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Rksum4 Cet article pr6sente une nouvelle approche
au

ph4nom+ne de p16geage coh6rent de

population observable
sur un

systkme atomique £ 3 niveaux en configuration A. bette approche,
bas6e sur la th60rie de la diffusion, est valable lorsqu'un des deux champs lasers excitant le

systkme atomique est beaucoup plus foible que l'autre. L'amplitude de diffusion du champ foible

apparait comme la somme de deux amplitudes r6sonnantes. Les positions et les largeurs des deux

r6sonances correspondantes sont calcu16es et interpr6t4es physiquement, £ la limite des foibles

saturations, en termes de diffusion Rayleigh et de diffusion Raman stimu16e et spontan6e. On

montre enfin que l'interf6rence entre ces deux amplitudes de diffusion fait apparaitre des profils
de Fano dans les courbes donnant les variations

en
fr4quence de la section eflicace totale de

diffusion.

Abstract This paper presents a new approach to coherent population trapping in a A-type
three level atomic configuration. This approach, which is based on scattering theory, applies
when one of the two driving laser fields is much weaker than the other one. We show that the

scattering amplitude of the weak field is the sum of 2 resonant amplitudes. The positions and

the widths of these resonances are identified and physically interpreted in the low saturation

limit, in terms of Rayleigh scattering, stimulated and spontaneous Raman scattering. Finally,

we show that the interference between the two scattering amplitudes gives rise to Fano profiles
in the curves giving the frequency dependence of the total scattering cross-section.

1. Introduction.

We consider in this paper an atomic system with three levels, e, gi, g2, forming a A-configuration
(Fig, I). The two transitions gi e and g2 e are driven by two laser fields with fre-

quencieS wLi and wL2 close, respectively, to the atomic frequencies wet "
(Ee Egi) /h and

we2 =
(Ee Eg2) /h. We denote :

(*) Laboratoire assoc16 au
C.N.R.S, et £ l'Universit6 Pierre et Marie Curie.
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St
= wL, wet b2 = wL2 we2 (1.I)

the corresponding detunings between the1aser and atomic frequencies. The atom can
decay

from
e to gi and from e to g2 by spontaneous emission with rates respectively equal to ri and

r2. We put :

r
=

ri + r2 (1.2)

We assume that g2 is above gi (Eg~ > Eg~), but that no spontaneous emhsion can occur from

g2 to gi

§~ j
e

~2

Gl~~

~

~L1

~
~L2

%2
~~

§~

91

Fig. 1. Three level A-configuration (e, gi, g2) driven by two laser fields at frequencies wLi and

wL2. 81
" wLi wet and 82

" wL2 we2 are the two detunings; Ti and T2 are, respectively, the two

spontaneous emission rates from e to gi and g2.

Such a configuration gives rise to the phenomenon of "coherent population trapping" II, 2].
When the two detunings 61 and b2 are equal, I-e- when the resonance Raman condition

:

hwLi hwL2
= Eg~ Eg~ (1.3)

between the two states gi and g2 is fulfilled, the steady-state population f[ of the upper state

vanishes and the fluorescence stops. Several theoretical treatments have been given for such
an

elTect [3-6]. The main result is that atoms are optically pumped in a linear superposition of the

two lower states which is not coupled to the laser fight because the two absorption amplitudes
from gi to e and from g2 to e interfere destructively. Several applications of coherent population
trapping have been developed, including high resolution spectroscopy [7], subrecoil laser cooling

[8], adiabatic transfer of populations [9], amplification without inversion [10].
Suppose that wL2 h fixed dud that wLi h scanned. The variations with wLi, or equivalently

with bi
= wLi wet, of a([ may be studied from the steady-state solution of optical Bloch

equations, which can be determined analytically and which may be found for example in

reference [5].

