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Abstract—

The extraction of substrate coupling resistances can be for-
mulated as a first-kind integral equation, which requires only
discretization of the two-dimensional contacts. However, the
result is a dense matrix problem which is too expensive to store
or to factor directly. Instead, we present a novel, multigrid it-
erative method which converges more rapidly than previously
applied Krylov-subspace methods. At each level in the multi-
grid hierarchy, we avoid dense matrix-vector multiplication by
using moment-matching approximations and a sparsification
algorithm based on eigendecomposition. Results on realistic
examples demonstrate that the combined approach is up to an
order of magnitude faster than a Krylov-subspace method with
sparsification, and orders of magnitude faster than not using
sparsification at all.

|. INTRODUCTION

The design of single chip mixed-signa systems is now an ac-
tive area of research, driven by the relentless quest for high-level
integration and cost reduction. A major challenge for mixed-signal
design toolsisthe accurate modeling of the parasitic noise coupling
through the common substrate between the high-speed digital and
high-precision analog components [22], [11], [15]. Fast switching
logic components inject current into the substrate, causing voltage
fluctuations which can affect the operation of sensitive analog cir-
cuitry through the body effect. Since the bulk substrate behaves
resistively up to a frequency of afew gigahertz [6], [23], it is suf-
ficient to solve Laplace's equation inside the substrate with proper
boundary and interface conditions. Examples of thisapproach[11],
[22], [13], [20], [25] includes Finite Element (FEM) and Finite
Difference (FD) methods. Although the resulting linear systems
are sparse, such methods are impractical for complex layouts be-
cause the number of unknowns resulting from three-dimensional
volume-meshing of the entire substrate is too large.

Integral equation based techniques such as the Boundary Ele-
ment Method (BEM) have been applied with some success to the
modeling of substrate coupling [19], [5], [24]. Since only the
two-dimensional substrate contacts are discretized, BEM methods
dramatically reducethe size of the linear system to be solved. How-
ever, they produce dense matrices, which are too expensive to store
or factor directly. To address this difficulty, heuristic partitioning
schemes [7], [19] were proposed to sparsify the matrix inverse by
setting direct admittances to contacts outside a user-defined region
to zero. This approach requires too much user intervention and,
more importantly, results in errors that are difficult to control and
quantify.

Iterative schemes, combined with a sparsification algorithm to
compute dense matrix-vector products efficiently, can be effective
for solving large BEM systems. In [24], GMRES [17], a Krylov-
subspacebased iterative method, was combined with afast multipole
[8] algorithm for substrate resi stance extraction. However, accuracy
Is compromised since the multipole algorithm cannot handle sub-
strateedgeeffects. A moreseriousdifficulty isthat Krylov-subspace
iterative methods converge slowly when applied to large BEM sys-

tems, which tend to beill-conditioned [18], [21], [12]. Hundreds of
iterations may be required per solution for large problems.

Multigrid methods, or more generally, multilevel methods, are
known to be the most efficient iterative techniques in the solution
of elliptic partial differential equations (PDE's) [1], [9], [2] due
to their fast convergence. However, multilevel methods are not
well-developed for first-kind integral equations [12] defined over
complicated geometries, as is our case here. In this paper, we ad-
dress this void by developing a multigrid iterative solver, and then
integrating it with sparsification algorithms specialy tuned to ac-
curately account for substrate edge effects. Section || summarizes
the BEM formulation for substrate coupling resistance extraction.
Our new multilevel algorithm is presented in Section I1l. Com-
putational results are given in Section |1V, where comparisons to
Krylov-subpace iterative methods are also made. Finally we give
our conclusions and acknowledgementsin Section V.

Il. BACKGROUND AND PREVIOUS WORK

In the electrostatic approximation [6], [24], the substrateis mod-
eled asastratified medium composed of several homogeneouslayers
characterized by their conductivities shown in Figure 1. Three con-
tacts are shown in gray. For this work, the substrate backplane is
assumed to be grounded electrically.
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Fig. 1. 3D substrate profile.

