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Abstract

This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The
atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate
and a fermion pair condensate. In each case, a different type of measurement is performed.
However, all of the experiments share a common tool: an optical lattice which is used to
probe these atomic gases.

In the first case, we use an auto-correlation technique to study the interference pattern
produced by a gas of atoms, slightly above the Bose-Einstein condensate transition tem-
perature. A moving optical lattice is used to split and recombine the single particle atomic
wavefunction. Analogous to a Young’s double slit experiment, we observe high contrast
interference which is well described by the model which we develop. When we address only
a velocity subset of the thermal sample, however, the contrast is enhanced and deviates
from this model.

In a second experiment we measure the coherence of a diatomic molecular gas, as well as
the atomic Bose-Einstein condensate from which it was created. We use Bragg spectroscopy,
in which atoms exchange photons with a moving optical lattice, transferring momentum to
the atoms. This process can reveal the velocity distribution of the sample as energy and
momentum are conserved only for a specific velocity class. Based on this measurement, we
find that the atomic coherence is transferred directly to the molecular gas. We also discuss
similar preliminary measurements performed on a fermion pair condensate in the BEC-BCS
crossover.

In a third experiment we study a fermion pair condensate into a 3D optical lattice. Such
a system shares many similarities with electrons in solid materials which exhibit supercon-
ductivity, and can offer insight into mechanism which result in this behavior. We infer
coherence from the sharp interference pattern observed in the expanding gas, after release.

Finally, we study the abrupt onset of dissipation observed in a fermion pair conden-
sate, as a function of velocity, in a moving optical lattice. We equate this threshold with
the Landau critical velocity, and take measurements throughout the BEC-BCS crossover.
The critical velocity is found to be maximum near unitarity, where the loss mechanism is
predicted to crossover from phonon-like excitations to pair breaking.

Thesis Supervisor: Wolfgang Ketterle
Title: John D. MacAurthur Professor of Physics
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Chapter 1

Introduction

Much of what attracted me to atomic physics resides in the the clarity with which

ultra-cold atomic gases exemplify the quantum mechanical nature of matter. Matter-

wave interference, for example, offers striking affirmation of the precepts with which

we first became acquainted in the classroom. The degree to which these systems are

amenable to fairly simple theoretical description is encouraging to the experimentalist.

The Bose-Einstein condensate behaves very much like a single particle wave-packet.

The interaction of an atom with light is well modeled by the two level system. Ver-

ifying one’s own calculation in the laboratory is an empowering experience, and a

frequent one in the field of atomic physics.

When I first joined this group, Bose-Einstein condensates dominated the research

agenda. A reliable and robust superfluid, this state of matter came to symbolize the

precision and control which are characteristic of this field. Throughout my graduate

career, however, the study of degenerate Fermi gases has been in the ascendency.

These systems provided a new perspective on phenomena which have puzzled physi-

cists for decades. Our understanding of strongly correlated electron systems stands

to benefit from our study of atomic Fermi gases, which exhibit the same physics

but offer numerous degrees of freedom unavailable in solid state materials. While

anti-ferromagnetism and d-wave superfluidity currently lie at the periphery of our

comprehension, atomic physics is well poised to shed light on these phenomena.

The properties of ultra-cold gases which most interest us all rely on coherence.

Coherence is, in some sense, a measure of how a group of atoms will act in a coordi-

13



nated fashion, so as to exhibit a number of elegant wave-like properties. By studying

coherence and its breakdown we gain further insight into the mechanisms at work and

the limits of their applicability. In this thesis I will discuss a number of experiments,

all of which have sought to probe the coherence properties of an atomic gas, in one

way or another.
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Chapter 2

Quantum Degenerate Gases

Introduction

In this chapter, we discuss the properties of quantum degenerate gases. The statistics of

identical particles differentiates a quantum gas from its classical counterpart. This dis-

tinction is only meaningful when the gas approaches degeneracy, which is to say at low

temperatures and high densities where the occupation probability of the lowest lying quan-

tum states approaches unity. A number of good review articles [66, 29, 44] and textbooks

[70, 91, 13] can be found which thoroughly cover the basics of quantum gases. Here, we will

cover the most relevant concepts.

Identical Particles

The difference between bosons and fermions arises from a distinction in their symmetry. The

wavefunction describing a collection of identical bosons is symmetric under the exchange

of any two particles, and anti-symmetric in the case of fermions. The consequences of this

subtlety are significant enough that these two types of particle must be treated as entirely

different entities at low temperatures.

The Pauli exclusion principle follows from the anti-symmetry of fermions under ex-

change. Two identical fermions can not occupy the same state. Our earliest exposure to

this rule comes in high-school chemistry class, when we learn how electrons fill up energy

levels in an atom, producing the periodic table of the elements.

Bosons, on the other hand, can occupy the same state. In fact, a great deal of effort

has been expended in order to make them do so, by the tens of millions at a time, in the

15



form of a Bose-Einstein condensate (BEC). A BEC is often described, colloquially, as a

giant matter-wave. In fact, BECs exhibit a number of striking wave-like phenomena which

exemplify what it means to be quantum mechanical. In addition, weakly interacting alkali

BECs are amenable to fairly simple theoretical treatment, bearing much resemblance to the

single particle wavefunction of an introductory quantum mechanics course. This has made

the BEC an exciting and popular object of study over the past 12 or so years [4].

The atomic bosons which we condense are, just as all mass carrying bosons are [48],

composite bosons: a bound state of an even number of fermionic subatomic particles. Sim-

ilarly, we can create composite bosons, molecules for example, out of two fermionic atoms.

Recently, quite a bit of excitement within the atomic physics community has been directed

towards the so-called BEC-BCS crossover: the continuous transition between the physics

of atomic fermions and diatomic bosons, which is achieved through the magnetic tuning of

interactions. We will elaborate on this phenomena in Section 2.4. Suffice it to say that the

union of two previously distinct physical regimes has been warmly received.
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2.1 Bosons

Generally, the physics of many particles is far more complicated than that of the single or

two interacting particles. This is why in thermodynamics we look at bulk properties rather

than keep track of every particle. In many-body physics, interactions between particles

create correlations which require some fairly sophisticated mathematics to keep track of

[88, 118]. In contrast to liquid 4He, Bose-Einstein condensates of alkali gases are extremely

dilute, and the interactions are extremely weak. This allows us to make a number of

approximations which greatly simplify the theoretical treatment.

2.1.1 s-wave Interactions

The interatomic potential is in general fairly complicated. Much of the detail, however, can

be swept under the rug at the low temperatures which we achieve. The two-body collision

process can be described in terms of partial waves [99, 25]. In short, the relative motion

of the two particles is treated as a plane wave incident on some scattering potential. The

scattering off this potential can be expressed in partial wave components (s-wave, p-wave, d-

wave ...) which reflect a decomposition of the angular distribution into spherical harmonics.

In the limit of zero relative velocity, which we approach at ultracold temperatures, only the

lowest order s-wave component contributes, which is spherically symmetric. In other words,

at very long wavelengths, the incident plane wave can’t resolve any of the structure of the

scattering potential.

The long and the short of it is that we treat the interaction as a delta function pseudo-

potential

V (~r1, ~r2) =
4πh̄2a

m
δ(~r1 − ~r2) (2.1)

which is parameterized by a single quantity, the s-wave scattering length a. This assumption

is valid as long as a remains less than the average inter-particle spacing. The sign of a

corresponds to the nature of the interaction; a is positive for repulsive interactions and

negative for attractive interactions.

Symmetry of interactions

It should be noted that identical fermions can not experience s-wave scattering. As we

discussed earlier, the fermionic wavefunction must have odd symmetry, which means only
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odd partial waves (p,f,...) can be involved. This has serious implications in the field of

ultra-cold gases, in which collisions are required for the cooling process. Identical fermions

essentially do not collide at low temperatures, meaning we must either use a mixture of

spin states or cool them sympathetically through interactions with another species, such as
23Na. Similarly, bosons only experience scattering with even symmetry (s,d,...).

2.1.2 Gross-Pitaevskii Equation

The aim of mean-field theory is to replace all the interactions amongst a group of parti-

cles with an average or effective interaction, thus reducing a many-body problem into an

effective one-body problem. Adopting the pseudo-potential of Equation 2.1, the conden-

sate wavefunction can be described by a nonlinear Schrödinger equation, known as the

Gross-Pitaevskii equation (GP equation)

[
− h̄2

2m
∇2 + Vext(~r) +

4πh̄2a

m
|ψ(~r)|2

]
ψ(~r) = µψ(~r), (2.2)

where the chemical potential µ = 4πh̄2a
m n0, can be expressed as the interaction energy at

the peak density n0.

2.1.3 Thomas-Fermi Approximation

For a BEC, we can usually neglect the kinetic energy term in Equation 2.2, with respect to

the interaction energy Uint = 4πh̄2na/m. It then follows that a BEC in a harmonic trap

has the characteristic parabolic density profile.

n(~r) = |ψ(~r)|2 =
m

4πh̄2a
(µ− Vext(~r)) (2.3)

This approximation, however, fails at the very edges of the cloud, as the density approaches

zero.

2.1.4 Healing Length

Spatial variations in the density of size ξ carry a cost in kinetic energy h̄2/2mξ2. Equating

this energy with the interaction energy, we arrive at the natural length scale associated with
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Figure 2-1: Matter-wave Sum Frequency Generation: just
one example of the many phenomena which arise due to
a nonlinear wave equation and which have direct analogs
in nonlinear optics. a) Atoms are prepared in momentum
states |0〉 and |1〉 using Bragg diffraction. b) The atom-
molecule coupling produces molecules with momentum |0〉,
|1〉 and |2〉, analogous to optical sum frequency generation.
The time of flight is 17 ms.
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Uint.

ξ =
1√

8πna
(2.4)

ξ is referred to as the healing length. It sets the distance, for example, over which the

condensate density can change from its bulk value to zero, or equivalently, the size of a

vortex core.

2.1.5 A nonlinear wave equation

Equation 2.2 is a nonlinear wave equation. As a consequence, we can describe a number of

BEC phenomena in a manner completely analogous to that of nonlinear optics [76]. The

mean field interaction acts as a third order nonlinear susceptibility χ(3), which can drive

processes such as four-wave mixing [33], soliton generation [34] and optical parametric

generation [17]. The coupling to the molecular channel, which we describe in Section 2.3,

is analogous to frequency doubling. In our lab [1], we demonstrated the sum frequency

generation of matter waves by combining atoms with different momentum (and therefore,

wavelength λ = h/p) into diatomic molecules, as shown in Figure 2-1.

2.1.6 Bogoliubov Excitation Spectrum

N. N. Bogoliubov first derived the spectrum of elementary excitations for a BEC [11]. Rather

than elaborating upon the derivation, I will simply state the main result. The dispersion

relation for elementary excitations is given by

Ep =

√
p2

2m

(
p2

2m
+ 2 mc2

)
(2.5)

where the speed of sound c is given by the relation

mc2 = µ =
h̄2

2mξ2
. (2.6)

We can identify two regimes of the spectrum, as illustrated in Figure 2-2. At low mo-

mentum, the excitations are sound-like, with linear dispersion Ep ' pc. At high momentum

the excitations become free particle-like, where Ep ' p2

2m + µ. In addition to the kinetic

energy, this excitation requires that we pay the chemical potential µ to kick an atom out

of the condensate. This is a consequence of exchange symmetry: a distinguishable (ther-
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Figure 2-2: The Bogoliubov excitation spectrum (solid line). The elementary excitations
of a BEC are phonon-like as low momentum, following a linear dispersion relation (dotted
line). At high momentum, the excitations are free particle like. The excitation energy
reflects the quadratic kinetic energy, offset by the mean field shift µ (dashed line).

mal) particle interacts with the condensate with twice the strength of an indistinguishable

(condensate) atom.

The transition between these two regimes happens where the wavelength of the excita-

tion λ = h/p is on the order of the healing length ξ. In other words, the condensate can

not support collective modes with a spatial variation λ shorter than the healing length.
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2.2 The Non-interacting Fermi Gas

In the case of a degenerate Bose gas, we were primarily concerned with nature of the ground

state, since we could pack an arbitrary number of particles into that state, in the form of

a BEC. What concerns us most, in the case of a degenerate Fermi gas, is also the state of

lowest energy to which we can add a particle. According to the Pauli exclusion principle,

however, this state will sit on top of a filled Fermi sea of occupied energy levels. The

energy of this state1 is referred to as the Fermi energy EF , and sets the energy scale for

many properties of the system [7, 69]. We frequently work with harmonically trapped gases,

for which the energies are quantized at the harmonic oscillator spacing. The Fermi energy

for N non-interacting fermions2 in a 3D harmonic oscillator is

EF = hν̄ (6N)1/3 (2.7)

where ν̄ = (νx νy νz)1/3 is the geometric mean trapping frequency [15]. At zero temperature,

the chemical potential µ is just the Fermi energy. Similarly, we can define the Fermi

temperature TF = EF /kB, which sets the relevant temperature scale of the system. A

Fermi gas becomes quantum degenerate for temperatures T/TF ≤ 1, which is to say that at

such temperatures states with energy below EF begin to fill up, and the behavior deviates

significantly from that of a classical gas.

