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1. The Hanbury-Brown Twiss experiment and g(2)(τ)

a) Using the definition of a1 and b1 , we find
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† + b†√

2

a+ b√
2
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2
| ψ, 0〉 (2)

= 〈ψ, 0 | a
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√
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| ψ, 0〉 (3)
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4
〈ψ, 0 | (a†aa†a− a†bb†a) | ψ, 0〉 (4)

=
1

4
〈ψ, 0 | (a†(a†a+ 1)a− a†a) | ψ, 0〉 (5)

=
1

4
〈ψ, 0 | (a†a†aa) | ψ, 0〉 (6)

(7)

In above calculations, we use the following properties of creation and annihilation operators:

〈ψ, 0 | b† = 0 (8)

b | ψ, 0〉 = 0 (9)

[a, a†] = 1 (10)

〈ψ, 0 | (bb†) | ψ, 0〉 = 1 (11)

(12)

Therefore, the voltage Vψ gives us,

Vψ =
V0
4
〈ψ, 0 | (a†a†aa) | ψ, 0〉 (13)

This shows that Vψ gives a measure of the second order coherence up to an additive offset,
and normalization.
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2. Hanbury Brown and Twiss Experiment with Atoms

(a) Correlation function This part is fairly straightforward substitution,

P =
∣∣ψAeiφA1ψBe

iφB2 ± ψAeiφA2ψBe
iφB1

∣∣2
= |ψAψB |2

∣∣∣ei(kA·rA1−ωτ+kB ·rB2−ωτ) ± ei(kA·rA2−ωτ+kB ·rB1−ωτ)
∣∣∣2

= 2 |ψAψB |2 [1± cos(kA · (rA2 − rA1) + kB · (rA1 − rA2))]

= 2 |ψAψB |2 [1± cos ((kA − kB) · r21)] (14)

(b) Transverse Collimation

What does it mean to “see a second-order correlation effect”? As discussed in class,
the second order correlation function is a measure of the probability of detecting two
particles (e.g. atoms or photons) within a certain distance/time of each other. Due to
the Pauli exclusion principle, it should be relatively less likely to detect two fermions
‘close’ to each other in space or time, and due to bosonic enhancement, relatively more
likely to detect two bosons ‘close’ to each other. We can see this explicitly occurring in
Equation (14). As long as the distance between points of detection, r21 is small enough
that (kA − kB) · r21 ≡ φt � 2π =⇒ cos ' 1 it indicates an increased probability of
detecting two bosons and a decreased probability of detecting two fermions.

When we perform an actual experiment, unless φt � 2π for all the different wavevec-
tor pairs coming from the source and all the different possible detected positions, the
cosine term will average to zero and we will see no difference in probability for bosons
versus fermions. The maximum difference in transverse wavevector, for particles coming
opposite edges of the cloud but arriving at nearly the same point on the detector, is
(kA − kB)max ' k0

W
d . The maximum separation between detected particles is given

by the width of the detector (r21)max ' w. So to ensure that φt � 2π, we must have:
k0

W
d w � 2π,or

Ww � λdBd where λdB =
2π

k0
.

Another way to approach the problem is to determine under what conditions the two
particles being detected lie within a single phase space cell, (i.e. δxδp � h) which,
roughly speaking, means that they are detected in the same quantum state. Since two
fermions cannot occupy the same quantum state, we would expect to see second order
correlation effects in this case. Substituting r21 for δx and ~(kA − kB) for δp, it is clear
that we will arrive at the same result given above.

The deBroglie wavelength at 500 µK is λdB = h/
√

2πmkBT = 32 nm. Given d = 10cm,
this means W,w � 56µm.

(c) Longitudinal Collimation

(i) Average P over the given wavevector distribution, normalizing appropriately:

〈P 〉 = 2 |ψAψB |2
∫∞
−∞ (1± cos ((kA − kB) · r21)) e−|kA−kB |2γ2

d(kA − kB)∫∞
−∞ e−|kA−kB |2γ2d(kA − kB)

.
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We could proceed by integrating separately over the transverse and longitudinal wavevec-
tor components: d(kA − kB) = d(kA − kB)td(kA − kB)l, but we can avoid some work
by using the condition we derived above φt ≡ (kA − kB)t · (r21)t � 2π. This means we
can neglect any transverse contribution to the cosine, leaving numerator and denomina-
tor with the same φt dependence, and therefore cancels. The remaining (longitudinal)
integral is straightforward:

〈P 〉 = 2 |ψAψB |2
[

1±
∫∞
−∞ cos (δkl(r21)l) e

−δk2l γ
2

d(δkl)∫∞
−∞ e−δk

2
l γ

2
d(δkl)

]
= 2 |ψAψB |2

[
1± e−(r12)

2
l /4γ

2
]
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Spatial correlation effects can be seen for (r12)l ≤ 2γ.

(ii) The second half of this part is just geometry. Because we have a pulsed source, all
the atoms are localized within a longitudinal distance L at time t = 0. For two atoms in
different parts of the cloud to reach the detector at the same later time t = τ , it must be
the case that the one starting further away had a larger enough velocity to ‘catch-up’ to
the one starting closer. The largest difference in velocity between two particles arriving
simultaneously at the detector will occur when one particle is from the “front” of the
cloud, vmin = d/τ , while the other is from the “back”, vmax = (d + L)/τ . Thus the
difference in velocity, ∆v, between any two particles detected at the same time must be
≤ L/τ . Using the relation ~k = mv, we find:

(kA − kB)l ≤
mL

~τ
=
mvL

~d
,

written in terms of the “average” velocity v = d
τ .

By the same arguments as given in part (b) above, in order to see second order correlation
effects, we must have φl ≡ (kA − kB)l(r21)l � 2π. Since we have assumed that our
detector has no longitudinal extent, (r21)l = 0 and this condition is trivially satisfied. In
other words, all of the atoms detected at a particular time are guaranteed to be in the
same longitudinal phase space cell. If, however, our detector has some finite response
time, tr, then we can attribute to it an ‘effective’ length (r21)l = vtr. Now, in order to
see second order correlations, we must have (kA − kB)l (r21)l ≤ mvL

~d vtr � 2π, or,

tr �
hd

mLv2
= 0.12 ms
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(d) Phase-Space Volume Enhancement

The initial phase space cell volume is δxδyδz = λ3dB .

In each dimension, we know that the uncertainty in position and momentum correspond-
ing to a single phase space cell is given by δkδr ' 2π.

From part (b), in each of the two transverse dimensions we have (kA − kB)t = δkt '
k0W/d. Thus:

δxt =
2π

δkt
=

d

W

2π

k0
=

d

W
λdB .

From part (c), in the longitudinal direction we have (kA − kB)l = δkl ' mvL
~d = k0L/d.

Thus:

δxl =
2π

δkl
=
d

L

2π

k0
=
d

L
λdB .

Our new phase space cell volume (after expansion of the cloud) is δx2t δxl = d3

W 2Lλ
3
dB . So

the phase space volume has increased by d3

W 2L ≈ 1012 for d = 10cm and L ≈W ≈ 10µm.

The phase space density of the Lithium MOT is given by nλ3DB . Using the given numbers,
the phase space density is ∼ 10−7, much lower than the point of degenearcy of nλ3DB ∼ 1.