Since the problem islinear, an integral equation defined over S,
the collection of two-dimensional substrate contacts, can be written

o(r) = / p(r')G(r:1')dd’, res, (1

where r,r’ are points on S, ps is the current density on S, and
G(r;x') isthe Green's function, which must also satisfy the appro-
priate boundary and interface conditions. Thisis a first-kind inte-
gral equation [12] which forms the basis for the boundary-element
method (BEM) used in [19], [7], [24].

To numericaly solve (1), the domain .S discretized into N dis-
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joint, rectangular panels {p; } such that S = Uf\;lpi. An example
of panel discretization for athree-contact layoutisgivenin Figure 2.
In the Galerkin scheme [10], the current density on each panel p;
is assumed to be uniform. Then IV linear equations are constructed
by evaluating the average potential ¢(r) over each panel p;. The
result is a discretized version of (1)

v = Pgq, (2)



where ¢ and v arelength- N vectorswith ¢; denotingthetotal current
on panel ¢ and v; denoting the average potential on panel 5. P isan

N x N matrix given by
/ / G(r; I")dada'
v pi Y Pj

where a; and a; are the areas of panels: and j respectively. P is
often called the coefficient-of-potential matrix. We note here that P
is dense since current injected into any panel 1 produces a non-zero
potential at every other panel ;.
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Fig. 2. Example of contact discretization.

For the extraction of substrate coupling resistances, the voltages
at the contacts, each corresponding to a circuit node, are specified.
We are required to solve for the detailed current distribution, which
can be summed over each contact to yield the current flow into each
node. Thisisanalogousto the capacitance extraction problem[14].
The linear system (2) isto be solved for ¢ given v.

The Green's function G(r; r') for the bounded substrate with
grounded backplane was shown in [6] to be a double infinite series
of cosinesinz andy. By truncatingG(r; r ) toafinite M x M series
andsubstitutingitinto(3), itwasalsoshownin[6] that eachentry P;;
can be constructed from linear combinations of appropriate terms
from atwo-dimensional M x M array { Fi,,»}, which is computed
once and for al with a Type-1 Discrete Cosine Transform (DCT).
Although this allowsindividual entries of P to be computed, direct
solution of (2) still requires O( N'3) CPU time and O( N'?) memory
since P isdense. Thislimitsthesize of the problemto afew hundred
panels. In the next section, we develop an efficient iterative solver
based on multiresolution analysis.

I1l. MATRIX-FREE, MULTILEVEL SOLUTION OF FIRST-KIND

INTEGRAL EQUATIONS

The efficiency of multigrid iterative methodsis adirect result of
the fact that convergence rate is independent of discretization, and
hence problem size. Thisisto be contrasted with Krylov-subspace
iterative methods, whose cornvergencerates deterioratewith increas-
ing mesh refinement, or equivalently, worse matrix conditioning.
In this section, we develop a multigrid method for the discretized
first-kind integral equation (2), as well as sparsification techniques
necessary to avoid dense matrix-vector multiplication at each level
in the multilevel agorithm.

To best present the method, we first describe the ssimpler case of
auniformly discretized contact that covers the entire substrate. We
then describe the modifications needed for many irregularly shaped
contacts.

A. Basic Multigrid Algorithmfor Uniform Grids

In this section, we assume that the integral equation is defined
over the entire substrate €2 = [0, a] x [0, 5]

é(r) = /ps(r')G(r;r')da' (4)

and that €2 is discretized into a uniform array of M x M panels.
We assume further that M is a power of two, i.e. M = 2! for

r e,
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integer I. We refer to this discrete BEM system as a level I, or
fine-grid, representation of (4) Py} - ¢y = vqiy. The number of
panel unknowns, and hence the size of the linear system, is then
N; = M?2. Suppose we also discretize (4) using a coarser, uniform
(M/2) x (M/2) array of panels, yielding a discrete linear system
of size N;_, = N, /4. Thisresultsinalevel (I— 1), or coarse-grid,
representation Py;_1y - qq—1) = vy—13. See Figure 3 for the two
discretizations.
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Fig. 3. Two-level Representation and Restriction for Uniform Grid
Problem.