2.2.1 The local density approximation

We can gain a fair amount of insight into the properties of a trapped degenerate Fermi gas

by assuming that, locally, it behaves as a homogeneous gas. In other words, on a length

scale short compared to the variation of the external potential, Vext acts only as an offset.

The local energy ε(n) is determined by the sum of the kinetic and interaction energies,

which depend only on the local density n(~r). The total energy is then

E =
∫

d~r [ ε(n) + Vext(~r) n(~r) ] (2.8)

1or equivalently, for large numbers, the energy of the highest occupied state, at zero temperature.
2The number N and density n in this thesis will always refer to the number of fermions in a single internal

state. Many solid state textbooks, however, will refer to the total number, making the assumption of an
unpolarized system of electrons, with two spin states. Be aware of this factor of 2.
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This is known as the local density approximation (LDA), and is valid if the chemical po-

tential is large compared to the quantization, that is, the harmonic oscillator spacing h̄ω in

the trap.

In a non-interacting Fermi gas, the local Fermi energy εF reflects only the local kinetic

energy, through the local density of k-states. In other words, this is just the Fermi energy

for a homogeneous gas of density n.

εF =
h̄2

2m

(
6π2 n

)2/3
(2.9)

In the same manner, we can define a local Fermi wavevector kF = (6π2n)1/3.

2.2.2 Density Profile

The chemical potential, µ = εF (r) + V (r), is of course flat across the sample. If it were

not, the atoms would redistribute themselves. Wherever the potential is zero, which for a

harmonic trap is at the trap center, we get εF = µ = EF . Inverting Equation 2.9 gives us

the peak density

n0 =
1

6π2

(
2mµ

h̄2

)3/2

. (2.10)

The density profile is then

n(r) = n0

(
1− r2

R2
F

)3/2

(2.11)

where the Fermi radius is RF =
√

2 µ
m ω2 .

2.3 The Feshbach Resonance

One of the developments which has fueled the recent progress in the field of degenerate Fermi

gases has been the identification and manipulation of Feshbach resonances [59]. Colloquially,

a Feshbach resonance is a magic knob which allows us to tune the scattering length, and

thus the interactions, of an atomic gas. More physically, it is a scattering resonance [99]

which occurs when the state of two free colliding particles is degenerate with a bound state

(see Figure 2-3). There is some coupling between states, from the hyperfine interaction, for

example. If the states have different magnetic moments, we can tune their energies relative

to one another with an externally applied magnetic field. The s-wave scattering length then
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Figure 2-3: The Feshbach resonance. a) Interatomic potentials for different spin configu-
rations have a difference in magnetic moment ∆µ, and thus tune differently with magnetic
field. A free atomic state (red line) becomes degenerate with a bound molecular state (blue
line) at a magnetic field B0. b) Due to a coupling between these two states, two-body
scattering is resonantly enhanced near this field. The s-wave scattering length a diverges
on resonance, and can be tuned in both magnitude and sign in the region ∆B around
resonance. The general form for a(B) is found in Equation 2.12.

has the general magnetic field dependence

a(B) = abg

(
1− ∆B

B −B0

)
(2.12)

where abg is the background scattering length, B0 is the location of the resonance, and ∆B

its width.

This remarkable degree of control is limited only by our technical ability to regulate

the magnetic field. Broad Feshbach resonances, such as in 6Li [8], are more forgiving with

respect to field stability. On the other hand, narrow resonances, such as those in 40K [77]

and 23Na [106], make it easy to quickly jump around the resonance.

A Feshbach resonance allows one to vary not only the strength of interactions, but the

sign as well. Studies with bosons are usually performed with repulsive (a > 0) interactions.

A trapped BEC with attractive interactions is stable only at very small numbers. Above a

critical density, the attractive interaction overpowers the repulsion due to finite size kinetic

energy. Nevertheless, there are interesting aspects of such instabilities [43, 22]. Attractive

interactions, however, are more interesting in the case of fermions, as they give rise to BCS

physics, which we will discuss in Section 2.4.1.
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Figure 2-4: Feshbach Molecules. a) The atom-molecule coupling near a Feshbach resonance
creates an avoided crossing between the free atom continuum and a bound molecular state.
Atoms can be adiabatically converted to molecules by sweeping the magnetic field across
the resonance. b) Three body collisions can transfer weakly bound molecules into a more
deeply bound state, while a third body carries of the difference in binding energy as kinetic
energy.

While the s-wave resonances for 40K and 6Li, in particular, have been the workhorses of

the field, there are other more exotic Feshbach resonances. Ordinarily, ultra-cold identical

fermions do interact, since s-wave collisions are disallowed by symmetry and other partial

waves are frozen out. However, p-wave resonances have been found [100, 94] which allow

one to circumvent this “rule”. Feshbach resonances between different atomic species have

also been identified [104, 60, 40]. And, while we usually associate Feshbach resonances with

magnetic tunability, the Innsbruck group has induced a Feshbach resonance optically [110].

2.3.1 Feshbach Molecules

As we mentioned, a Feshbach resonance involves the coupling of the free atomic state to

a molecular bound state. This coupling is coherent, as evidenced by the atom-molecule

oscillations [36] it can produce. It also gives rise to an avoided crossing, which allows

for the adiabatic conversion of atoms into molecules, as depicted in Figure 2-4a. Basic

scattering theory [99] tells us that a bound state exists for a > 0, and the binding energy is

Eb = − h̄2

2mr a2
, (2.13)
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where mr is the reduced mass of the system, which is just half the atomic mass, in the case

of a homonuclear molecule.

Our lab was one of the first to produce diatomic molecules from a BEC, by sweeping

across a Feshbach resonance. This technique has been implemented in the production of

“bosonic” dimers3 of several species, including 133Cs2 [54], 87Rb2 [38] and 23Na2 [116]. These

bosonic dimers, however, have been of limited utility so far. While the binding energy of this

molecular state is very small, the overlap (Frank-Condon factor) with more deeply bound

states is significantly greater than that of two free atoms. As a consequence, three-body

collisions, as illustrated in Figure 2-4b, occurs at a prohibitively high rate, limiting the

lifetimes of these samples to tens of milliseconds. Although Bragg spectroscopy has shown

that these dimers can be created with very high phase-space density [1], these samples do

not have enough time to thermalize, and thus can not be considered a BEC.

Fermions, however, do not suffer the same fate. The Pauli exclusion principle suppresses

three-body recombination, allowing “fermionic” dimers such as 40K2 [95] and 6Li2 [27, 63,

108] not only to Bose-Einstein condense [47, 64, 120], but to survive in this state for tens

of seconds. These long lived molecular BECs are most exciting, however, in the context of

the BEC-BCS crossover, which we discuss in Section 2.4.1.

2.4 The Strongly Interacting Fermi Gas

In Section 2.2, we discussed the physics of non-interacting fermions. This was not as ideal-

ized as it may sound, since identical fermions at low temperatures simply do not interact.

It was, however, rather boring. Most of the exciting physics comes from the interactions.

In order to add interactions to our Fermi gas we incorporate more than one spin state. This

spin mixture, however, must be an incoherent mixture. Fermions in the same coherent su-

perposition of spin states are still identical [122]. Fortunately, decoherence is easy to come

by.

Nevertheless, with two spin states, fermions can collide in s-wave. The two-particle wave

function must, of course, remain anti-symmetric under exchange. This just means that the

spin component of the wavefunction will be in the singlet configuration.
3bosonic here refers to the constituent atoms. All homonuclear dimers are bosons, whether they are

formed from bosons or fermions.
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2.4.1 The BEC-BCS Crossover

As we discussed in Section 2.3, a Feshbach resonance allows one to control not only the

strength of interactions, but the sign as well. This has some profound ramifications for

a two-component Fermi gas. Until quite recently, two distinct types of superfluidity have

existed in separate, almost parallel worlds. On the one hand there are bosons, such as
4He, which for repulsive interactions (a > 0) can form a BEC, which exhibits superfluid

properties. On the other hand, there are fermions, such as 3He and electrons, which at

very low temperatures (T/TF ) and in the presence of attractive interactions (a < 0), form

Cooper pairs and can be described by the superfluid BCS state. The atomic Feshbach

resonance acts as a bridge between these two regimes. The nature of the interactions can

be continuously tuned from repulsive, on the BEC-side of the resonance, to attractive, on

the BCS-side. The region in between is known as the BEC-BCS crossover, and has been

the subject of intense theoretical and experimental research lately [44].

2.4.2 Unitarity

The divergence in Equation 2.12 seems to imply that interactions can be made arbitrarily

large in magnitude, but the s-wave scattering length does not tell the whole story. The

scattering cross section σ is given by

σ =
4π2a2

1 + k2a2
(2.14)

where the wavevector k of the relative motion is typically given by the local Fermi wavevector

kF .

In the typical case for dilute atomic gases, a ¿ 1/kF , and we get the intuitive result

that σ ' 4π2a2. The atoms look like hard spheres of radius a. For strong interactions

a À 1/kF , however, the cross section has a different limiting behavior.

lim
a→±∞ σ =

4π2

k2
F

(2.15)

In other words, the effective scattering length is cut off at the mean interparticle spacing

n−1/3, which, by no coincidence, is the inverse Fermi wavevector 1/kF .

The region for which |kF a| > 1 is usually referred to as the strongly interacting, or
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unitarity, regime. It is interesting to note that, in this limit, the collisional behavior does

not depend on either the magnitude or the sign of the scattering length.

2.4.3 Universality

It turns out we can incorporate interactions into the non-interacting equation of state (Sec-

tion 2.2) without much difficulty. As a consequence of unitarity limited interactions, length

scales other than 1/kF fall out of the picture. The interaction energy can only by given

by the local Fermi energy εF , times some constant β. So, we can write the local4 chemical

potential µloc as

µloc = εF + Uint (2.16)

= (1 + β) εF

= (1 + β)
h̄2

2m

(
6π2n

)2/3
.

The behavior becomes universal in the sense that specific details of the atomic potential

are no longer relevant [55]. The value of the universal parameter β has been of great

theoretical and experimental interest [44]. A number of measurements and calculations are

consistent with β ' −0.58. The fact that β is negative indicates that universal interactions

are intrinsically attractive.

Since the inclusion of unitarity limited interactions has not changed the functional form

of equation of state (µloc ∝ n2/3), we expect the shape of a zero-temperature trapped Fermi

gas at unitarity to be the same as that of a non-interacting gas (Equation 2.11). The

overall size R and peak density np, however, will change in response to the interactions. In

a harmonic trap, R ∝ µ1/2. Including interactions we find Rint ∝
√

1 + β n
1/3
p , according to

Equation 2.16. The product n × R3 remains invariant under the inclusion of interactions.

This simply reflects conservation of number. This allows us to express the peak density

np of a harmonically trapped Fermi gas with universal interactions in terms of that of a

non-interacting Fermi Gas n0.

np = (1 + β)−3/4 no (2.17)

4The global chemical potential is the sum of the local chemical potential and the external potential
µ = µloc(r) + Vext(r)
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Equivalently, the size of the interacting gas becomes

Rint = (1 + β)1/4 RF . (2.18)

Given the peak density, we can express the local Fermi energy εF at the trap center in terms

of the non-interacting Fermi energy EF .

εF

∣∣∣
r=0

= (1 + β)−1/2 EF (2.19)

Effective Mass

There is another route to understanding the effect of universal interactions on the size and

density of a trapped Fermi gas [49]. We can interpret the interactions as providing an

effective mass m∗,

m∗ =
m

1 + β
(2.20)

which, in turn, scales the trap frequency to ωeff =
√

1 + β ω. The global chemical potential,

still given by the Fermi energy, becomes

µ = h̄ ω̄eff (6N)1/3 =
√

1 + β EF , (2.21)

from which Equations 2.17 and 2.18 follow.