,st
~

~ (~I b2)~ il(~(~
(~ ~)

~~ Z

where

Z
=

8 (bi b2)~ Q(Q(r + 4 (bi b2)~ r~ (Q(r2 + Q(ri)

+ 16 (bi b2)~ ib(Q(ri + b(Q(r2j 8bi (bi b2) Q(ri

+ 8b2 (bi b2) Q(r2 + (al + al) ~ (Q(r2 + Q(ri) I-S)

In IA) and (1.5), at and Q2 are the Rabi frequencies characterizing, respectively, the couplings
of the two laser fields at wLi and wL2 with the transitions gi e

and g2 -e. The variations with
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St of a([
are

represented in figure 2, in the limiting
case where Q2 > al We have supposed

b2
"

-1.5r. They clearly exhibit two resonances : a
broad one, near bi

"
0, and a narrow

one near bi
"

b2, where a([ vanishes. The narrow structure of figure 2 is quite similar to

the Fano profiles which can be observed when a discrete state is coupled to a continuum via

two channels, directly and through
a

discrete state embedded in this continuum [III. Well

known examples of such profiles are found in autoioni2ing resonances [I II and in laser induced

continuum structures [12 13].

003
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Fig. 2. Steady-state population of the excited state, calculated from optical Bloch equations, versus

b1 in units of T. 82 is fixed and equal to -1.5r, Q2
"

o.7T, al
"

o.o25T. Two
resonances are

clearly
visible, the narrow one looking like a

Fano profile.

The purpose of this paper h to investigate the connections which exist between coherent

population trapping in a A-configuration and Fano profiles. Such a connection cannot be

easily analyzed from expressions such as
(IA) and (1.5) which have not a transparent physical

meaning. We prefer to adopt here another point of view which, we hope, can provide
new

physical ins1gllts in coherent population trapping. We consider the scattering of a single photon

wLi by the atom interacting with several wL2 photons dud we try to identify in the total

scattering amplitude the various physical paths followed by the system and whose interference

can give rise to structures such as the one appearing in figpre 2. The paper is organized as

follows. We first specify in section 2 our assumptions on the scattering process considered

in this paper. A non-perturbative expression for the scattering amplitude is then derived in

section 3 and its general properties are analyzed. The limiting case where the transition g2 e

h not saturated by the wL2 photons is investigated in section 4 and thin allows us to identify the

physical processes associated with the two resonances of figure 2. Finally, we show in section 5

how Fano profiles can be associated with the narrow structure of figure 2.

2. Scattering process considered in this paper.

2. I INITIAL STATE AND FINAL STATE. In the initial State :

Ii) =
lgi;(I)i,(N)2,(°)>) (2.1)

of the scattering process, the atom h in gi, in the presence of I photon wLi, N photons wL2,

all other field modes j (with j # 1,2) being empty. We consider here the scattering process
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leading to the final state :

'f)
"

'gli (0)1,(~)2, (1)w) (2.2)

where the atom is still in gi, whereas the incident photon wLi has disappeared dud has been

replaced by one fluorescence photon
w,

The final state (2.2) is not the only possible one. Other scattering processes, involving
several fluorescence photons dud the absorption of one or several wL2 photons could also be

considered. For each of these possible scattering processes, starting from (2.I), the atom has

first to go from gi to e, and one can
show that the total cross-section for each of these scattering

processes is proportional to the steady-state population of e. Since we are mainly interested

here in a([,
we restrict ourselves to the simplest possible scattering process, the

one leading
from (2.I) to (2.2). We will check in subsection 3A that the total scattering cross section for

such a process is proportional to f[. Note also that g2 cannot appear in the final state of a

scattering process. Photons wL2 can indeed be absorbed by the atom in g2, so that g2 is an

unstable state.

When the radiation field is quantized in a box of volume L~, the Rabi frequencies at and

Q2 associated with (2.I)
are

respectively proportional to :

~'
"

~
~~

"

~
~~'~~

The fact that al tends to zero when L
- oo does not raise any difficulty. The flux associated

with the incident photon wLi is equal to c/L~ and the ratio of the transition rate, proportional
to Q], I.e. to I/L~, by the incident flux c/L~, is independent of L, as expected for

a physical
quantity such as a scattering cross section. The situation is dilTerent for Q2. When L tends to

infinity, we must also let N tend to infinity, keeping N/L~ constant, in order to have Q2 fixed.