Algorithm 1 ( Two-Grid Method (TGM) )

Setk =1,4{} = 0.
Repeat{
Fine-Grid Smoothing:
Sohe Dy - Aq{z} = —Puy-agy) + o
Computelntermedlateguessq{l} = qf{l} + Aq{l}.
Computeresidualugy = Ppy - ¢y — vii3-
Projectto coarse grid uy;_1y = ru ;.
Coarse-Grid Corr ection:
Solvefor Aq{l—l} in P{l—l} . Aq{l—l} = Uu{—1}.
Projecttofinegrid Agqy = p(Agpu—13).
Update intermediate guess q({’ffl) =g}y — Agqy.
Setk =k + 1.
} Until residual norm ||ug; || < e.

Solving the fine-grid problem by direct matrix factorization is
impractical for large IV; since Py isdense. However, it may bepos-
sibletofactor thesmaller matrix Py;_1; correspondingto the coarse-
grid problem, since N;_1 = N, /4. Thismotivates our development
of atwo-grid method (TGM), in which the problem is solved itera-
tively at level  with the help of direct solution at level (I — 1). The
two principal a gorithmiccomponents, analogousto TGM for PDE’s
[1],19], [2], arethe smoothing operator and theintergrid transfer, or
restriction-prolongation, operators. In our TGM iteration for solv-
ing Py qquy = vqy, theerror inthe k-th iterate, qf{’j;, is smoothed
by carefully solving a series of local problems. This first stage is
typically called“fine-grid smoothing”, and resultsin anintermediate
guessqy;;. Next, wecomputetheresidual u iy = Ppy-qfpy — vy
and project it onto the coarse grid via uy;—13 = rug;y, where r
is a restriction operator. Then we solve explicitly the coarse-grid
problem Pp_1y - (Agq—1y) = ug—1y for Agg_q3, and project the
result onto thefine grid via Aqq;3 = p(Agq—13), Wwherep isapro-
longation operator. Finally, the intermediate guess on the fine grid
isupdated toyield the (k+1)-st iterateq?f}fl) = ¢};;—Agqy. This
second stage is termed “coarse-grid correction” and is responsible
for “long-range” interactions. The fine-grid smoothing/coarse-grid
correction cycle is repeated until the norm of the residual wy;; is
below some tolerance. TGM is summarized in Algorithm 1, where
the matrix D is described bel ow.

Toderivethe smoothing operator, wefirst maketheimportant ob-
servation that the BEM matrix P isderived from a Green’s function
G(r;x’) that is sharply peaked asr — r’, but is smooth otherwise,



i.e. |r —r'| > dfor somedistanced. We seek an operator splitting

at level 1
Puy = Dy + Sqy, (5

such that D,y captures the short-range, sharply-peaked portion of
Py, and Sy capturesthe long-range, smooth portionof Py;;. See
Figure 4 for arough depiction.
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Fig. 4. Operator Splitting P = D + S.

Given (5), we define the smoothing operator as the result of
solving

Dy - afny = =Spy -] + v (6)
for the vector qf[‘l}. Equation (6) defines a fixed-point iteration [21],
since the condition q({fi = g3, Where gy is the exact solution
of the fine-grid problem, would lead to q?{‘l} = gqq3. Sinceitis
necessary that the above smoothing step be done cheaply, werequire

that D ¢y be easy toinvert, or that D{‘ll} has a sparse representation,
since

* — k
gy =Dgy - (—S{z} 'ﬁzi + 'U{z}) : (7)

Here, we construct directly a sparse matrix Da based on the pre-

conditioner developed in Fastcap [14], a BEM-based capacitance
extraction program. Our particular implementation is outlined as
follows. For each pand 1, a local coefficient-of-potential matrix
Py, involving only panel 1 and its immediate neighbors is con-
structed. For the uniform grid problem, the size of P, isat most

9 x 9. This small matrix is easily inverted to yield P, whose
elements from the row corresponding to panel : are then extracted

and stamped into corresponding locations in the :-th row of Dﬁ'

Hence, thematrix D7;; contains at most 9 non-zero entries per row
and is sparse. We recall that the panel-to-panel interaction coeffi-
cient can be computed inexpensively from a M x M DCT array
described in Section I1.