Personally, I find this approach unappealing, as it is not immediately obvious where m∗

is applicable. For example, the dipolar oscillation frequencies are not rescaled by
√

m/m∗,

even though we have defined an effective trap frequency ωeff for the purpose of rescaling the

Fermi energy. The effective mass for an optical lattice (Equation 3.25), in contrast, is more

consistent in its applicability, and does in fact modify the oscillation frequency [74, 39].
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Chapter 3

Optical forces and lattices

3.1 The optical dipole force

In this section we will discuss the energy shift produced by an off-resonant light field, known

as the AC-Stark effect, and the optical dipole force which results when this shift has spatial

dependence. We will use a classical description in order to establish intuition, followed by

a quantum mechanical treatment.

3.1.1 A classical dipole

An atom in an electric field will acquire an induced a dipole moment, as the electron cloud

is pulled in one direction and the nucleus in another. The energy of a dipole in an external

electric field is E = − ~µe · ~E . It follows that if the field is non-uniform, a dipole which is

aligned with the field will get pulled into the region of stronger E field. In the case of an

A.C. electric field, such as a light wave, the atomic dipole responds as a driven harmonic

oscillator. The dipole has a natural oscillation frequency ω0, and is damped, as an oscillating

dipole will radiate, scattering photons. We know that the phase of such an oscillator, with

respect to the drive field, varies with frequency [80]. Far below resonance, in the case of

red detuning, the dipole can follow the field oscillation. The atom will then be pulled into

regions of higher intensity. If the light is far blue detuned, the dipole will be π out of

phase, and thus antiparallel to the electric field. Atoms will then be repelled from intensity

maxima.
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3.1.2 The AC Stark shift

Quantum mechanically, of course, the internal states of an atom are discretized, and we can

usually model the physics as a two-level problem. We consider a ground state |g〉 and an

excited state |e〉, separated by an energy h̄ω0. The light field ~E(t) = E0 cosωt ε̂ introduces

a coupling

Weg(t) =
〈
e

∣∣∣−~µ · ~E(t)
∣∣∣ g

〉
=

h̄Ω
2

(
eiωt + e−iωt

)
(3.1)

where the Rabi frequency is

Ω = − e E0

h̄
〈e|~r · ε̂ |g〉 (3.2)

The polarization ε̂ of the light dictates which internal states can be coupled through selection

rules.

The time dependence can be eliminated by transforming to the appropriate rotating

frame, and the Hamiltonian becomes

H̃ =
h̄

2



−δ Ω

Ω∗ δ


 (3.3)

where we have introduced the detuning δ ≡ ω − ω0. The result of the coupling is that real

eigenstates are some admixture of excited and ground state. The eigenenergies in this frame

are

Ee,g = ∓ h̄

2

√
δ2 + Ω2 (3.4)

For Ω ¿ |δ|, we can Taylor expand this, and we find that the coupling Ω shifts the energies.

∆Ee,g = ∓ h̄Ω2

4δ
(3.5)

This is what we refer to as the AC Stark shift.

An intuitive way of looking at this system is to consider the atom plus the light field.

If the atom is excited, it takes a photon of energy h̄ω out of the field (see Figure 3-1).

So the state |g; n〉 (i.e., atom in ground state and n photons in the laser field) is nearly

degenerate with |e; n− 1〉. We know from perturbation theory that coupled states repel,

and this insight explains how the sign of the shift corresponds to the sign of δ.
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δ = ω − ω0
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Figure 3-1: The AC Stark Shift. Energy level diagram for a photon plus two-level atom
system. The bare atom has excited and ground states {|e〉 , |g〉} separated by an energy
h̄ω0. A light field of frequency ω couples the two states. Because the transition from the
ground to excited state is accompanied by the removal of a photon with energy h̄ω, the
two states are nearly degenerate. The coupling causes the states to repel, giving rise to the
AC stark shift ∆Ee,g of Equation 3.6. The digram is shown for a blue-detuned light field
(δ > 0).
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Perturbation Theory

In fact, we could have also used perturbation theory to solve for the AC Stark shift. The

perturbation to the ground state energy is second order.

∆E (2) =
h̄Ω2

4

(
1

ω − ω0
+

1
ω + ω0

)
(3.6)

=
h̄Ω2

4δ
+

h̄Ω2

4(2ω − δ)︸ ︷︷ ︸
Bloch Siegert shift

(3.7)

This approach, however, gives us an additional term which we did not find in Equation 3.5.

This term is referred to as the Bloch Siegert shift [9], and comes from the counter rotating

term which we ignored in order to arrive at the simple Hamiltonian in Equation 3.3. This

term is indeed significant for many of our applications in which we use a far-detuned laser,

in the infrared, for example.

3.2 The optical dipole trap (ODT)

Given what we know about the AC stark shift, its pretty straightforward to calculate the

trapping force produced by red detuned laser beam. A Gaussian laser beam of total power

P focused down to a spot size1 of w0 has a peak intensity I0 = 2P/πw2
0. The intensity

profile is given by

I(r, z) =
2P

πw2(z)
e
−2

(
r

w(z)

)2

(3.8)

where the e−2 radius varies along the axis as w(z) = w0

√
1 + z2/z2

0 . The Rayleigh range is

defined as z0 = πw2
0/λ, where λ is the wavelength of the light. In an harmonic approxima-

tion, the potential V (~r) becomes

V (r, z) ' −V0

(
1− 2

(
r

w0

)2

−
(

z

z0

)2
)

(3.9)

where, according to Equation 3.6, the trap depth V0 is given by

V0 =
h̄ γ2

0

8
I0

Isat

(
1

ω − ω0
+

1
ω + ω0

)
(3.10)

1The beam waist is conventionally the e−1 radius of the E field, and thus the e−2 radius of the intensity.
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λ γ0/2π Isat

(nm) (MHz) (mW/cm2)

6Li 670.96 5.92 2.56
23Na 589.16 10.01 6.40
40K 766.70 6.09 1.77
87Rb 780.24 5.98 1.64

Table 3.1: Transition wavelength λ, natural
linewidth γ0 and saturation intensity Isat for
some popular alkali atoms, from [82].

which we have expressed in terms of the natural linewidth γ0 and the saturation intensity

Isat. We list these experimentally convenient parameters for some commonly used alkali

atoms in Table 3.1. The resulting trap frequencies are

ωr =

√
4V0

mw2
0

, ωz =

√
2V0

mz2
0

(3.11)

The weakly bound diatomic molecules and BCS-type pairs we work with essentially have

twice the polarizability of a single atom, and will experience twice the trap depth. They

will, however, experience the same trap frequencies as the unpaired atoms, since they also

have twice the mass. This is analogous to two identical pendulums which oscillate at the

same frequency whether or not they are attached to each other.

Scattering

While the AC Stark shift ∆E can become very strong near resonance, one must then

contend with the scattering of photons, which is generally counterproductive in a cold atom

experiment. From the photon scattering rate

Γs =
γ0

2
I/Isat

1 + I/Isat + (2δ/γ0)2
(3.12)

we see that at large detuning, Γs/∆E ∼ γ0/δ, for a given laser intensity. Therefore, we usu-

ally stand to gain by using far-detuned light, and compensating with more power. Infrared

lasers at 1064 nm are readily available at sufficient powers, and induce negligible scattering.
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3.3 Optical Lattices

In the previous sections, we discussed the interaction of light with an atom int the context

of internal degrees of freedom. We neglected the atoms external degrees of freedom, that

is to say its spatial wavefunction ψ(~r). The absorption of a photon, for example, must be

accompanied by the absorption of that photon’s momentum h̄k. This is reflected in the

the fact that a spatially varying phase acts as an operator, connecting different momentum

states.

eikz =
∑
p

|p〉〈p + h̄k| (3.13)

Much of our understanding of atoms in a periodic potential derives from the more

mature field of condensed matter physics, which describes the behavior of electrons under

the influence of an ionic crystal lattice. However, as is often the case in quantum mechanics,

there exist a multitude of ways to understand a particular phenomena. In this Chapter we

discuss a number of frameworks, each which offers its own particular insight into optical

lattice phenomena. The review paper, Ref. [85] can offer further illumination.

3.3.1 Two-Photon Transitions

The treatment of an atom interacting with two light fields is not any more complicated

than that for a single light field, under certain conditions. Let us consider, for example,

two counter propagating beams. The beams are derived from the same laser, so they have

the same wavevector ~k1 = −~k2 = k ẑ, although we may introduce some small frequency

difference δ between them with, say, an AOM. Both beams couple the same internal states,

|g〉 and |e〉, but different momentum states, since they face different directions. For clarity,

we’ll say that beam 1 couples the state |g, p〉 to the state |e, p + h̄k〉, while beam 2 couples

|g, p〉 to |e, p− h̄k〉. If we constrain our attention to the dynamics of an atom initially in a

single momentum state, say p = 0, we only need to consider a total of three states

{
|g, p = 0〉 , |g, p = 2h̄k〉 , |e, p = h̄k〉

}

as depicted in Figure 3-2.

In fact, the situation is even more simple than that. What we have is a typical lambda

system, in which two states are coupled though an intermediate state of higher energy. The
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dynamics are well described by a Raman process in which one photon is simultaneously

absorbed from one beam and another is stimulatedly emitted into the other beam. Our

case differs slightly from the traditional Raman, in that we are changing momentum states

rather then internal states, but that is a semantic distinction. If the beams are far detuned

from the intermediate state (|e, h̄k〉), it can be eliminated, and we are effectively left with

a two-level system. In the appropriate rotating frame, the Hamiltonian becomes

H =




h̄δ/2 h̄
Ω1Ω∗2
4∆

h̄
Ω∗1Ω2

4∆ 4 h̄2k2

2m − h̄δ/2


 (3.14)

where Ω1,2 is the Rabi frequency for beams 1 and 2, and ∆ ∼ δ1 ∼ δ2 is the single photon

detuning. This looks just like the Hamiltonian from Equation 3.3, where Ω(2) ≡ Ω1Ω∗2
2∆ is the

two photon Rabi frequency, and the effective detuning is

δeff ≡ δ − 4
h̄2k2

2m
(3.15)

This effective detuning reflects conservation of energy: the difference between the energies

of the photon absorbed and emitted accounts for the change in the atom’s kinetic energy.

3.3.2 Bragg Diffraction in the Two Photon picture

We can perform a coherent population transfer between two momentum states [72] by

abruptly turning on the two coupling beams. This process is known as Bragg diffraction, in

analogy with the scattering of x-rays off of crystals (upon which we will elaborate later in

this Chapter). It is a resonant process which can achieve complete transfer when δeff = 0.

This is known as the Bragg condition

h̄(ω1 − ω2) =
q2

2m
+ ~v · ~q (3.16)

which we have generalized2 for beams of arbitrary pointing ~k1,2 which impart a momentum

~q = h̄(~k1 − ~k2), as well as an initial atomic velocity ~v. Of course, one can always find

a reference frame in which the atom is initially at rest, as in Figure 3-2a. Rather than

representing kinetic energy, the ~v · ~q term in Equation 3.16 becomes the Doppler shift
2For continuity, we will continue to treat the case of counter-propagating beams (|~q| = 2h̄k)
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|e〉

4 h̄2k2

2m

h̄ω0

|e, p = h̄k〉

|g, p = 0〉

|g, p = 2h̄k〉

c) d)2h̄k0 2h̄k0

Figure 3-2: The two photon process. a) Energy vs momentum for the excited and ground
states of an atom. A two photon process transfers momentum 2h̄k to the atom. This process
conserves energy when the two photon detuning is equal to the kinetic energy imparted to
the atom. Diagram is not to scale (h̄ω0 À 4 h̄2k2

2m ). b) The same process drawn as a lambda
system, showing the equivalence to a Raman transfer. c) Time of flight image of a Na BEC
for which a small fraction of the population has been transferred. d) A BEC which has
been divided equally into two momentum states by a π/2 Bragg pulse. A scattering halo
results from collisions between momentum states as they spatially separate.
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incurred in going to that frame.

The population of the two momentum states evolve as a Rabi oscillation, and can

therefore be controlled by the duration of the Bragg pulse τ . We typically refer to the pulse

duration in terms of its product with the Rabi frequency Ω(2) τ . A π-pulse (Ω(2) τ = π),

for example, transfers the population completely. We emphasize that this is a coherent

process. This language is also appealing in the Bloch sphere picture, where a π pulse

corresponds to a rotation of the Bloch vector by 180◦. A π/2 pulse puts each atom into

an equal superposition of both momentum states. It is not until we make a measurement,

such as taking the absorption image shown in Figure 3-2d, that this becomes a statistical

distribution.

