mesh refinement [12] and

1 c O�d becomes
more ill-conditioned. It is well-known that Krylov-subspace based
iterative methods such as GMRES or CG (Conjugate Gradient) con-
verge slowly for ill-conditioned linear systems [21]. Although it is

23



possible to appply preconditioning to accelerate GMRES conver-
genceÛ as was done in [14], an increasing number of iterations is still
required for finer discretizations. We demonstrate that the multigrid
algorithm resolves this difficulty by retaining a constant conver-
gence rate per iteration, independent of mesh refinement, and hence
problem size. Thus, for a given relative error tolerance, the number
of multigrid iterations required is fixed.
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Fig. 7. Example substrate profiles.

In Figure 7, we display the three vertical substrate profiles used in
this section: the single-layer substrate, the low-resistivity substrate,
and the high-resistivity substrate. The lateral dimensions of the
substrate is assumed to be 1mm 9 1mm (or 1000 ÿ m 9 1000 ÿ m).
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Fig. 8. Two-grid vs. Multigrid convergence.

The efficiency of multigrid algorithms in general arises from the
fact that the smoothing operator at each level reduces the corre-
sponding error components by the same numeric ratio [2]. This
is demonstrated for the single-layer substrate example discretized
with a 256 9 256 grid, and with a cell occupancy factor of one-
half. The normalized residual, � 1Kc O�d 2ut|{ vc O�d j 0 c O�d �7g?� 0 c O�d � , is plotted
versus the MG iteration count in Figure 8 for the two-grid method
TGM (2 levels) and the multigrid method MGM (9 levels). The
same convergence rate of about an order of magnitude per iteration
is observed for multigrid methods of varying depths. We note that
MGM requires only the application of operators

1 O at various levels
(and the solution of a scalar equation at the coarsest level b � 0),
whereas TGM requires solution of the system at level

� bNj 1
�
. Since

the size of the linear system decreases geometrically with the level
index, the cost of an MGM iteration is a constant multiple of an
operator application at the finest level, or equivalently, a single GM-
RES iteration. Using the algorithms developed in Section III, we
have observed this factor to be three to four in our implementation.

The crucial feature of multigrid schemes is that the convergence
rate is independent of discretization, and hence problem size. We
perform our next experiment with the single-layer substrate on five
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Fig. 9. Effect of mesh refinement on convergence.

test layouts of increasing mesh refinement, labeled
���

4 through���
8. The

���
4 layout is discretized on a 16 9 16 grid, and

the
� �

8 layout is discretized on a 256 9 256 grid. The multi-
grid method with maximum depth ( b Q '�� � 0

� b Qf�[  ��� ) is applied
to solve each problem. The observed MG convergence rate is in-
deed independent of mesh size, as shown by the residual versus
iteration plot in Figure 9. Also displayed are the GMRES conver-
gence rates, which deteriorate with increasing mesh refinement as
expected. Since the cost of a single MG iteration is a constant mul-
tiple of that of a GMRES iteration (three to four in our case), it is
clear that MG is superior to GMRES, especially for large problems
requiring fine discretization.

Fig. 10. PLL active area layout.

To show that the multigrid approach can be applied to realistic
problems, we perform substrate parameter extraction on a a Phase
Lock Loop (PLL) frequency synthesizer circuit [3] on a 1mm 9
1mm chip. There are 478 substrate contacts defined by the active
layer mask shown in Figure 10. Discretized with the help of a
1024 9 1024 grid, the total number of panels, or minimum-size
cells, is # O � 183905. This corresponds to roughly 20% of the chip
area. The resolution thus achieved is about 1 micron.

The GMRES algorithm with sparsification via eigendecompo-
sition [4] is used as a timing benchmark. We demonstrate the
efficiency of MG versus GMRES by comparing the CPU times re-
quired to extract the 478 9 478 substrate conductance matrix. The
substrate profile is assumed to be (a) single-layer, (b) low-resistivity,
or (c) high-resistivity shown in Figure 7. We require convergence
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to a tolerance of 1e j 3 in the relative residual norm for each of the
478 solv� es. The timing results are summarized in Table I. It is
seen from the total extraction time that MG is faster than GMRES
by almost an order of magnitude for the low-resistivity and high-
resistivity substrates. More significant gains will be seen for even
larger problems requiring finer meshes.

�������
	
<

� ' �
��� #�' �
����� � � ��O�
 � � � � � �7O
MG (a) 317s 28.5s 3 85.5s 11.4h
GMRES (a) 11.2s 7.32s 50 366s 48.6h
MG (b) 343s 28.4s 4 114s 15.2h
GMRES (b) 29.9s 8.1s 95 771s 102h
MG (c) 333s 28.0s 6 168s 22.3h
GMRES (c) 23.0s 8.4s 180 1512s 201h

TABLE I
COMPUTATIONAL COST FOR PLL SUBSTRATE EXTRACTION.

A possible limitation of the multigrid algorithm is that it resolves
only ill-conditioning caused by mesh refinement. It is less effective
in dealing with ill-conditioning caused by the apparent loss of the
groundplane, as seen in a slowdown of MG convergence for the
high-resistivity case (c). To maintain the optimal MG convergence
rate, it is necessary to explicitly solve the problem at some levelb Q '�� � 0.

V. CONCLUSIONS AND ACKNOWLEDGEMENTS

In this paper we described a multigrid method for solving the
first-kind integral formulation of the substrate extraction problem.
We believe that the ideas proposed here can be generalized to solv-
ing other problems arising from first-kind integral equations defined
over complicatedsurfaces, such as BEM capacitanceextraction [14].
The authors wish to thank Ranjit Gharpurey of Texas Instruments
and Edoardo Charbon of Cadence Design Systems for helpful dis-
cussions and for providing the PLL layout example.
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