Because we do not construct Dy, directly, it may seem at first
glancethat thematrix Sg;y = Ppy — Dy isdifficult to obtain. But

by subtracting (D - q({’;}z) from (6) and then multiplying through

-1
by D7y, theresult

* -1 k
Mgy Doy~ (—P{Z} af)+ 'U{Z})

¥ + Aty ®)

can be used to compute ¢7;, . Thisrequiresonly operators D{_ﬁ and

Py which are readily available.

In addition to the smoothing operator, we require transfer oper-
ators r and p between the two grids. They are trivial in the case of
uniform grids, where a coarse-grid panel, called a parent, is com-
posed of four fine-grid panels, called kids. See Figure 3. Recall
that in the Galerkin formulation, ¢; isthe net current on panel ¢, and
v; the average potential on panel 5. For the restriction operator r
mapping from level I to level (I — 1), the net current on a parent
is simply the sum of the currents on the four kids, and the average
potential on a parent is the average of the four kid potentials. The
prolongation operator p mapping from level (I — 1) to level [ is
defined as the adjoint, or transpose, of the restriction r [2].

The multigrid method (MGM) is the generalization of the two-
grid method to an arbitrary number of levels, and thisisdone exactly

qrz}
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asinthe standard multigrid literature. Instead of solving the coarse-
grid problem explicitly at level (I— 1), whichmay still betoo expen-
sive, we apply asimilar smoothing-correction cycle at level (I — 1).
In the same manner, the correction cycle at level (I — 1) becomesa
smoothing-correction cycle at level (I — 2), and so on. Theintegral
equation (4) isnow discretized at all levels {lmin, . . . , lmaz }. ONly
at the coarsest level (I = lnin) is the system Ppyy qp3 = vy
solved explicitly. Hence, each multigrid iteration is best described
asarecursive function call.

B. Hierarchical Basis Functions for Complicated Domains

For integral equations defined on an arbitrarily shaped region
S, we recall that the linear system (2) results from a Galerkin dis-
cretization based on constant strength panels. Figure 2 shows an
example of discretization using square panels of equal size. We
defi gle here the characteristic function, .X;(r) ,associated with each
panel p;

1/a;

Xi(r) = : ifr € p;

otherwise

©)

where a; isthe area of p;. The Galerkin coefficients P;; given in
(3) isequivaent to the definition

Pij = / / G(r; I‘I) - Xi(r) - Xj(r')dada' (10

where the integrations are now over the entire surface S.
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Fig. 5. Hierarchical basisfunctions.

Theexplicit use of characteristic functionsallows usto construct
coarser-level representations of the integral equation defined over
complicated geometries. For simplicity, let us assume that at the
finest level 1,4, €ach panel coincides with a cell on the regular
M x M grid, where M = 2= Of course, not all of the M2 cells
are occupied by panels. A panel at acoarser level | = {(Imaz —
1),...,0} isdefined in the following manner. At each level , the
substrateisrepresented by aregular 2 x 2' array of level-1 cells. For
each non-empty level-I cell, alevel-1 panel is defined as the union
of all finest-level panels within that cell. The k-th panel at level {

{

is denoted by pkl}, and is associated with a characteristic function
&M defined similarly asin (9). Given the set of hierarchical basis
functi ons{X};{l} }, wecan now easily definediscrete representations
of theintegral equation P11 . g1 = » 1} at each level I, wherethe
Galerkin matrix elements Pz-gl} are computed as

Pyl = / / Gy - &) ¥ (') dada” (1)
JSJS

Figure 5 shows afinest-grid discretization at level 5 being mapped
into a coarse representation with only four panels at level 1. An
efficient, hierarchical algorithm for the actual computation of the
integralsin (11) is described in the next section.