2. 2 ASSUMPTIONS CONCERNING THE INTERACTION HAMILTONIAN V. The Hamiltonian

H of the total system "atom + photons" is equal to :

H
=

Ho + V (2.4)

where V is the photon-atom interaction Hamiltonian and where Ho is the sum of the energies
of the non interacting systems.

In the electric-dipole and rotating-wave approximations, V can be written
:

V
=

-d+ E+ d~ E~ (2.5)

where d+ and d~ are, respectively, the raising and lowering parts of the dipole operator, and

where E+ and E~ are, respectively, the positive and negative frequency components of the

electric field operator. With such an interaction Hamiltonian, the only processes which can

take place when the atom is in gi, is the absorption of one photon, the atom going from gi to

e. We make here the further assumption that wet and we2 are so dilTerent that'it is legitimate
to neglect the

non resonant coupling of photons wL2 with the atom in g,.

From the previous assumptions, it follows that V acting upon ii) can lead only to [e; (0),,
(N)2, (0);) More precisely,

vii)
=

~l' ie; (o),, (N)~, (o);) (2.6)

which h the precise definition of the Rabi frequency al. Sinfilarly,

VIII
"

~) l~i (0)1, (N)2,(0)j) (2'7)

where Q h the Rabi frequency characterizing the coupling with the fluorescence photon
w.
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3. Calculation of the scattering amplitude.

3, I GENERAL EXPRESSION OF THE S-MATRIX ELEMENT. Since we neglect virtual emis-

sions of photons by the atom in gi (rotating-wave approximation), the states iii and iii in-

troduced above can be considered as correct asymptotic scattering states (see for example,
Ref. [14], Complement BIII) The element Sfi of the S-matrix, between the initial and final

states, can
then -be written :

Sfi
= bfi 2~ib (Ef Ei) Tfi (3.I)

where Ei and Ef are the unperturbed energies of ii) and iii (which are eigenstates of Ho), and

where the transition matrix element Tfi is given by
:

Tfi
=

f[Vii) + lim f
V

~

j ~
I) (3.2)

fi-°+ I + in

Note that it h H, and not Ho, which appears in the exact expression (3.2). Expanding the

propagator (E; H + iq)~' in powers of the unperturbed propagator (E; Ho + iq)~' and V

would give the Born expansion of the scattering matrix. We don't make such an expansion
here. We keep the exact expression (3.2), in order to get non perturbative scattering amplitudes
including the shift and the broadening of the intermediate states appearing in the scattering

process.

3.2 CONNECTION BETWEEN THE SCATTERING-MATRIX AND THE RESOLVENT G(z) OF THE

HAMILTONIAN. In order to connect (I) to Ill,
one must destroy the incident photon WLI

and create the scattered photon
w.

The interaction Hamiltonian V, given in (2.5), can only
destroy

or create a single photon at a
time. It follows that

:

yjvj;j
=

o (3.3)

Using (2.6) and (2.7), we can then transform (3.2) into :

Tfi
= ~~~~' ~bfl~ (~'~ ~~ ~~ ~ ~ ~~~~ ~°~~ ~~ ~~

where :

G(z)
=

j
(3.5)

h the resolvent of the Hamiltonian H, z being a complex variable, and where
we

have introduced

the simplified notation
:

1i°ei " i~i (°)I, (N)2,(°)J) (3.6)

3 3 CALCULATION OF THE RELEVANT MATRIX ELEMENTS OF THE RESOLVENT. The atom,
in e, can spontaneously emit a photon and decay to gi or g2. The state [pe), given in (3.6), is

thus coupled to continua and radiatively unstable. Well known projection operator techniques

are available for calculating the diagonal element Gee(z)
=

(pe[G(z)[pe) (see for example
Ref. [14], Chap. III). Before doing such

a
calculation,

one must not forget however to check if

there are no other discrete states of Ho, close to [we), dud which would be coupled to [we) or

to the same continua
as

[pe). In such a case, it is well known that the decay of [pe) cannot
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be studied independently of these other discrete states, Simple expressions for the matrix ele-

ments of G(z)
can

be obtained only if one considers the projection of G(z) onto the subspace
£o subtended by the discrete states of Ho which are coupled directly or indirectly through the

same continua.

