2/22/2013

Single Photons

I Phase shifters & beam splitters
II Mach – Zehnder interferometer
III Non-linear MZ inst.
IV Quantum algorithms

\[|0\rangle = \text{no photon} \]

\[|1\rangle = \text{single photon state} \]

What happens when these states pass through optical components?

I Phase shifters & beam splitters

\[|1\rangle \xrightarrow{\text{Time}} e^{i\omega t}|1\rangle \]

\[\text{Medium} \quad e^{i\omega t_1 + \phi}|1\rangle \rightarrow \text{Phase shift} \]

Phase has to be compared to a reference

\[\Rightarrow \text{Two modes} \xrightarrow{\text{Phase shift}} \]

\[|1\rangle \xrightarrow{\text{a}} |1\rangle \]

\[|1\rangle \xrightarrow{\text{b}} |1\rangle \]

12 in 12 out
Combine modes

\[H = i \Theta (a b^+ - a^+ b) \]

\[B = e^{iH} = \exp(i(\Theta (a b^+ - a^+ b))) \]

Baller-ChT Formula

\[a b^+ = a \cos \theta + b \sin \theta = a' \]

\[b b^+ = -a \sin \theta + b \cos \theta = b' \]

\[\Theta = \frac{\pi}{4} \]

\[b = \frac{b - a}{\sqrt{2}} \]

\[a' = \frac{b + a}{\sqrt{2}} \]

\[\frac{a + b}{\sqrt{2}} \]

\[a' = \frac{a - b}{\sqrt{2}} \]

3/1/2013

Matrix rep,

\[\begin{bmatrix} a \\ b \end{bmatrix} \rightarrow \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \]
Single photons

\[|10 \rangle \quad \text{mod} \quad b \]
\[|01 \rangle \quad \text{mod} \quad a \]

\[b^a |10 \rangle = (b + b^*) b |00 \rangle = |100 \rangle \]

\[|11 \rangle \otimes |0 \rangle \]

\[|1,0 \rangle = -\sin \theta |01 \rangle + \cos \theta |10 \rangle \]

\[b |101 \rangle = \cos \theta - \sin \theta \]

\[\text{B conserves the photon number} \]

\[b |111 \rangle = -\sqrt{2} \sin \theta \cos \theta |02 \rangle \]

\[-\sqrt{2} \sin \theta \cos \theta |20 \rangle \]

\[+ (\cos^2 \theta - \sin^2 \theta) |11 \rangle \]

Restrict our attention to \{ |00 \rangle, |10 \rangle, |11 \rangle \} always have \text{ONE photon}

"Dual-rail photon state space

spanned by \{ |01 \rangle \text{ and } |10 \rangle \}

Two-level system

Arbitrary state \(|\psi \rangle = \alpha |01 \rangle + \beta |10 \rangle \)

Theorem: Any \(|\psi \rangle \) can be created from \(|01 \rangle \)

by beamsplitters and phase shifters.
Proof: \(|2\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \)

\[
B_\theta |2\rangle = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}
\]

Rotation around \(y \)

Phase shifter

\[
\begin{bmatrix} e^{-i\pi/2} & 0 \\ 0 & e^{i\pi/2} \end{bmatrix}
\]

Irrelevant global phase

Rotation around \(z \)

\[B(\theta) = R_y(-2\theta) \quad P(\tau) = R_z(-\tau)\]

\[U = e^{i\varphi} R_z(\beta) R_y(\gamma) R_z(\delta)\]

Modern language

qubit \(\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \)

An arbitrary single qubit operation ("gate") can be performed by phase-shifters and beam splitters.

Ex: Hadamard gate

\[
H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
\]
II. Mach-Zehnder Interferometer

Dual-rail photon representation of a qubit allows us to discuss interferometers as gates.

\[
|\text{out}\rangle = B^+ \mathbf{P} \mathbf{B} |\text{in}\rangle
\]

\[
= R_y(\frac{\pi}{2}) \quad R_x(-\xi) \quad R_y(\frac{\pi}{2}) |\text{in}\rangle
\]

\[
= R_x(-\xi) |\text{in}\rangle
\]

- \(\xi = 0 \) balance
- \(\xi = \pi \) swap mode
- \(\xi = \pi \) inverts qubit

Nonlinear MT Interferometer

Linear optics \(\bar{\rho} = \varepsilon_0 \times \bar{E} \)

Nonlinear \(\varepsilon_0 \left(x^1 E + x^2 E^2 + x^3 E^3 \right) \)

\(H_{x \text{ph}} = - x (a^+ + b^+ b) \) cross phase modulation

\(K = e^{i \frac{2 \pi}{L} x L} = e \)

\(\text{OPO} \) \(\text{Ueven} \)
Choose $x L = \pi$

\[U_{\text{Kerr}} \]

\[U |00\rangle = |00\rangle \]
\[U |01\rangle = |01\rangle \]
\[U |10\rangle = |10\rangle \]
\[U |11\rangle = e^{i x L} |11\rangle = -|11\rangle \]

\[l_{\text{out}}) = b^+_{al} K_{bc} B_{al} |11\rangle \]

\[= e^{i x L} |c+c\rangle \left(\frac{b^+ - a^+}{\sqrt{2}} \right) \left(\frac{b - a}{\sqrt{2}} \right) |11\rangle \]

\[= e^{i \frac{\sqrt{3}}{2} c^+ c} (a^+ b - b^+ a)/2 \]

Please shift \bar{a} (See Wilt.)

Beam splitter with rotation axis $\bar{a} c^+ c$
Creation of entangled states

\[|d\rangle \quad |c\rangle \quad |b\rangle \quad |a\rangle \]

\[|\Phi_0\rangle \quad |\Phi_1\rangle \quad |\Phi_2\rangle \quad |\Phi_3\rangle \]

Then the state after the first two 50/50 beamsplitters is

\[|\phi_1\rangle = (|01\rangle + |10\rangle)(|01\rangle + |10\rangle) \]
\[= |0101\rangle + |0110\rangle + |1001\rangle + |1010\rangle, \]

up to a normalization factor which we shall suppress for clarity. The Kerr

\[|\phi_2\rangle = |0101\rangle - |0110\rangle + |1001\rangle + |1010\rangle. \]

Finally, the output state, given by applying \(B^\dagger\) to modes \(a\) and \(b\), is

\[|\phi_3\rangle = \frac{|1001\rangle + |0110\rangle}{\sqrt{2}} \]

\[= \frac{(\uparrow\downarrow) + (1\uparrow)}{\sqrt{2}} \]

ENTANGLED STATE