C. Yarsification via Eigendecomposition and Moment-Matching

In this section, we first describe how to compute the matrix-
vector product Plimas} . gttme=] efficiently at the finest level via



an eigendecomposition technique. Then we propose a moment-
matching algorithm which is used in conjuction with eigendecom-
posit{i?n to compute P . ¢t} efficiently at at al coarser levels
= {(lmaz — 1), ...,

Wefirst define a surface eigenfunction ¢ (r) as an eigenfunction
of the integral operator defined over the entire substrate surface

Q= [0,a] x [0,8]
A-p(r) = /(p(l")G’(r;I‘l)da', req. (12)
JQ
It has been shown [4] that the surface eigenfunctions are
pij(z,y) = cos(”Tz) cos(];:y) , (13)

wherethe eigenvalues \;; aregivenin[7], [6]. Although the eigen-
functions in (13) also appear in [7], [6], they were used only to
construct the panel-to-panel interaction coefficients P;;. The dense
matrix-vector multiplication P - ¢ still requires O(NZ) operations
in [7], where N, isthe number of panels. In contrast, we use the
eigenfunctions to expand the global current density 7 (z,y) and
show that the P - ¢ product can be computedin O(2- M7 -log,(M))
operationsusing the DCT. If we assumethat all panelsare minimum
sized cellsonthe M x M substrate grid, and that 10% of the cells
are occupied by actual panels (i.e. N, = (0.1)M?), then the cost
of computing the dense P - ¢ product directly is ©(0.01 x M*).
At M = 128, eigendecompositionis already an order of magnitude
faster than direct multiplication.

We define a prototype characteristic function centered about the
originin one dimension

M/a

Ou(z)={ if |z| < a/2M

otherwise ’ (14)

Itisthen clear that the panel characteristic functions X (z, y) canbe
obtained by combining and shifting ©,(z) and ©(y). The global
current density resulting from aGalerkin panel discretizationisthen

(i+1/2)a
Guy - Oq (-’E - T .
O, <y _ w> . (19

M
If we can expand J(z, y) in (15) in terms of the eigenfunctions

J(z,y) = ZZ ai; vij(z,y) ,

i=0 j=0

J(z,y)

M—-1M-1
:Ei=0 EJ=O

(16)

i.e. if the coefficients {a;;} can be quickly computed, then (12)
immediately leads to

(z,y) = Zz Aij aij @ij(z,y).

i=0 j=0

(17)

Given the potential everywhere (17), the average panel potential
®,, atthe (p, ¢) positionin the cell array is

¢Pq

2izo Ejzo CijAijai; COS (T :
oS ((q +1/2)7; ) ,

N
where C;; are normalization coefficients. It can be shown [4] that if
(16) and (18) aretruncated to afinite series, the M x M coefficients

(18)
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{a;;} can be computed via a forward Type-2 DCT, and then the
M x M array {®,4} viaaninverse Type-2 DCT.

To calculate a single Galerkin coefficient szgl} between two
coarse-grid panelsdefined by (11), it is sufficient to perform a dou-
ble summation of the panel-to-panel coefficients Pl.{]l’"“} a the
finest level. However, this leads to an O(N?) agorithm. Instead,
we make the observation that when two coarse panelsp!'} and p!'/

e“well-separated”, their interaction coefficient Pi{jl} can be com-
puted approximately by leaving out much of the detail in the char-
acteristic functions ¥} and ¥"". Similar idess have been used
extensively in multipole-accelerated algorithmg[16], [14], [24]. For
the multipole approximation used in [24], it was necessary to as-
sumeasubstrate Green’sfunction which hastranslational invariance
and which can be fitted to a sum of polynomiasin (1/r), where
r = |r —r'|. In contrast, we develop here afast moment-matching
method which can be used in combination with the DCT to accel-
erate the coarse-grid computations and account properly for al the
substrate boundary effects.