Two-Photon Linewidth

In our treatment of the two level atom of Chapter 3.1.2, we were able to ignore kinetic

energy imparted to the atom from the photon. This recoil energy

Er =
h̄2 k2

2m
(3.17)

is typically on the order of 10 khz (depending on the photon wavelength and atomic mass,

of course). The natural linewidth γ0 of an atomic transition is typically ∼10 MHz (see

Table 3.1), making the recoil rather insignificant. The linewidth of a two photon transition,

however, is smaller by a factor of ∼ Ω(2)/∆, since the occupation of the excited state is

minuscule. Resolution on a scale small compared to the recoil energy is attainable. While

these parameters can vary greatly, for one experiment [1], values of

Ω(2)/2π ∼ khz

∆/2π ∼ thz (δλ ∼ 1nm)

were typical. This high resolution allows, for example, the detection of small shifts in the

narrow velocity distribution of a BEC, which we will discuss further in Section 3.4.
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a) b)

c)
−4h̄k −2h̄k 0 2h̄k 4h̄k

0 2h̄k 4h̄k0 2h̄k

∆E

Figure 3-3: Kapitza-Dirac scattering. a) The two-photon Bragg process, which transfers
a quantity q = 2h̄k of momentum to an atom can only conserve energy for a particular
velocity class. This is the Bragg condition given by Equation 3.16. The finite duration ∆t
of the Bragg pulse implies an energy uncertainty ∆E in the two-photon process, through the
Heisenberg relation. This allows a spread of initial velocities to be out-coupled. b) Higher
order processes, such as this four-photon process, are possible. Because the dispersion
relation is quadratic, the Bragg condition for a four-photon process is met for a different
detuning (ω1 − ω2) than that for a two-photon process. c) An absorption image of a
BEC in expansion, which has been subjected to a Kapitza-Dirac pulse. For short enough
pulse duration, the energy uncertainty can cover multiple Bragg processes. Multiple s-wave
collision halos are visible.
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Energy Uncertainty

The resolution of the Bragg process is effected by the finite duration of the Bragg pulse,

through the energy time uncertainty relation. In other words, a Bragg pulse contains a

spread of Fourier components. This has some obvious implications. The (single particle)

dispersion relation is quadratic, therefore the Bragg condition (Equation 3.16) is satisfied

for only one particular velocity class. This effect can be exploited as a way of measuring

the velocity distribution of an atomic sample spectroscopically. Even a BEC has a velocity

spread, due to its finite size, which can be resolved [107]. As Figure 3-3 illustrates, a shorter

pulse with greater energy uncertainty can accommodate a larger spread of velocities.

Higher Order Processes

The same approach we took in eliminating the intermediate state of a two photon process

can be built upon to describe higher order processes. Figure 3-3b shows, for example, a

four photon process. The dynamics would evolve at a four photon Rabi frequency, and the

Bragg condition must reflect the kinetic energy of transferring a momentum of 4h̄k.

3.3.3 Kapitza-Dirac Scattering

For very short Bragg pulses, the energy uncertainty can become large enough that the

Bragg condition can be satisfied for multiple Bragg processes. This process is known as

Kapitza-Dirac scattering, and takes place for

τ ¿ h̄

Er
(3.18)

Figure 3-3c illustrates the effect of a Kapitza-Dirac pulse on a BEC. For two beams of the

same frequency (δ = 0), a condensate initially at rest is distributed symmetrically amongst

momentum states of integer values of 2h̄k.

3.3.4 A light grating

In this section we offer a complimentary picture of the interaction of an atom with two laser

fields. Two intersecting laser beams will interfere to create a spatially modulated intensity

profile, as illustrated in Figure 3-4. This interference pattern can be treated as a spatially
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~k1
~k2

~κ Figure 3-4: Laser beams with
wavevectors ~k1 and ~k2 intersect
to produce an interference pattern
with wavevector ~κ = ~k1 − ~k2.

varying AC Stark shift

V (~r) = 4V0 cos2 1
2 (~κ · ~r − δt) (3.19)

where ~κ = ~k1−~k2, and V0 is the AC Stark shift produced by a single beam (Equation 3.6).

A frequency difference δ between the beams sets this lattice in motion. For the time being,

we assume that the two beams have the same intensity, and neglect the spatial profile of

that intensity. The spatial period of the lattice is

λlatt =
λlaser

2 sin θ/2
(3.20)

where θ is the angle between the lattice beams.

Diffraction from a grating

Bragg diffraction gets its name from the early experiments which involved scattering x-rays

off of crystals [12]. The diffraction of light from a periodic structure is ubiquitous in our

everyday lives (assuming you are in a laser lab everyday). One need not look any further

than the gratings used to stabilize our diode lasers and the acousto-optic modulators we

use to frequency shift our light.

We are of course interested in the Bragg diffraction of matter-waves. This, also, was

first accomplished quite some time ago, with electrons diffracted off of a crystal of nickel

[30]. A little closer to home, Dave Pritchard’s lab diffracted a thermal beam of Na atoms

off of a periodic optical potential [79].

The principle of diffraction is that a wave which is scattered off multiple sources, like

the crystal lattice in Figure 3-5, will interfere constructively in some directions and decon-
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d

θ1 θ2

Figure 3-5: X-ray diffraction. The angle of diffraction of a wave off a lattice of point
scatterers is given by the Bragg condition, Equation 3.21. This describes the condition for
constructive interference of the various scattered components.

structively in others. The Bragg condition is satisfied when different path lengths differ

by some integer number of wavelengths. For a crystal of lattice spacing d, interference is

constructive when the angles θ1,2 of incident and outgoing x-rays satisfy

d (sin θ1 + sin θ2) = n λ (3.21)

or, in other words, the extra phase accrued by the longer path is an integer multiple of 2π.

Bragg diffraction : Atoms scattering off a light grating

Our “atomic physics version” of Bragg diffraction can equally be described in this grating

picture. The optical potential of a 1-D lattice acts as set of scattering planes, periodically

spaced at d = h/q. An atom with incident velocity ~v has a de Broglie wavelength λ = h/mv.

We can rewrite Equation 3.21 as

2 d sin θ = λ

−2
h

q

~v · ~q
vq

=
h

mv
(3.22)

−~v · ~q =
q2

2m

This is equivalent to the Bragg condition which we derived on energetic grounds in Section

3.3.2.

42



3.3.5 Band Structure

An obvious approach to understanding the physics of atoms in a periodic potential would

be to solve for the eigenstates of the system, in which the Hamiltonian includes the lattice

potential. Fortunately the field of condensed matter physics has done most of the work for

us. The eigenstates are called Bloch states3

The lattice potential is invariant under a translation of the lattice spacing d, i.e.,

Vlatt(z) = Vlatt(z + d). Bloch’s Theorem tells us that this implies that the wavefunction,

too, has translational symmetry, up to a phase. The Bloch wave functions are

ψQn(z) = eiQz uQn(z) (3.23)

where uQn(z) is some function with the periodicity of the lattice. n is the band index, and

Q is the quasimomentum4.

The eigenstates are not planes waves Φp of a certain momentum p, as they were for the

free particle case, but rather a linear combination of momentum states differing by h̄κ.

ψQn = . . . + c−1 ΦQ−h̄κ + c0 ΦQ + c1 ΦQ+h̄κ + c2 ΦQ+2h̄κ + . . . (3.24)

where the c coefficients depend on n, Q and the lattice strength V0. The quasimomentum

Q is essentially momentum modulo h̄κ, and we usually define Q to be in the range −h̄κ/2

to h̄κ/2, known as the first Brillouin zone.

In Figure 3-6 we shown the energies of the Bloch states for different lattice depth V0.

In the limit of zero lattice, we recover the quadratic free particle dispersion relation. The

lattice has the effect of opening up gaps in the energy spectrum. For a very strong lattice,

the wave functions become localized on the lattice sites, which look like individual harmonic

oscillators. The bands flatten out, and the gap energy approaches the oscillator energy h̄ω.

3.3.6 Weak Lattice : Effective mass and interaction

Much of the physics of a shallow lattice (V0 ≤ 1Er) can be captured in two phenomenological

parameters. Or one, as we can see from Figure 3-6, the lattice changes the dispersion
3named after Felix Bloch, not Immanuel Bloch.
4Most literature uses “q” as the quasimomentum. I will use “Q” to avoid confusion with the previous

use of q as defined in Section 3.3.2
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Figure 3-6: Band structure. A lattice potential modifies the free particle dispersion relation.
The translational symmetry allows us to describe a state by its quasi-momentum Q and
band index n. In the limit of large lattice depth, the bands flatten and become the harmonic
oscillator energies for atoms on a single lattice site.

relation. For small changes, we can account for this by using an effective mass

Meff = h̄2

(
∂2

∂Q2
E(Q)

)−1

(3.25)

= M


1− 16

√
2

√
32 + s2 − 4

√
2√

32 + s2
(√

32 + s2 + 4
√

2
)




where we have expressed the lattice depth s in units of the recoil energy Er.

The second effect of the lattice is to modify the the density, and therefore the mean-field

energy. We can account for this with an effective interaction.

Ueff =
4πh̄2a

m

∫

V
d~x |ψ0(~x)|4 (3.26)

=
4πh̄2a

m

[
1 +

2α2 (4 + α2)
(1 + 2α2)2

]D

(3.27)

where D is the dimension of the lattice, and

α ≡ s

4 (4 + s2/8)
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3.3.7 Bragg Scattering: Bloch State Interpretation

In Section 3.3.2 we introduced Bragg diffraction as the process of imparting momentum to

atoms by redistributing photons between two laser beams. We can also describe this process

in the context of Bloch states. In the rest frame of the lattice (δ = 0), the Bragg process is

resonant for atoms moving with velocity v = h̄κ
2m (Equation 3.16). It is no coincidence that

this happens to be the Brillioun zone boundary. This (real) momentum state is an equal

superposition of two eigenstates of the system

∣∣∣p = h̄κ
2

〉
=

∣∣∣Q = h̄κ
2 ; n = 0

〉
+

∣∣∣Q = h̄κ
2 ; n = 1

〉
(3.28)

where n is the band index. Turning on the lattice projects the state
∣∣∣p = h̄κ

2

〉
onto this

basis, and the phases of the different components evolve at their eigenfrequencies. When

the relative phase becomes π, the population has been completely transferred into the

momentum state

∣∣∣p = − h̄κ
2

〉
=

∣∣∣Q = h̄κ
2 ; n = 0

〉
−

∣∣∣Q = h̄κ
2 ; n = 1

〉
(3.29)

We know that the band gap is 2V0, so the probability of this transfer evolves as

P = sin2 V0 τ

h̄
(3.30)

where it should be no surprise that the frequency of this oscillation is the two photon Rabi

frequency
V0

h̄
=

Ω2

4∆
= 1

2 Ω(2) (3.31)

3.3.8 Kapitza Dirac : a phase imprint

It is straightforward to to extend this description to include Kapitza-Dirac scattering, which

we discussed in Section 3.3.3. The abrupt turn on of the Kapitza-Dirac beams projects onto

the Bloch basis. The zero momentum state Φ0 becomes a superposition of Q = 0 states in

even bands (n = 0, 2, 4 . . .) due to symmetry. The Bloch states accrue a phase, and are then

projected back onto the (real) momentum basis when the pulse ends, leaving the atoms

distributed over the discrete momentum states.
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Figure 3-7: Bragg diffraction at the Brillouin
zone boundary. The resonance condition for first
order Bragg diffraction is satisfied for an atom
with momentum h̄κ

2 , with respect to the lat-
tice, corresponding to the zone boundary. The
abrupt turn on of the lattice projects this plane
wave state onto the eigenbasis of Bloch states, as
an equal superposition of the lowest two bands.
The two eigenstates (filled and open circles) ac-
crue a relative phase φ = 2 V0 t/h̄, corresponding
to the band gap. A relative phase of π corre-
sponds to the real momentum state - h̄κ

2 .

ψ(t) =
1√
2

(
|•〉+ |◦〉 eiφ(t)

)

0 h̄κ/2

E

2 V0

In fact, its quite easy to solve for what this distribution will be. Pulsing on the lattice

for a very short time can be treated as imprinting a phase on the wavefunction

exp [−i 2V0 τ − i 2V0 τ cosκz] (3.32)

through the AC Stark shift. This sinusoidal phase can be written as a projection operator

over discrete momentum states

eiθ cos κz =
∞∑

n=−∞
Jn(θ) e−inκz

︸ ︷︷ ︸
|p+nh̄κ〉〈p|

(3.33)

where the coefficients Jn are Bessel functions.

As for the validity of this approach : in order to treat the application of the lattice

as a phase imprint, we need to make sure all motion during the length of the pulse τ is

negligible compared to the lattice spacing d = h/q. Different momentum components move

with velocity v ∼ q/m, which means we want

v τ ¿ d (3.34)

τ ¿ hm

q2
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Figure 3-8: Bragg spectroscopy of atoms and molecules. The spectra for a pure atomic
sample a) just above and b) below a magnetic Feshbach resonance at 907 G. c) Spectrum
of a pure molecular sample just below the Feshbach resonance. Diatomic molecules recoil
with half the velocity of single atoms, due to their mass. Figure from [1].

which is equivalent to Equation 3.18.