Actually, in the problem considered in this paper, we have another discrete state of Ho

lw2) =
lg2;(°)1>(N + ')2>(°)>) (3.7)

which is coupled to [pe) since the atom in g2 can absorb one wL2 Photon and jump to e. By
definition of the Rabi frequency Q2, we have indeed

:

lwelVlw2l
=

(e;(°)i>(N)2, (°)>1 V lg2; (0)1,(N + ')2>(°);)
=

(3.8)

Furthermore, the unperturbed energies E~~ and E~~ of [we) and [~g2) are close to each other.

If we measure the unperturbed energies relative to E~~, by taking :

Ewe "
o (3'9)

then, we have :

E~~ =
h62 (3.10)

Strictly speaking, one
should also consider the initial state ii) given in (2.I), which is coupled

to [we), since, according to (2.6),

(weivii)
=

~l' (3.ii)

This state has an energy Ei close to E~~
=

0

Ei
=

hbi (3.12)

One must not forget however that, in the limit L
- oo, at tends to zero

(whereas Q2 keeps
the same

value), so that we can neglect the influence of ii) on the decay of [~ge).
The previous discussion shows that we must introduce a two dimensional subspace £o of

eigenstates of Ho

ED "
il§'el ,l§'211 (3.13)

and study PG(z)P, where P h the projector onto this subspace. One
can then show (see, for

example, Ref. [14], Chap. III) that, when z is close to Ei + in, PG(z)P
can be considered as

the resolvent of an eTective Hamiltonian He#

PG(z)P
=

(3.14)

Such
a

Hamiltonian governs the evolution of the system within £o and is represented by the

following 2x2 matrix :

(He~)
=

h
([j)

~j[~ (3.15)

Note that He# diTers from PHOP + PVP only by an imaginary term, -ihr/2, added to the

energy of the excited state e, dud describing the radiative unstability of thin state.
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Written in matrix form, the operator equation (3.14) becomes for
z =

Ei + in
=

hbi + in,
according to (3.12)

:

Gee (hbi + in) G2e (hbi + in) $~ +
i~ ~2 '

= j ~
2 2 (3.16)

Ge2 (hb, + in) Gee (hbi + in) St b2

Since the two eigenvalues of He# are complex, we have not kept in in the matrix appearing
in right-hand side of (3.16). Taking the inverse of this matrix, and using (3.4) and (3.12),

we

get :

~ ~~~ ~~

D

~~
~~'~~~

where

D
=

Si
+ I () (bi b2)

~
=

St (Si b2)
~

+ i( (fit b2) (3.18)

is the determinant of the matrix St He#/h. Introducing the eigenvalues hzi and hziI of HeR,

we can also write :

~
=

(bi zI) (Si zII) (3.19)

which, inserted into (3.17), gives :

~
hQiQ bi b2 hQiQ zI b2 zII

~ 2j
~~ ~~~~ 4 (St zi) (bi zII) 4 (zI zu) St zI St zII

3.4 GENERAL PROPERTIES OF THE SCATTERING AMPLITUDE. Considered
as a

function

of 6,, the scattering amplitude Tfi appears in (3.20)
as a sum of two resonant scattering am-

plitudes
: one centered about bi

"
Re zI, with

a
width equal to Im zI and the other one

centered about St
"

Re zII, with a width equal to Im zII. The theoretical approach followed

in this paper clearly shows that two resonances should appear in the variation with bi of the

total scattering cross-section (which h proportional to [Tfi[~), and it relates the positions and

the widths of these resonances to the real and imaginary parts of the eigenvalues of He#.
It also clearly appears from (3.17) that Tfi vanishes for bi

=
b2. The quenching of the fluo-

rescence, when the reso'nance Raman condition between gi and g2 is fulfilled, is also predicted
by such an approach.