Fig. 6. Moment-matched representation of coarse panel.

If we are interested in the potential at a panel p{” far from

{ Yt may suffice to approximate X{ } by distributing the current
unlformly over the entire level-1 cell as shown in Figure (6) on the
left. This idea can be refined by matching higher-order moments

of the characteristic function X'\" with aregular 2* x 2 array of
characteristic functions associated with the cells at level (1 + k).

For the choice k = 2, each coarse panel is associated with a set of
4 x 4 = 16 coefficients, as shown in Figure (6) on theright. If we

let Ti{l} be the approximate characteristic funtion generated from
the 4 x 4 cell array, the moment matching conditions require that

the moments Q(”) and Qm defined by

ngﬁ) Z/él’,-{l}z"‘yﬁdzdy, 65]3 :/Yz‘{l}fayﬁdmdy, (19)

match exactly up to a certain order v. The Cartesian moments
defined in (19) for each order v requiresthat o + § = v and that
« takeson al values { O,...,v }. It can be shown that the if the
Cartesian momentsmatch up to order v, then the difference between

the the potentials generated by ', 7 and /’l’{l} isof order (1/r7t1),
but the proof istoo long to state here.

Since each coarse-grid panel p{l} is now associated with 16
geometric coefficients, and since these coefficients correspond to

cell currents at level (1 + k), it is possible to compute the P{!1¢ (!

product in amatrix-free manner by usingthe DCT ona2't* x 2!+
grid, similar to the finest level computation. However, since the
nearest-neighbor panel interactions are not well approximated by
moment matching, they are computed directly.

IV. COMPUTATIONAL RESULTS

We present numerical experiments comparing two iterative
methods for solving (2): our new multigrid (MG) agorithm and
the standard Generalized Minimal RESidual algorithm (GMRES
[17]) without preconditioning. Since (2) results from a first-kind
integral operator (1), the smallest eigenvalues of the matrix Py;; ap-
proach zero withincreasing mesh refinement [12] and Py;; becomes
more ill-conditioned. It iswell-known that Krylov-subspace based
iterative methods such as GMRES or CG (Conjugate Gradient) con-
verge slowly for ill-conditioned linear systems [21]. Althoughitis



possible to appply preconditioning to accelerate GMRES conver-
gence aswasdonein [14], an increasing number of iterationsis till
required for finer discretizations. We demonstrate that the multigrid
algorithm resolves this difficulty by retaining a constant conver-
gencerrate per iteration, independent of mesh refinement, and hence
problem size. Thus, for agiven relative error tolerance, the number
of multigrid iterations required is fixed.
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Fig. 7. Example substrate profiles.

InFigure7, wedisplay thethreevertical substrateprofilesusedin
this section: the single-layer substrate, the low-resistivity substrate,
and the high-resistivity substrate. The lateral dimensions of the
substrate is assumed to be Imm x 1mm (or 1000 zm x 1000 xm).
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Fig. 8. Two-grid vs. Multigrid convergence.

Theefficiency of multigrid algorithmsin general arisesfrom the
fact that the smoothing operator at each level reduces the corre-
sponding error components by the same numeric ratio [2]. This
is demonstrated for the single-layer substrate example discretized
with a 256 x 256 grid, and with a cell occupancy factor of one-
half. Thenormalizedresidudl, || Py q(}) —viyll/Ilv gy |, isplotted
versus the MG iteration count in Figure 8 for the two-grid method
TGM (2 levels) and the multigrid method MGM (9 levels). The
same convergence rate of about an order of magnitude per iteration
is observed for multigrid methods of varying depths. We note that
MGM requiresonly the application of operators P; at variouslevels
(and the solution of a scalar equation at the coarsest level I = 0),
whereas TGM requires solution of the system at level (I —1). Since
the size of the linear system decreases geometrically with the level
index, the cost of an MGM iteration is a constant multiple of an
operator application at thefinest level, or equivalently, asingle GM-
RES iteration. Using the algorithms developed in Section 111, we
have observed this factor to be three to four in our implementation.