3.4 Bragg spectroscopy

The need to conserve both energy and momentum makes Bragg diffraction a velocity se-

lective process, as is evident in Equation 3.16. This opens the possibility for its use as a

spectroscopic tool which can reveal velocity distribution of an atomic sample. The process

involves counting the number of outcoupled atoms as a function of the detuning δν between

the two Bragg beams. For a sample at rest, the signal (see, for example, Figure 3-8) is a

peak at δν = 4Er/h, where the Bragg condition is satisfied. The width of the peak reflects

the velocity distribution, but may be broadened and shifted by a number of mechanisms.

The finite duration of the Bragg pulse introduces an energy uncertainty in the photons ab-

sorbed, as discussed in Section 3.3.2, and limits our resolution. The mean-field interaction
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energy results in a shift of the resonance for a BEC. Distinguishable atoms experience twice

the mean-field interaction as do atoms in a condensate. This is reflected in the shift of the

Bogloliubov excitation spectrum (Equation 2.5), in the free particle limit. The mean-field

energy, however, is density dependent. This mean-field shift, then, must be integrated over

the density profile, resulting in an inhomogeneous mean-field broadening.

Bragg spectroscopy was first implemented with a BEC in Ref [107], and a more thorough

accounting of the shifts and broadening can be found in Jamil Abo-Shaeer’s thesis [2]. We

used Bragg spectroscopy to study the velocity distribution of a cold sample of 23Na2 dimers

(See Appendix B). Starting with an atomic BEC, we converted atom pairs into diatomic

molecules by sweeping across a Feshbach resonance, as detailed in Section 2.3.1. The lifetime

of the molecules was too short to allow for thermalization, and could not necessarily be

considered a BEC. However, we were able to show that the velocity distribution of the

molecular cloud was consistent with a “temperature” that was well below the critical BEC

temperature.

3.5 Dynamical instability

In the previous sections we have discussed Bragg scattering in the context of single particles

and photons. Such a lattice can also influence two-body interactions, in a manner which

can redistribute momentum and result in dissipation. Ordinarily, two atoms with the same

momentum h̄k can not scatter off each other into different momentum states, say k + δk

and k − δk. There is no way to conserve both momentum and energy. However, an optical

lattice can change the dispersion relation so as to make such a process possible (see Figure

3-9). This process is analogous to the optical parametric generation of photons [16], in

which the lattice provides for phase matching.

The energy spectrum of such excitations can be calculated for a BEC moving in an

optical lattice by considering small perturbations to the Gross Pitaevski equation [112, 78,

113]. At a certain velocity, excitations with wavevector ±δk will have a complex energy and

grow exponentially. Dynamical, or modulational, instabilities do not exist below a velocity

of 0.5 qB/m, where qB = h̄κ/2 is the Bragg momentum corresponding to the edge of the

Brillouin zone. Above this threshold, however, these modes can be quite destructive [32].

In the photon picture, one can consider the two scattering atoms as sharing a Bragg
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Figure 3-9: Dynamical instability. The scattering of two atoms with momentum k into states
with momentum k± δk does not conserve energy in the free particle dispersion relation. A
dynamical instability occurs when an optical lattice modifies the dispersion relation so as
to allow such a process.

excitation. At some momentum h̄k0, a single atom can not satisfy the Bragg condition.

Although, together, two atoms can absorb the momentum kick −h̄κ. The two recoiling

atoms scatter off each other with momentum ±h̄(κ − δk), in order to conserve energy. In

this description, both scattered states appear to the left of the initial state k0. This is

equivalent to our previous understanding, in which the state k0 + δk lies across the zone

boundary, and can be mapped back to the first Brillouin zone (see Figure 3-9).
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Chapter 4

Experimental Apparatus

“Another flaw in the human character is that everybody wants to build

and nobody wants to do maintenance.”

- Kurt Vonnegut, Hocus Pocus

When I first joined the lab, I was fairly intimidated by apparent complexity of the experi-

ment: the jungle of BNC cables, racks of homemade electronics boxes and a forest of optics

on the laser table. Over time, I grew not only to understand this mess, but to contribute to

it ... appreciably. In the summer of 2004, it was decided that the lab would change course,

directing our focus upon fermions in an optical lattice. Shortly after committing to this new

endeavor, at the ICAP poster session, we learned that the Zurich group [68] already had a

degenerate Fermi gas in a 3-D lattice. Nevertheless, we felt we had a number of advantages.

In particular our fermion of choice, 6Li rather than 40K, was much longer lived. Indeed, by

May of 2006, we were the first (and still the only) group to have a superfluid Fermi gas in

a 3D lattice. The question, of course, remains what to do with it.

This Chapter is intended to give an overview of the machine on which I have worked

for the past five years. It is far from a comprehensive owner’s manual. The Ph.D. thesis

of Dallin Durfee [37] chronicles the original building of this machine, as a 23Na experiment.

The retrofitting of the oven as a double species model was done under the guidance and

according to the precise specifications of Claudiu Stan [105], the many details of which can

be found in his thesis. A number of important modifications to the machine are recorded

in the thesis Jit Kee Chin [23], as well. To this extensive body of work, I will add a largely

anecdotal account of things to do and things not to do.
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4.1 Overview

While there are some variations on the theme, the preparation of a quantum degenerate

atomic gas has become fairly standardized. Our experiment begins with a sample of alkali

metal, heated in an oven, to produce a gas. A thermal atomic beam escapes through a nozel

and traverses the Zeeman slower. Here the atoms are slowed by a counter propagating laser

beam which imparts momentum as photons are scattered. As the atoms slow down and fall

out of resonance with the light, due to the doppler shift, a spatially varying magnetic field

compensates by shifting the energy levels. The slowed beam makes its way into the main

vacuum chamber, where the background gas pressure is ∼ 10−11 Torr. Here, a magnetic

quadrupole potential and six intersecting laser beams create a Magneto Optical Trap (MOT)

which provides a confining as well as a viscous force.

After collecting atoms in a MOT, the light is shut off, and a Ioffe-Pritchard magnetic

trap confines weak field seeking atoms at a magnetic minimum. The sample is cooled further

by forced evaporation, in which a radio-frequency (r.f.) field flips the spin of the hottest

atoms, expelling them from the trap. The sample rethermalizes, and the r.f. “knife” is

brought to a lower temperature over thirty seconds. For 23Na atoms, this results in a BEC.

The preparation of a 6Li gas involves a few more steps.

Identical fermions can not be evaporated, as the Pauli exclusion principle prohibits the

thermalizing collisions. As a first stage we use sodium as a refrigerant to cool the lithium

sympathetically. The cold lithium is then transferred to an optical trap, and the magnetic

field is ramped to 820 gauss. At this field we take advantage of a Feshbach resonance

between the lowest two hyperfine states, which provides strong interactions and a coupling

to a weakly bound molecular state. We make a 50/50 spin mixture of these two spin states

and induce evaporation by lowering the optical trapping potential. The atoms pair up and

form a BEC of molecules.

In the following Sections we will discuss the components of the experiment in greater

detail.
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Figure 4-1: The sodium laser table. Letters denote the positions of power measurements as
listed in Table 4.1.
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4.2 The Sodium laser system

4.2.1 The 899 dye laser

We use a Coherent model 899 dye laser to generate light at 589.160 nm (D2 line). Pumped

by 9.5 watts of 532 nm green light from a Spectra Physics Millenia solid state laser, we

get 1.6 watts of yellow light. The gain medium is Rhodamine 590G dye, dissolved in

ethylene glycol. The dye is prepared in ∼ 1.4 liter batches, which typically last 500 working

hours. The Rhodamine dye, dissolved in methanol, is added to the ethylene glycol until

the absorption of pump light by the dye jet is 90% (as measured at full power). The dye,

which is pumped through a high pressure nozzle at 12 bar, must be cooled to 6◦ C. This

maintains a high viscosity which results in the proper profile of the dye jet. The dye jet

should be flat at the center. Streaks in the jet may indicate a clogged nozzle, which can be

disassembled and cleaned with methanol in the ultrasound bath. Great care must be taken

not to nick the edges which form the nozzle opening.

It is not uncommon to find the laser power to have dropped precipitously since the

last use. Since the laser is a finely tuned machine, it pays to be prudent in your attempts

to get the power back, as not to cause greater harm. Adjustments to the birefringent

filter and the pump mirror alignment are the first course of action, and performed several

times a day. Additional fiddling should not be necessary more than once a month. Before

turning too many knobs, inspect the cavity mirrors for any obvious dust particles. Tweak

the output coupler next. This will require that the laser table be realigned. A full cavity

tune up, if necessary, should always be followed with a realignment of the reference cavity.

There are some less obvious surfaces which can accumulate dust, such as the underside of

the birefringent filter, and the fragile polarizer in the optical diode assembly. Wiping the

mirrors with lens paper and methanol is a necessary part of maintenance, but should be

kept to a minimum. As a Coherent tech once told me “the two worst things you can do to

a laser cavity are, one, to get it dirty and, two, to clean it.”

A less frequent source of trouble is the Millenia pump laser. A perfect Gaussian mode

is essential to the efficient pumping of dye jet. The laser can begin to fail in such a way as

to put out a slightly distorted mode, usually at high power. I have seen two different units

exhibit this behavior. The signature of this failure mode is most evident when ramping

the laser power up from zero. The output of the dye laser will climb with increasing pump
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Measurement Location Power

A Total Power 28 µA 1.55 W

B 855 mhz #1 1.75 µA

C 855mhz #2 0.9 µA

D Repump TTL 0.7 µA 33 mW

E Slower AOM 3.75 µA

F Slower TTL 3 µA

G Slower Fiber 600 mV† 95 mW

H Trap TTL 9 µA

I MOT Fiber 500 mV‡ 150 mW

J Optical Pump 1.2 V 6 mW

Table 4.1: Typical laser powers. Measurement positions are
indicated in Figure 4.2. Measurements in µA are taken with
the blue Hickok power meter. Measurements in mV are the
monitor readings of photodiodes at the fiber output. Actual
powers in mW are measured with the Coherent optical power
meter.

† The slower is run at ∼ 350 mV.
‡ The MOT is stabilized to 425 mV.

power, and then drop abruptly at some threshold. It is possible to run the Millenia just

below this threshold, if it results in sufficient power, but one needs to approach this value

from below, as there is hysteresis in the system. Obviously the best solution is to put in a

service call to Spectra.

There are two dirty tricks which can temporarily boost power, but can not substitute for

a proper alignment. One is to add some dye concentrate (Rhodamine in methanol). This

only works if the current batch is getting old, and can quickly backfire if one adds too much.

A second, and cheaper, trick is to tighten the focus of the pump laser. Over-tightening the

pump focus has two drawbacks. The output mode of the laser can change, taking on a “D”

shape, resulting in poorer fiber coupling. It will also make the laser less stable, falling out

of lock much more frequently. When used in a pinch, however, these techniques can keep

things going long enough to get some data.

4.2.2 The laser table

For the most part, the laser table today remains exactly as it was when I first arrived.

An absorption cell is used for the locking, based on saturation-absorption spectroscopy. At
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times, the lock signal may flicker between the familiar trace and sharp spikey noise. This just

means that the thin etalon needs to be adjusted, as the gain profile is not centered on the

desired mode. We shift the light by a number of different frequencies using acousto-optical

modulators. The basic principle is that an actuator, driven at some radio frequency, sends

acoustic waves down a crystal. This periodic density modulation acts like a moving grating,

which diffracts the light into multiple orders, which are conveniently spatially separated.

As illustrated in Figure 4.2, we will pick off light from the main beam for a particular

purpose using an AOM. The zero order usually continues on to serve a different function.

It is noteworthy that the AOMs tend to pick out the best part of the mode, diffracting a

nearly perfect gaussian beam into the ±1 order, and leaving something less than ideal in

the zero order. As a consequence, redistributing power between paths is not necessarily a

conservative process, when fibers are involved. On our table, light from the MOT path has

syphoned off for the Slower and Repump paths, and the fiber coupling is optimized for this

depleted mode. If we were to take so many milliwatts out of the Slower by turning down

the Slower AOM, a disappointing fraction of that would end up coupled through the MOT

fiber.

Of all the optical components in the lab, one stands out as being the most valuable:

the 855 mhz IntraAction AOM. We purchase our AOMs from IntraAction Corp., whenever

possible, since their products have the largest aperture size. Unfortunately, high frequency

AOMs can be challenging, and they claim not to be able to reproduce this model anymore.