Let us finally calculate [Tfi[~ Using (3.17) and (3.18),
we get :

jj~~j2
h~il(~~ (~l b2)~

~~ ~~)
~~ ~I (St b2) ~j ~

~ ~ (~l b2)~

It is interesting now to compare (3.21) with the limit of (1.4) when Q2 > at Since Q] already

appears in the numerator of (1.4),
we can put al

=
0 in Z. One can

then easily check that [Tfi[~
and a((

are proportional, and have therefore the same dependence in bi,b2, Q2. As expected,

we find that the total scattering cross-section, for the process ii) -
if) considered in thin

paper, involves the steady-state population of e. In the limit at < Q2, we can therefore get new

physical insights in equations (I.4) and (1.5), and in the variations with St of a([ represented
in figure 2, by considering the two resonant scattering amplitudes appearing in (3.20).

JOURNAL DE PHYSIQUE II T 2, N' 4, APRIL 1992
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4. The low saturation lin~it. Physical discussion.

The calculations of the previous section 3 are
valid for any value of Q2 and b2. We consider

now the limit where Q2 is small compared to r or to [b2( More prechely, we suppose that the

saturation parameter s2 for the transition g2 e
is small compared to

s2 "
)~~(~ < l (4.1)

6~ + ~

Such a limit h interesting because it leads to two eigenvalues of HeR, zI and zII, having quite
diTerent imaginary parts. The corresponding resonances appearing in the variations of Tfi with

bi have then quite diTerent widths, which is indeed the situation leading to Fano profiles.

4. I INTERPRETATION OF THE TWO RESONANCES APPEARING IN THE SCATTERING AMPLI-

TUDE. Let zn be the eigenvalqe of HeR/h which tends to b2 when Q2 tends to zero. One

can
always write :

~~~ ~~ ~ ~~ ~~ ~~'~~

where b( and -ir(/2 are the real and imaginary parts of the correction introduced by Q2.
Because the trace of HeR is invariant in a change of bash,

we
have for the other eigenvalue zI,

which tends to -ir/2 when at tends to zero :

zI =
-b( i~

~

~~ (4.3)

Condition (4.I) allows one to calculate b[ and r( perturbatively. One gets :

b[ i~~
=

~~~~~( (4.4)
2

&2 +

~

which gives
:

b[
=

b2) (4.5a)

r[
=

r) (4.5b)

Equation (4.5a) shows that b[ is the light shift of level g2 due to the coupling with the photons

wL2, whereas equation (4.5b) shows that F( is the radiative broadening of level g2, or equiv-
alently the departure rate from level g2, due to the absorption of wL2 photons. Note that,
although b[ and r[

are
calcylated here perturbatively, their presence in the denominator of the

two fractions of (3.20) corresponds to a nonperturbative expression for Tfi. Finally, equation
(4.3) shows that the light shift of level e is opposite to that of level g2, whereas the radiative

width of level e is slightly reduced from r to r r[
as a

result of the contamination of e by g2
induced by Q2.

The physical meaning of 6[ and r[ can now be used to interpret the two resonances appearing
in (3.22). Consider first the resonance associated with the denominator 61 zI. The position
of its center is given by

:

61 =
Ite zI "

-b[ (4.6)
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an
equation which can be also written :

hwLi
=

Ee hb[ Eg~ (4.7)

and which expresses an
optical resonance condition between the lower level gi and the light-

shifted upper level e. As expected, the width of this optical resonance, Im zI "
(r-r') /2 m

r/2,
is mainly determined by the natural width r of e. Consider now the second resonance associated

with the denominator bi zII. Its position is determined by :

bi
"

Re zII =
62 + b[ (4.8)

and corresponds to :

hwLi hwL2
= Eg~ + hb[ Eg~ (4.9)

Equation (4.9) expresses a stimulated Ilaman resonance condition between the light-shifted
level g2 and the level gi Note the dilTerence between (4.9) and (1.3), which is the stimulated

Raman resonance condition between unperturbed energy levels (without light shifts) leading
to coherent population trapping, As for the width of the resonance

associated with zII, it is

determined by the radiative width r[ of level g2 due to the absorption of wL2 photons. For

small s2, this width is much smaller thou r (see (4.5b)),
so that the resonance associated with

zII is much
narrower thou the resonance associated with zI.