Thecrucial feature of multigrid schemesisthat the convergence
rate is independent of discretization, and hence problem size. We
perform our next experiment with the single-layer substrate on five
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Single-layer substrate

1000um x 1000 um x 400 um

rnorm/rnorm0

Fig. 9. Effect of mesh refinement on convergence.

test layouts of increasing mesh refinement, labeled d = 4 through
d = 8. Thed = 4 layout is discretized on a 16 x 16 grid, and
the d = 8 layout is discretized on a 256 x 256 grid. The multi-
grid method with maximum depth (I,in = 0, l;mee = d) isapplied
to solve each problem. The observed MG convergence rate is in-
deed independent of mesh size, as shown by the residual versus
iteration plot in Figure 9. Also displayed are the GMRES conver-
gence rates, which deteriorate with increasing mesh refinement as
expected. Sincethe cost of asingle MG iteration is a constant mul-
tiple of that of a GMRES iteration (three to four in our case), it is
clear that MG is superior to GMRES, especialy for large problems
requiring fine discretization.
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Fig. 10. PLL active arealayout.

To show that the multigrid approach can be applied to realistic
problems, we perform substrate parameter extraction on a a Phase
Lock Loop (PLL) frequency synthesizer circuit [3] on a Imm x
1mm chip. There are 478 substrate contacts defined by the active
layer mask shown in Figure 10. Discretized with the help of a
1024 x 1024 grid, the total number of panels, or minimum-size
cells,is NV; = 183905. Thiscorrespondsto roughly 20% of the chip
area. The resolution thus achieved is about 1 micron.

The GMRES agorithm with sparsification via eigendecompo-
sition [4] is used as a timing benchmark. We demonstrate the
efficiency of MG versus GMRES by comparing the CPU times re-
quired to extract the 478 x 478 substrate conductance matrix. The
substrate profileisassumed to be (a) single-layer, (b) low-resistivity,
or (c) high-resistivity shown in Figure 7. We require convergence



to atolerance of 1e—3in the relative residual norm for each of the
478 solves. The timing results are summarized in Table I. It is
seen from the total extraction time that MG is faster than GMRES
by almost an order of magnitude for the low-resistivity and high-
resistivity substrates. More significant gains will be seen for even
larger problems requiring finer meshes.

| | Tsetup | EteT | lyiters | Tsolve | Ttotal |
MG (a) 317s | 285s 3 85.5s | 11.4h
GMRES(a) | 11.2s | 7.32s 50 366s | 48.6h
MG (b) 3435 | 284s | 4 TI4s | 15.2h
GMRES(b) | 29.9s | 81s 95 771s 102h
MG (c) 333s [ 28.0s 6 168s | 22.3h
GMRES(c) | 23.0s | 84s 180 1512s | 201Ih
TABLEI

COMPUTATIONAL COST FOR PLL SUBSTRATE EXTRACTION.

A possiblelimitation of the multigrid algorithmisthat it resolves
only ill-conditioning caused by mesh refinement. It isless effective
in dealing with ill-conditioning caused by the apparent loss of the
groundplane, as seen in a slowdown of MG convergence for the
high-resistivity case (c). To maintain the optimal MG convergence
rate, it is necessary to explicitly solve the problem at some level
lnin > 0.

V. CONCLUSIONS AND ACKNOWLEDGEMENTS

In this paper we described a multigrid method for solving the
first-kind integral formulation of the substrate extraction problem.
We believe that the ideas proposed here can be generalized to solv-
ing other problemsarising from first-kind integral equationsdefined
over complicated surfaces, suchasBEM capacitanceextraction[14].
The authors wish to thank Ranjit Gharpurey of Texas Instruments
and Edoardo Charbon of Cadence Design Systems for helpful dis-
cussions and for providing the PLL layout example.
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