And it would not be without precedent for it to fail. We used to have two in series, until

one died. To replace it with with the Brimrose would require that the beam be focused

down to accommodate the smaller aperture, thus affecting everything downstream, which

is to say everything. Unfortunately, a more tightly focused beam, at 2 watts (on a good

day) would most likely exceed the damage threshold of the crystal.

4.2.3 The Sodium MOT

For Sodium, we use a dark spot magneto-optical trap [67]. The six intersecting MOT beams

have σ+ polarization, and are tuned 22 mhz below the |F = 2〉 → |F ′ = 3〉 transition. A

single “repump” beam, tuned to the |F = 1〉 → |F ′ = 2〉 transition, pumps atoms out of the

F=1 state, which is dark to the MOT light. Only the outer edge of the MOT is illuminated

by the repump light. This is accomplished by imaging a dark spot, a blob of black nail
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polish on glass, onto the MOT. The glass cell is what most differentiates the New Lab, from

the other three BEC machines on the hallway. It affords a superior optical access which is

most beneficial when the MOT needs realignment. Our well tuned Na MOT has produced

the largest BECs in the world (120 million atoms).
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Measurement Location Power

A Total Power 40 µA 400 mW

B Slower AOM 12 µA 110 mW

C Repump 228 15 µA 110 mW

D Repump TTL 10.5 µA 80 mW

E MOT TTL 11.5 µA 80 mW

F Slower TTL 10 µA 75 mW

G Slower Fiber 1.08 V 37 mW

H MOT Fiber 1.65 V 55 mW

I Repump Fiber 1.48 V 55 mW

Table 4.2: Typical laser powers. Measurement positions
are indicated in Figure 4.3. Measurements in µA are taken
with the blue Hickok power meter. Measurements in V are
the monitor readings of photodiodes at the fiber output.
Actual powers in mW are measured with the Coherent
optical power meter.

4.3 The Lithium laser system

We use a Toptica TA100 tapered amplifier laser system to generate the necessary light for

manipulating 6Li. Many of the details of this system may be found in Ref. [101]. Prior

to obtaining this relatively care free laser, we were able to work with a Coherent 699 dye

laser. While the power was more than sufficient, this laser required a significant amount

of maintenance. In Figure 4.3, we show the arrangement used for obtaining the numerous

different beams required for the experiment.
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4.4 The Infrared laser system

We use a 20 watt IPG Photonics fiber laser to generate the light for optical trapping and

lattices. Figure 4-3 offers a schematic of the numerous IR beams which are used in the

experiment. The laser light is split up first on an optical table, the arrangement of which

details their chronology, before being sent to the experiment via optical fiber. In this Section

we describe how different beams are implemented.

Working with multiple beams

A single beam ODT will naturally produce a long cylindrical trap, since the Rayleigh range

is much longer than the beam waist. This geometry is not always desirable. We can,

however, use two intersecting beams to produce a cross-ODT, which has a more spherical

shape. In this case, the trap frequencies produced by the two beams add in quadrature.

This is of course saying nothing more profound than that we add the potentials of the two

beams.

V (x) =
1
2

mω2
1 x2 +

1
2

mω2
2 x2 =

1
2

m (ω2
1 + ω2

2) x2 (4.1)

If this is the desired effect, we need to make certain that the two beams do not interfere

with each other, resulting in a spatial modulation of the trap. In principle, one can set

the polarizations of the two beams to be orthogonal. However, this never works perfectly,

in practice. Additional security is gained by using different frequencies. If the beams are

derived from AOMs which differ by tens on megahertz, any interference pattern will move

fast enough as to be time averaged away.

This, of course, assumes that your laser is single frequency. If it is not, you may wind

up with frequency components that differ just so as to satisfy a Bragg resonance (which

we discuss in the following Chapter). This was found to be the case when we used the

Versadisk laser by ELS, and resulted in significant heating even when the two polarizations

were made to be as orthogonal as possible.

Sometimes, even a single beam can be troublesome, as Figure 4-4 illustrates. There was a

time when we noticed that a Na BEC released from our single beam ODT exhibited discrete

momentum components, characteristic of having been released from a lattice potential.

Except we weren’t applying a lattice. Or so we thought. The ODT was aligned along

our imaging axis, which used a dichroic mirror. While visible light was reflected onto the
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Figure 4-3: Infrared laser system. Beam lines are shown with respect to the glass cell
(box). a) The Horizontal and Tight beams are overlapped on a PBS cube before being
directed onto the imaging path by a SWP dichroic mirror (not shown). b) The Left and
Right lattice beams are oriented in the horizontal plane at 45◦ to the slowing axis. c) The
Vertical beam is overlapped onto the MOT path using a SWP dichroic mirror. The Top
lattice beam makes an angle of 20◦ with the horizontal plane. d) Beam waists (e−2 radius).
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Figure 4-4: An accidental lattice. An optical dipole trap (ODT) is aligned on the imaging
axis. A long wave pass dichroic transmits the ODT beam, which impinges on a beamblock.
When the beamblock is located at the focus of the imaging system, much of the scattered
light is imaged back onto the atomic sample, interfering with the incident ODT beam to
produce a lattice.

camera, infrared was transmitted, and so a beam block was positioned in order to prevent

that Watt of IR from wandering aimlessly. This beamblock had been positioned, without

much thought, very close to the focus of the imaging system. So, while the light was being

scattered uniformly, much of it was simply re-imaged back onto the condensate, interfering

with the incident ODT.

Once the cause of this accidental lattice was identified, we simply moved the beamblock,

alleviating the problem.

4.4.1 The different infrared potentials

The Tight Trap

After sympathetically cooling our Li sample, we transfer to an optical trap in order to

work at high magnetic fields. At this stage, we need a large volume trap, so a single beam

trap is preferable to a cross ODT. Other experiments [121] use a hybrid trap, in which

the IR provides radial confinement, whereas the axial trapping is done magnetically. This

configuration requires some finesse, as the magnetic moment is flipped when the atoms are

transferred from the |F = 3/2〉 to the |F = 1/2〉 state. Instead, we opted to use tightly fo-

cused beam which has a Rayleigh range sufficiently short so as to provide axial confinement.
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The Tight beam is focuses up to 6 watts of power down to 20 µm. It is overlapped with

the Horizontal IR beam with a polarizing cube, and then onto the imaging path with a

short wave pass (SWP) dichroic mirror (not pictured). This beam uses enough of the total

laser power so as to limit other applications. For that reason, we are able to dynamically

allocate power on the laser table. A λ/2-plate controls the distribution of power between

the Tight beam and other branches, splitting the two paths on a cube. The λ/2-plate is

mounted on a rotation mount which is controlled by a servo motor. During the relatively

slow (1 s) evaporation stage we rotate the plate, putting the light to work elsewhere.

The cross ODT

We form a cross optical dipole trap at the intersection of the Horizontal and Vertical beams,

which have beam waists of 55 µm and 60 µm, respectively. This provides a relatively

spherical trap for our lattice work. This is preferable from primarily a technical standpoint.

An elongated trap presents too large of a surface area to the lattice beams. The beams are

detuned by 60 mhz with respect to each other, to prevent interference effects.

The optical lattice

The optical lattice featured in Ref [24], which we discuss in Chapter 6, is comprised of three

different beams, retro-reflected upon themselves, and detuned by tens of mhz with respect

to each other. The Left and Right beams are in the horizontal plane, intersecting the slower

axis at 45◦. The Top beam makes an angle of 20◦ with the horizontal plane, resulting in a

lattice which is sheared rather than square.

The moving lattice

In the critical velocity experiment (Chapter 7) we use a moving 1D lattice to probe the Li

sample, in one of two different configurations (see Figure 7-3). A moving lattice usually

involves two different beams1. A frequency difference between the beams δν sets the lattice

in motion with velocity v = δν λL. The beams, which intersect at 90◦, produce a lattice

spacing of λL = 0.75µm, corresponding to a recoil energy Er = h×7.3 khz for a Li pair, and

twice that for a single atom (see Equation 3.17). The frequencies of the beams are shifted
1Alternatively, a DC EOM can be placed in the retro-reflecting path of a single beam. The lattice is then

translated by changing the voltage across the nonlinear crystal.
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by AOMs on the laser table. For such small shifts (∼ 10 khz), the AOM deflection is not

significantly altered, and the coupling into the fibers is preserved. This velocity can be be

computer controlled for experimental convenience. An Agilent function generator provides

the signal to the AOM driver, and can be GPIB controlled using a fine piece of software

written by Widagdo Setiawan [101].

The first lattice geometry we use is similar to that used in the 3D lattice experiment [24],

in which the lattice is relatively homogenous over the size of the trapped cloud. The sample

is held in a cross ODT, formed by the Horizontal and Vertical beams. The 1D lattice is

formed by the interference of the Left and Right lattice beams (the retro-reflections are

blocked).

The second configuration we use aims to localize the lattice within the trapped cloud.

Here we use the Left and Right lattice beams as a cross ODT, which has a larger volume

then that formed by the Horizontal and Vertical beams. The lattice is created at the

intersection of the Vertical and Tight beams.

4.4.2 ODT Calibration

While the trap frequencies are simple to calculate, we never take such calculations at face

value. The most reliable method of calibrating our trap is to watch a dipole oscillation.

A small pulse of current through one of the magnetic coils will kick a condensate, and we

can measure the oscillation frequency by taking shots at successive hold times. For our two

species experiment, it is often easier to characterize the trap with a 23Na condensate, and

scale the trap frequencies for 6Li. The scaling goes as the square root of the polarizability

over the mass, and for 1064 nm light is

ωLi

ωNa
= 2.1 (4.2)

For a shallow trap, one must be careful, as the two species experience a different gravitational

sag. Usually this gradient can be compensated by magnetic levitation.

There are some situations in which applying a magnetic kick is not possible, at least not

along all three principle axes. For example, at very high bias fields it is difficult to apply

a radial gradient, since fields would have to add in quadrature to the strong bias. In this

case, it may be best to use parametric heating. A modulation of the trap power at twice
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Figure 4-5: Band populations and energy gap. a) At a lattice depth s, the zero momentum
state is a superposition of the eigenstates with zero quasimomentum in the n = 0 and
n = 2 bands. The weightings of ψ0,0 (solid line) and ψ0,2 (dashed line) are shown (see also
Equation 4.3). b) The energy difference between the n = 0 and n = 2 bands at Q = 0 sets
the oscillation frequency of Kapitza-Dirac scattering, and can be approximated by Equation
4.4.

the trap frequency will induce resonant heating.

4.4.3 Lattice Calibration

There are a number of ways to calibrate an optical lattice [117]. On can, for example, look

for resonant heating. Modulation of the lattice depth will drive a transition between the

n = 0 and n = 2 bands at the correct frequency. Similarly, shaking the lattice back and

forth will excite transitions between the n = 0 and n = 1 bands, although this is not easily

accomplished in a simple retro-reflected configuration.

We usually calibrate our lattice using Kapitza-Dirac scattering (Section 3.3.3). Abruptly

turning on the lattice potential projects the zero momentum state Φ0 onto primarily the

lowest two even bands. The band populations as a function of lattice depth s = V0/Er are

shown in Figure 4-5a. The overlap with the second band is approximately

|〈Φ0 |ψ0,2〉|2 ≈ 0.4 s2

73− 2.86 s + s2
. (4.3)

The population of the zero and first order diffraction peaks, in time of flight, oscillate as a

function of the pulse duration at a frequency given by the energy difference between bands.
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This energy difference, shown in Figure 4-5b, is approximately

E0,2 −E0,0 ≈
√

16 +
12
25

s2 Er . (4.4)

In the limit of vanishing lattice depth we recover the free particle relation. The kinetic

energy associated with absorbing two photons is 4 Er. At low lattice depth, this curve is

fairly flat, and the Kapitza-Dirac oscillation is not a very sensitive measurement of V0. It

is best to work with a potential V0 > 10Er.
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Figure 4-6: The broad Feshbach resonance between the two lowest hyperfine states in 6Li,
as given by Equation 4.5, from [8]. A narrow resonance also exists at at 543 G, near the
528 G zero crossing, and is not resolved on this scale.

4.5 The Lithium Feshbach resonance

While not exactly a piece of equipment, the Feshbach resonance between the two lowest

hyperfine states in 6Li does provide a “knob” which we quite frequently turn. A good deal

of effort has been put into precisely characterizing this resonance [8]. Here I will simply

state the result, which we show in Figure 4-6.

a(B) = abg

(
1− ∆B

B −B0

)
(1 + α(B −B0)) (4.5)

with abg = −1405 a0, B0 = 834.15 G, ∆B = 300 G, and α = 0.040 kG−1; here a0 = 0.529177

nm is Bohrs radius.
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Figure 4-7: The Q-section antenna, built from a 75 Ω BNC cable.