4. 2 THE INTERMEDIATE-STATES OF THE SCATTERING PROCESS. from the results of sub-

section 3.2, it follows that the scattering amplitude Tfi can be written :

Tfi
=

~~~~~ ~ge
~

ge)
(4.10)

4 bi Hefr

Let [~ge) and [~g2) be the eigenvectors of He# which tend to [~ge) dud [p2) when Q2 tends to

zero. A perturbative expansion can be given for [pe) and [p2) Using (3.15), we get ;

T
" ii~e)

~~ (]))~~~ 11~2)
(4.lla)

T
# 11~2) +

~~

(j(]
~~~

ii~e) (4.'lb)

Note that [~ge) dud [~g2) are not orthogonal, since He« h not hermitian. They form however

a bash in the subspace £o, and we can always expand [~ge) on such
a

basis :

ii'e)
"

"T
+

pi (4.12)

the
non orthogonality of [pe) and (p2) resulting in the fact that the components a and fl of

[pe) do not cdincide respectively with the scalar products (we pe) and (p2[ pe). Inserting

(4.12) into (4.10) and using the fact that [we) and [p2) are eigenstates of Be# with eigenvalues
hzI and hzII, we get :

Tfi
#

~(~ tY
j~2e li'e)

~ ~

+ fl (i'e (i'2)
~ ~

(4,13)
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ji~>
,

,
r ,-6j

rj I 6[
lT~

iq~,(Ni~>

Fig. 3. Diagrammatic representation of the scattering process in terms of dressed states. Starting
from [gi, (N)2), the dressed atom absorbs the incident wLi Photon (upward arrow), jumps to one of

the two dressed states (pe)
or (p2) originating from )pe)

=
(e, (N)2) and (p2)

"
ig2, (N +1)2), and

then fa%s back to (gi, (N)2) by emitting the fluorescence photon
w

(downward wavy arrow).

Such
a

result shows that, after the absorption of the incident photon wLi, and before the

emission of the fluorescence photon w, the system passes through two possible intermediate

states, which are the eigenstates [~ge) dud [~g2) of He#.

These two states can be also considered
as two dressed states of the "atom + wL2 Photons"

system, as shown in figure 3. The left part of this figure represdnts
a few unperturbed states of

such a system :
the two states [~ge) =

[e, (N)2) and [~g2) =
(g2,(N +1)2), which

are separated
by

an interval b2 (in angular frequency units), the state [~ge) having
a

natural width T the state

[g,, (N)2)
,

which is located at a
distance wet below [~g2) When the coupling Q2 /2 between [~g2)

and [~ge) is taken into account, these two states repel each other by an amount b[, which is the

light shift of g2, and transform into two dressed states [~ge) and [~g2) which are represented in

the right part of figure 3. The contamination of the wave functions induced by Q2 is responsible

for the appearance of
a small width r[ for [~g2)

,

whereas the width of [~ge) is slightly reduced.

As for the state [gi, (N)2)
,

it remains unperturbed, since we neglect the non resonant coupling
of the atom in gi with the wL2 photons. The scattering of the incident photon wLi by such

a

system can then be considered as an
elastic scattering process, where the dressed atom, starting

from [gi, (N)2), absorbs the incident photon wLi (upward
arrow of Fig. 3), jumps to [~g2) or

/,
and then falls back to [gi, (N)2) by emitting the fluorescence photon

w
(downward wavy

arrow). Another possible diagrammatic representation of such
a process is given in figure 4,

which represents more clearly than figure 3 the two possible intermediate states between the

initial and final states. Note however than the energy defects in the two intermediate states

are more visible on
the diagranwlatic representation of figure 3, where they are just equal to

the interval between the dotted line (reached after the absorption of the wLi photon) and the

energy of each dressed state [~ge) or [~g2), the width of each dressed state being included as

an imaginary part of its energy.

The approach followed in this subsection could be easily extended to describe multiphoton
scattering processes where several fluorescence photons

are emitted and one or several wL2

photons are
absorbed. For example, the dressed atom in [gi, (N)2)

can absorb the incident
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ii 91

lT~> I#e>

91
ii

a) b)

Fig. 4. Another diagrammatic representation of the scattering process showing the two possible

intermediate states (p2) and (pe).

photon wLi, jump to one
of the two dressed states (p f

or (p f originating from the manifold

([e, (N)2), [g2,(N +1)2)), then emit
a

fluorescence photon w' and fall into one of the two

dressed states (pf~~ and (pf~') originating from the manifold ( [e, (N 1)2) (g2, (N)2) )
>

and finally end into [gi, (N 1)2) by emission of a second fluorescence photon w". There are

then four scattering amplitudes corresponding to four possible paths and one can
show that,

for St
=

b2, they interfere destructively two by two.

4.3 INTERPRETATION IN TERMS OF RAYLEIGH SCATTERING, STIMULATED AND SPONTAN-

EOUS RAMAN SCATTERING. When 1l2
"

0, the only scattering path which remains open is

the one passing througll [we)
=

[e, (N)2) (Path b of Fig. 4). This is due to the fact that, during
the absorption of the incident wLi photon, the number N of wL2 photons does not change,

so that the total system cannot go, by an interaction with the wLi photon, from [gi, (N)2) to

[~g2) = (g2, (N +1)2) Furthermore, the dipole moment operator appearing in the interaction

hamiltonian V has
no

matrix element between gi and g2. It is only because the dressed state

/
contains a small admixture of [~ge) = [e, (N)2) (see Eq. (4.I16)), that the system can

go from [gi, (N)2) to [~g2) when Q2 # 0. Such a contamination can be described in terms of

virtual absorptions and emhsions of wL2 photons by the atom in g2. So,
we expect that the

scattering path passing through [~g2) could be described in the basis of bare states provided
that we introduce, in addition to the wLi and

w
photons which

are the only
ones to appear in

figures 3 and 4, extra wL2 Photons to describe such contamination elTects.

To carry out such
a program, we come back to equation (4.13), and we

calculate each term

of the bracket, at the lowest order in Q2 where it is not vauishiiig. The first term, which

corresponds to the path remaining open when Q2
=

0, can be calculated to order zero in Q2.

We then have a ci (~ge [~ge) ci I, zI °~
-ir/2,

so that :

o (lie [~ge)
~

m
~

(4.14)
1- zI bi + it

The second term requires more caution. Both fl and (we [p2) vanish when Q2
=

0. They

appear only to first order in Q2 and, at this order, one gets from (4. II) :

Pm (we
T

d ~)(~)r (4.15)
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Fig. 5. Diagrammatic representation of the scattering process in terms of bare states including the

fight shifts and radiative broadenings due to the wL2 Photons. a) Rayleigh scattering process from gi
(absorption of wLi, followed by the spontaneous emission of w). b) Stimulated Raman process bringing
the atom from gi to g2 (absorption of wLi and stimulated emission of wL2) followed by a spontaneous
Raman process bringing the atom from g2 to gi (absorption of wL2 and spontaneous emission of w).

so that, using (4.2),
we can write

:

i~(i'e (§02) ~

(ii~/~)2

~~ ~~~ ~~~
~'i)~ ~l $2

$j
~

£~

c~

(~2/2)2.
2

~~' ~ l)~ ~' b2 &j + i
j (4,16)

In going from the first line of (4.16) to the second line, we
have used the fact that, due to

the second denominator the whole expression is large only when St Ci b2 b[,
so

that we can

replace in the first denominator, which gives rise to slow variations (becausb of the large ir/2
term), b2 by bi + b[ m bi Inserting (4.14) and (4.16) into (4.13),

we finally get :

Tfi m
T( + T(~ (4.17)

with

~
~ ~~

h (St if)
~~

~~'~~~~

~°~~ "
~l

h (St

)
ii ~)~ &1

&~ &j + ;
j) ~)~

h (&i

)
ii

~l' ~~~~~~

We can now give a
diagrammatic representation of the amplitudes (4.18a) and (4.18b) in

terms of bare states e, gi, g2, keeping however the radiative widths and shifts of these levels (for

e, we neglect b[ and r[ in comparison with r, to be consistent with the approximation made

in (4.16)). Reading (4.18a) and (4.18b) from right to left, we associate a photon absorption

or
emission with each Rabi frequency term hat /2, hQ2/2

or
hQ/2, and an intermediate state

with each energy denominator, such an energy denominator giving the energy defect between

the energy of the initial state and the energy of the intermediate state.