4.6 The Q-section antenna

Efficient microwave evaporation is an important aspect of the preparation of a degenerate

gas. High power amplifiers are expensive. Not only is it a shame to waste power through

poor coupling, but it can be counter productive. Before we made any attempt to better

impedance match our antennas to the 50 Ωtransmission line, many antennas mysteriously

failed after a few days of use. Fortunately there is a simple way to achieve decent impedance

matching.

A full-wave rectangular loop antenna, i.e. an antenna that is one wavelength in perime-

ter, has an impedance of about 100 Ω, as a rule of thumb. If we use a section of 75 Ω

cable in between the antenna and the 50 Ω cable which runs to the amplifier, we can cancel

much of the loss. Specifically, the 75 Ω Q-section needs to be λ/4 in length (plus an integer

multiple of λ/2). The result is that the reflection off the 50 Ω to 75 Ω interface will interfere

deconstructively with that off the 75 Ω to 100 Ω interface.

We implemented this by making the antenna out of 75 Ω BNC cable (RG59). A length

of the cable is left intact for the Q-section, and the rest is stripped. The core was cut to

the appropriate length for one wavelength, which for 1.7 Ghz, is about 7 inches. The end

is then soldered to the shielding to complete the loop. As a finishing touch, the bare wire

was insulated by wrapping Teflon pipe seal tape around it.

The antenna which we have made in this fashion has worked reliably for two years,

and is many times more efficient than unmatched antennas, as measured by the minimum

microwave power required to achieve Na BEC.
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Chapter 5

Matter-wave Interference in a

Thermal Cloud

Wave particle duality is fundamental to the quantum mechanical description of matter.

Since the first observation of matter wave interference [30], matter wave interferometry

has been discussed as superior to optical interferometry, in certain applications, owing to

the accessibility of short wavelengths and long interaction times. Atom interferometers have

since emerged as the leading instrument for certain precision measurements [51, 75, 90, 50].

While a BEC exhibits a spatial coherence that is equal to its size [87, 52, 10], a trapped ther-

mal cloud can exhibit strong interference effects. This motivates a better understanding of

the coherence properties of non-condensed atoms.

This chapter supplements work reported in the following publication:

D. E. Miller, J. R. Anglin, J. R. Abo-Shaeer, K. Xu, J. K. Chin, and W.

Ketterle “High-contrast interference in a thermal cloud of atoms,”

Phys. Rev. A 71, 043615 (2005).

(Included in Appendix A) Ref [83]
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5.1 A Young’s double slit for cold atoms

In the classic Young’s double slit experiment, light is incident on a plate which has two slits

cut into it, separated by a distance d. Further down the line, the intensity of the transmitted

light exhibits fringes, resulting from the interference between the two “coherent” sources.

The fringe spacing is inversely proportional to the slit spacing d.

A similar experiment was able to clearly demonstrate the wave nature of matter [30].

Electrons passing through a double slit would impinge upon a detector, registering as an

individual spot. The accumulation of many spots, however, would add up in the form of an

interference pattern. While the measurement of each electron collapsed the wavefunction

to a single position, the ensemble average revealed a probability distribution |ψ|2 which had

fringes.

5.1.1 Matter wave interference of BEC

The first matter wave interference with BEC used a geometry similar to the Young’s double

slit experiment [6], which we illustrate schematically in Figure 5-1. A blue detuned laser

beam was used to divide a trapped BEC into two. When released from the trap, the time

of flight image revealed interference fringes.

During ballistic expansion, the wavefunction acquires a quadratic phase profile. In other

words, an atom which has traveled a distance x during an expansion time t must have had

a velocity v = x/t, and accrued a phase proportional to this kinetic energy. We can write

the wavefunction as the combination of two wave packets, separated by a distance d.

ψ±(x, t) =
√

n±(x, t) exp
{

i
m

2h̄t
(x± d/2)2

}
(5.1)

where n(x, t) is the density. The resulting matter wave interference pattern is

n(x, t) = n0(x, t)

[
1
2 + 1

2 cos

(
2π

x

λf

) ]
(5.2)

where n0(x, t) is the density envelope, and the fringe spacing is given by

λf =
h t

md
(5.3)
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0 x

d

Figure 5-1: Young’s double slit type experiment
with matter waves. A wavefunction consisting
of two wavepackets separated by a distance d re-
veals an interference pattern with fringe spacing
λf = ht/md, after a time t of ballistic expan-
sion. This reflects the different phases accrued
by the different path lengths.

5.1.2 Trapped atom interferometry

An interesting application of this geometry would be to create the analogue of Mach-Zender

interferometer with atoms. For example, we could have included a fixed phase term in Equa-

tion 5.1. Applying a phase shift to one wave packet shifts the position of the interference

fringes. A number of experiments have demonstrated ... double-well

5.2 Interference of Thermal Atoms

The interference pattern we described in Equation 5.2 is just as valid for a single atom

wavefunction as it is for the macroscopic wavefunction of a BEC. However, an ensemble

of thermal atoms will add up incoherently, reducing the fringe contrast. In addition, for

thermal atoms, the double-well potential does not in general result in the wavefunction we

desire: that is, a superposition of two spatially separated wavepackets. The thermal de

Broglie wavelength λT is usually shorter than the well separation d which can be achieved,

and one ends up with two incoherent thermal clouds. We can, however, create this wave-

function using Bragg diffraction.

5.2.1 Autocorrelation pulse sequence

In our experiment, a sample of 23Na atoms was cooled in a magnetic trap to a temperature

T above the critical Bose-Einstein condensation temperature Tc, using rf-evaporation. We

used a sequence of π/2 Bragg pulses to prepare each atom in a superposition of spatially

separated wavepackets. The details of the sequence are given in Figure 5-2. The two Bragg

beams, which intersect at ∼90◦, were large enough to be considered uniform over the size

RT of the trapped thermal cloud. In addition, the duration τ = 10µs of the Bragg pulse
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h̄krd

t = τw

t = 0

t

x

Figure 5-2: Autocorrelation pulse sequence.
The first π/2 Bragg pulse creates an equal su-
perposition of states with momentum 0 and h̄kr.
After a time τw, the two states have separated
spatially by a distance d. A second π/2 pulse
converts each wavepacket into a superposition
of the two momentum states. The result is one
pair of wave packets at rest, separated by d, and
a second pair traveling with momentum h̄kr.

was chosen to be short enough so as to couple the entire range of velocites in the thermal

cloud, as in in Figure 3-3a.

5.2.2 Interference fringe contrast

Figure 5-3a shows an absorption image of a thermal cloud which has expanded after the

pulse sequence. We fit the integrated optical density to the following function

n(x) = f(x)

[
1 + C sin

(
2π

λf
x + φ

)]
. (5.4)

to obtain a value for the fringe contrast C. The envelope function f(x) is that of two

gaussians, accounting for both the stationary and recoiling (h̄k) clouds. The contrast is

shown to be a decreasing function of cloud temperature, as shown in Figure 5-3c.

The functional form of the contrast can be easily derived. As we discussed in Section

5.1.1, a single particle wavefunction gives perfect contrast, with a fringe spacing λf = ht/md.

We can model our thermal cloud as an ensemble of gaussian wavepackets of a width given

by the thermal de Broglie wavelength1

λT =
h√

2mkB T
(5.5)

1The de Broglie wavelength is sometimes defined as λT =
√

2πh̄2

mkBT
. This choice is made so as to write

the partition function as ζ ≡ ∑
e−ε/kT = V/λT , where V is the volume, as in [96, 91]
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Figure 5-3: High contrast interference of a thermal cloud of atoms. a) Absorption image
taken after 48 ms expansion. b) The integrated optical density is fit to Equation 5.4, re-
sulting in a value for the fringe contrast C. c) Measured fringe contrast C as a function of
temperature, for fringe spacing λF = 340µm, 230µm, 170µm (circles, triangles, squares).
The theoretical contrast of Equation 5.8 (dashed lines) describes the data well at low tem-
perature.

These wavepackets are distributed over the thermal size of the cloud RT in the trap

RT =

√
kB T

mω2
(5.6)

where ω is the trap frequency along the axis we are probing. Integrating over the size of

the cloud

n(x) =
∞∫

−∞
dx0

1√
2πR2

T

e−x2
0/2R2

T 1
2 f(x− x0)

[
1 + cos 2π

λf
(x− x0)

]
(5.7)

we find the reduced fringe contrast

C = exp

(
−2π2R2

T

λ2
f

)
(5.8)

More simply stated, we loose contrast when we smear out the signal over a size equal to

the fringe spacing. In Figure 5-3c we see that this result, without any free parameters, is in

excellent agreement with the measured values of contrast, for several values of λf . At high
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temperatures , however, the data deviates from Equation 5.8. We will discuss the reason

for this in Section 5.3.

Density Matrix

The model we have suggested, gaussian wavepackets of width λT distributed across RT (as

illustrated in Figure 5-4), may appear to have been derived haphazardly. However, we note

that this is simple model is exactly what comes from a more rigorous approach. The k-space

distribution of noninteracting bosons in a harmonic trap, in the high temperature limit in

which Maxwell-Boltzmann statistics apply, is given by the single particle density matrix for

a harmonic oscillator. This may be written exactly as an ensemble of Gaussian pure states,

incoherently averaged over their position x0:

〈k′|ρ̂HO(T )|k〉 =

√
1+tanh2 h̄ω

2kBT

2π

∫
dx0 e

−Mω
2h̄

x2
0 coth h̄ω

kBT

×ei(k−k′)x0e
− h̄

2Mω
(k2+k′2) tanh h̄ω

2kBT

−→
kBTÀh̄ω

1
2π

∫
dx0 e

− x2
0

2R2
T ei(k−k′)x0e−

1
2
λ2

T (k2+k′2).

where RT =
√

kBT/Mω2 is the classical thermal size of a Maxwell-Boltzmann cloud in

a harmonic trap of frequency ω. It is therefore appropriate to regard the thermal cloud

as a collection of wave packets of gaussian width λT , distributed in space according to

Maxwell-Boltzmann statistics2.

5.2.3 Coherence length

It is also convenient to rephrase Equation 5.8 in the following way

C = exp

(
− d2

2 `2
c

)
(5.9)

where we have defined a coherence length `c as

`c =
λT

2π

size in TOF
size in trap

(5.10)

2I thank James Anglin for validating my balls and springs model.
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a) b)

λT

RT

Pulse Sequence
and

Ballistic Expansion

Figure 5-4: Reduced fringe contrast of a thermal cloud. a) The wavefunction of a single atom
subjected to the autocorrelation Bragg pulse sequence is modulated with perfect contrast
after expansion. b) The probability density of multiple thermal atoms add incoherently.
An ensemble of single atom wavefunctions, of width λT , distributed over a trap with size
RT result in a fringe contrast less than unity (Equation 5.8).
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Figure 5-5: Contrast emerges in time of flight.
The coherence length `c grows during expansion,
and eventually exceeds the initial separation d =
2 µm. Expansion time is a) 14 ms, b) 20 ms, and
c) 25.
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That is, the coherence length of an atom in the trap is λT , and contrast is lost when the

separation d is larger than `c. However, during expansion, the local spread of momentum

states decreases, and `c grows in proportion to the size of the cloud ht/mλT .

The implication is that we can always see interference from a thermal cloud, provided

we give it enough expansion. In Figure 5-5 we show that interference which is imperceptible

shortly after the cloud is released emerges in longer time of flight.

5.2.4 Ramsey Fringes

There is another framework for describing this experiment which I like, and that is to invoke

the paradigm of Ramsey spectroscopy. In a Ramsey’s method of separated oscillatory fields,

two π/2 pulses are administered, separated by some wait time τw. The probability of being

in the excited or ground state oscillates as a function of the wait time (or, equivalently,

the phase of the field which induces the π/2 pulse). In the Bloch sphere picture, the first

pulse rotates the Bloch vector up to the equator. During the wait time, the Bloch vector

precesses, and a second pulse rotates the Bloch vector again. The projection onto the z-

axis, and thus probability of being in one particular state, depends on how far it precesses

azimuthally.