We first consider (4.18a) (Fig, 5a). Starting from gi the atom absorbs the wLi Photon

(hoi/2 term) and jumps into e, the energy defect being h St +I(
,

and then falls back

into gi by emi§sion of the fluorescence photon w
(hQ/2 term). Such a process is nothing but

ordinary (near resonant) Rayleigh scattering.
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The amplitude (4.18b) corresponds to the four-photon process represented in figure 5b. Here

also, the atom starts from gi and absorbs the wLi Photon (hoi/2 term) to go into e with an

energy defect h bi + I( But now, from e, the atom jumps into g2 by stimulated emission of

yi
one wL2 Photon (hQ2/2 term), the new energy defect becoming h bi b2 b[ + i~ Then,

the atom absorbs one photon wL2 (hQ2/2 term) to return to e, with the same energy defect

h bi + I
~

as before, and finally falls back into gi by spontaneously emitting the fluorescence
~

photon w
(hQ/2 term). The amplitude T(~ thus describes a sequence of two Raman processes,

one stimulated Ba1nan process which brings the atom from gi to g2, followed by
a spontaneous

Raman processes, which brings back the atom from g2 to gi(15]. The amplitude of such

a combined process becomes very large when the second intermediate state is resonant, I.e.

when bi
"

b2 + b[. The width of the resonance is the width r[ of g2.
The expression (4.18b) of T(~ looks like a perturbative expression taken from a Born expan-

sion of the scattering amplitude. Actually thin is not the case. The presence of b[ and r[ in

the second energy denonfinator results in the fact that (4.18b) is a non-perturbative scattering
amplitude. The presence of al in the numerator of (4.18b) does not imply that T(~ is of order 2

in Q2. When St
"

62 + b[, the second energy denominator of (4.18b) becomes equal to ir[/2,
which is also proportional to al,

so that T(~ is then of order 0 in Q2, dud can become on the

order of, or even larger than T(. It would be also wrong to add to (4.17) amplitudes involving

more wL2 photons. Equation (4.17) results from the exact expression (4.13), which already
contains

a resummation of the perturbation series.

5. Conclusion
: Connection with Fano profiles.

In the low saturation limit considered in the previous section, r » r[, and the excited state

e appears as a
continuum, in comparison with the narrow levels gi and g2. Figures 5a and fib

show that there are two distinct paths for going from the dhcrete state gi to the "continuum"

e.

The first path appears in figure 5a. It corresponds simply to the absorption of the photon

wLi which brings directly the atom from gi to e. The second path, appearing in Fig. fib, is

a three-photon process going through g2. A stimulated Raman process (absorption of wLi+
stimulated emhsion of wL2) brings the atom from gi to g2, and then the absorption of one

wL2 photon brings the atom from g2 into the "continuum" I. This second path, which passes
through

a narrow dhcrete state g2, interferes with [he first one, which is
a

direct path towards

the continuum. Such
a

situation leads to Fano profiles.
To check this point more carefully, we come back to equation (3.20), and, using (4.2) and

(4.3), we rewrite the first line of thin equation as :

~
4

61+~~i
@j

61

~- ~+
i
) ~~ ~~

Because of the presence of ir/2 in the denominator, the first fraction of (5.I) varies very slowly
with 61, in comparhon with the second &action. We now transform the second fraction of (5.I),
which is the one giving rise to the rapid variation9 of Tfi around 61 "

62 + 6[ by introducing
the reduced variables

:

6 =

~~
r~)~

~~ (5.2)
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~ r~)2
l

~~'~~

This allows one to write [Tfi[~ as :

~~~~
16

(bi
~~~~

~fj ~~~~~
~~ ~~

The second fraction of (5A) is typical of a Fano profile with parameter q.

We have thus proven that the narrow structure of figure 2 is
a Fano profile, and

we
have

identified in figure 5 the two interfering pathways which give rise to such
a

profile.
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