In this experiment, rather than varying τw or the relative phase of the pulses, we use a

spread of momentum states. A momentum state |h̄k〉 is coupled to |h̄(k + kr)〉, where kr is
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Figure 5-6: Fringe contrast for a filtered thermal cloud. A τw = 30µs long Bragg pulse
is used to out-couple a narrow slice of the available momentum states. a) An absorption
image shows high contrast interference for this velocity subset with λf = 170µm. b)
The integrated optical density is fit to extract a numerical value for the contrast C. c)
Measured fringe contrast is found to exceed that predicted by Equation 5.8 (solid line). A
model which introduces an effective de Broglie wavelength λ′T (Equation 5.12) above an
onset temperature T0 follows the data (dashed line). This model is also applied to the
τw = 10 µs pulse data from Figure 5-3: shown for λf = 340 µm (inset).

the recoil momentum. The relative phase which accrues during τw is

δφ =
h̄(k + kr)2

2m
τw − h̄(k)2

2m
τw =

h̄krτw

m
k +

h̄k2
rτw

2m
(5.11)

where the last term is just a constant. In other words, the phase is linear in the initial mo-

mentum h̄k. And since the cloud in time of flight reveals the in trap momentum distribution,

the image is like a Ramsey fringe taken in one shot.

5.3 Momentum “Filtered” Interference

In Section 5.2.2 we discussed a simple model which could quantitatively describe the contrast

of an interfering thermal cloud. At low temperature our model provides a very accurate

description of the observed fringe visibility. At higher temperatures, however, the observed

contrast is consistently greater than expected. One possible explanation for this behavior
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is that our model fails when the Bragg pulses becomes velocity selective. At temperatures

greater than some characteristic temperature T0, the momentum spread h̄/λT will exceed

the Fourier width of the Bragg pulses. Some momentum components are then excluded

from the process. The Bragg coupling spans a range of δp = πm/krτp. This implies an

onset temperature T0 = δp2/2mkB for velocity selectivity. Indeed, for a 10µs pulse, we find

T0 = 2.7µK, which agrees with where the data begins to deviate from the theory curve.

In order to further investigate this possibility, we repeat the experiment at a longer pulse

duration τp = 30µs, which is more velocity selective. In Figure 5-6a, it is clear that we

address a narrow range of momentum space. We must now account for the large background

when fitting the cross section. While the fraction of atoms out-coupled falls with increasing

temperature, the interference is still clearly visible. In fact, we find that the contrast (Figure

5-6c) is greatly enhanced over our simple theory (solid line).

The reason for this finding is not clear. Generally, one would not be surprised to find

less coherence than expected, but to find more is striking. Perhaps this reflects a fault with

the distribution in our single particle model, perhaps interactions play a role and a single

particle model is insufficient. There is, however, no obvious weakness in our treatment. In

the following Section, we describe a phenomenological model which does a pretty good job

of following the data, but should be taken with a very large grain of salt.

5.3.1 Phenomenological Model for Enhanced Contrast

When data is found to follow some completely unexpected trend, the inclination is to find

a model which describes this trend. This Section is the result of such an effort.

We found that the fringe contrast of an interfering thermal cloud was significantly en-

hanced when we filtered the sample, by using longer Bragg pulses. Since this implies a

narrowed region of momentum space, correspondingly our atoms may be considered to

have a larger effective de Broglie wavelength, and thus a larger coherence length. We can

qualitatively introduce the effective de Broglie wavelength

λ′T =
h̄√

2MkB
(T T0)−1/4 (5.12)

If we use λ′T in our description of the coherence length (Equation 5.10), we predict a contrast

which agrees remarkably well with the data. In Figure 5-6c, we show this prediction (dashed
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line) for both the long Bragg pulses, as well as the short pulses (inset) discussed earlier.

When we allow the power of T and T0 to vary as a free parameter in the fitting (i.e.
(
Tα T 1−α

0

)1/2
) we find that Equation 5.12 is a good guess (α ' 0.53).

5.4 Conclusion and Outlook

In this chapter we have explored the coherence properties of a thermal cloud of atoms.

Under the appropriate conditions, a thermal sample can exhibit high contrast interference,

analogous to a white light interferometer. Bose-Einstein condensation is not a precondition

for obtaining an interference signal which may be applicable for a number of measurements.

This, however, is a single particle effect. Unlike two BECs, two independent thermal clouds

will not interfere with each other.
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Chapter 6

Degenerate Fermions in an Optical

Lattice

Strongly interacting Fermi gases have emerged as a new frontier where atomic physics and

condensed matter physics overlap. The study of these quantum gases in the presence of an

optical lattice may yield important insight into the nature of superconductivity in crystalline

materials. The tools of atomic physics present a degree of control unavailable in solid state

systems, offering a promising test bed for theoretical models which have sought greater ver-

ification for decades, as well as the opportunity to explore exciting new phenomena which

are uniquely atomic.

This chapter supplements work reported in the following publication:

J.K. Chin, D.E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K. Xu and

W. Ketterle “Evidence for Superfluidity of Ultracold Fermions in an optical

lattice,”

Nature 443, 961 (2006).

(Included in Appendix C) Ref [24]
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I was in a bar, in Knoxville, when I received an ecstatic phone call from the lab. From

what I could make out, my labmates had just seen the first interference pattern of a fermion

pair condensate released from a 3D optical lattice, conveniently, while I was away for the

DAMOP conference. Over the following weeks we would complete what was to be the first

paper of the newly refurbished machine, a triumph which was celebrated with a champagne

toast at a 10 A.M. group meeting, following a sleepless night in the lab. In this Chapter,

I will discuss these results, as well as some which were not featured in this publication.

The Ph.D. thesis of Jit Kee Chin will provide a far more comprehensive account of this

experiment.

6.1 The signature of superfluidity

There is almost no limit to the phenomena which can be studied in an optical lattice.

To name just a few, experiments have demonstrated Bloch oscillations [97] and fermionic

antibunching [98], whereas the phenomena anti-ferromagnetic order [111] and d-wave su-

perfluidity [56] remain on the horizon. It was our goal to achieve superfluidity in a 3-D

optical lattice. The signature for superfluidity, with some technical qualifications, is the

appearance of sharp interference peaks at the reciprocal lattice vector, after expansion.

Despite our lab’s extensive experience with loading Na into an optical lattice [114, 115],

and a healthy Li pair condensate1, the first signal proved elusive. When released from the

lattice, the cloud appeared heated. However, if the lattice was adiabatically ramped down

before the trap was switched off we regained a condensed sample. It soon became apparent

that collisions between the discrete momentum components were the culprit. In an atomic

BEC this effect manifests as the s-wave collision halo, visible in Figures 3-2 and 3-3. For

a strongly interacting Fermi gas, however, the collisional cross section is much larger. Sec-

ondary and higher order collisions become appreciable, and the sample looks isotropically

heated. The solution was to cut the magnetic field as quickly as possible, reducing interac-

tions, before turning off the optical lattice. Figure 6-1 illustrates the effects of collisions at

different magnetic fields. We found that keeping the lattice on for an additional 150 µs as

the field is ramped was sufficient to ameliorate the effect of collisions.

In Figure 6-2, we show a schematic of of the imaging geometry which details the pro-
1the preparation of which is detailed in Chapter 4
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Figure 6-1: Dissipative collisions between momentum components. A Li pair condensate
is prepared at 822 G. The magnetic field is cut abruptly when the cloud is released from
the trap. As a probe of the scattering cross section σ, a short Kapitza-Dirac pulse is
administered at different times during the field ramp, corresponding to magnetic fields (a)
822 G, (b) 749 G and (c) 665 G. The absorption images reveal different degrees of heating
due to collisions between the discrete momentum components. For a sufficient reduction
of the interaction parameter kF a, and therefore the scattering cross section, the distinct
momentum peaks are visible.
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a)

b) c) d) e)

f) g) h) i)

Figure 6-2: Interference of fermion pairs released from an optical lattice. a) Schematic of
the imaging geometry, detailing the projection of the reciprocal lattice onto the imaging
plane. (b-i) Absorption images of fermion pairs at a field of 822 G, released from varying
lattice depths V0. Values of V0 are b) 0 Er, c) 2.5 Er, d) 4 Er, e) 5 Er, f) 6 Er, g) 7 Er

and h) 9 Er. i) The interference pattern is resurrected for a cloud which is ramped up to
10 Er, and then back down to 2.5 Er before being released.

jection of reciprocal lattice onto the imaging plane. We also show time of flight images for

a pair condensate released from an optical lattice of varying depth. The sharpness of the

interference peaks, with respect to their separation, provides an upper bound for the coher-

ence length of ten lattice sites [42]. This neglects broadening mechanisms, such as the mean

field energy. For deeper lattices, the interference pattern is replaced by a broad gaussian, a

possible indication of an insulating state, which we discuss in the following Section.

6.2 The insulator state

Let us consider a sample of bosonic atoms in an optical lattice. In the superfluid state, the

atomic wavefunction is delocalized across lattice sites. In expansion, the wavefunction at

each lattice site acts as a coherent source, which adds up to produce the familiar interference
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h̄ω

∆E

U

Figure 6-3: Individual lattice sites can be
approximated as harmonic oscillators with
energy spacing h̄ω. For repulsive interac-
tions, there is an energy cost U for two
atoms to occupy the same lattice site. The
application of a potential gradient results
in an energy difference ∆E between sites.
For a conducting state, this will result in
current. An insulating state, however, will
not respond.

pattern. This delocalization implies an uncertainty in where an atom will be found, and

therefore an uncertainty in the number of atoms which will be found on a particular lattice

site. The occupation number of each lattice site is given by a Possionian distribution. There

is an energy “J” associated with this delocalization, referred to as the tunneling energy.

For an interacting gas, this number uncertainty has a cost. A state in which two (or

more) atoms can be found at the same lattice site must pay the interaction energy U , which

is positive for repulsive interactions. If the cost of interaction U exceeds the benefit of

delocalization J , it becomes energetically favorable for each atom to find its own lattice site

and stick to it. This is known as the Mott insulator state [46], in which the wavefunction

at each lattice site is described by a Fock state: a fixed atom number at each site. This

certainty in number, however, corresponds to an uncertainty in the phase between adjacent

sites, which washes out the interference pattern, leaving only a blurred gaussian cloud in

expansion.

The ratio U/J can be increased with the lattice depth V0. It is a characteristic feature

of the Superfluid-Mott insulator transition [45] (SF-MI) that the interference pattern is lost

as the lattice depth is increased and U/J exceeds some critical value. Because the Mott

insulator is the ground state, lowering the lattice can adiabatically convert the system back

into a superlfuid state, restoring coherence. There are some subtleties in the interpreta-

tion of the interference pattern [42, 35]. There do exist, however, other methods to more

accurately identify the Mott insulator transition [3, 86].

Fermions

We turn now to the system at hand: a spin mixture of strongly interacting fermions in an

optical lattice. In Figure 6-2, we observe the disappearance of the interference pattern with
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Figure 6-4: Excitation of a superfluid Fermi gas in a lattice. Starting with a pair condensate
at 822 G, we ramp a 3-D optical lattice up to V0 = 8Er, then back down to 2Er, where it
is held for 150 µs before release. The ramp up is interrupted at a particular value Vprobe for
a time ∆T , during which magnetic gradient of B ′ = 4 G/cm may be applied. A schematic
of the ramp sequence for different values of Vprobe is given in (b) and (c). After expansion,
the gaussian width of the central momentum peak is used as a measure of coherence. (a)
The measured width is shown as a function of the lattice depth Vprobe at which the gradient
is applied (filled markers). For comparison, the ramp sequence is repeated without the
applied gradient (open markers). As Vprobe is increased, the excitation effect of B′ is reduced,
perhaps indicating an insulating state. The depth Vprobe at which this insulating behavior is
observed varies with the hold time ∆T (10 ms and 30 ms; circles and triangles, respectively).
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increasing lattice depth, as well as its restoration when the lattice is subsequently lowered.

This behavior is qualitatively consistent with the superfluid-insulator transition described in

the previous Section. However, one must be careful in our treatment of this pair condensate.

While the pairs do in some respect behave as composite bosons, at some level the nature

of the constituent fermions must play a role. In particular, the interaction energy U is not

likely to be valid, insofar as we have defined it. The Pauli exclusion principle requires that

pairs on the same lattice site be in orthogonal states, and the relevant “interaction” energy

may be the harmonic oscillator spacing h̄ω. In this case, the single band model is no longer

sufficient.

6.2.1 Insulating Behavior

While our description of the Mott-insulator is not strictly applicable to a unitary Fermi

gas, the concepts are still relevant. Just as BEC superfluidity evolves continuously into

BCS superfluidity in the BEC-BCS crossover, so the Mott insulator is expected to evolve

into its counterpart, the band insulator [119]. While a comprehensive study of insulating

behavior throughout the BEC-BCS crossover has yet to be performed, we have made some

preliminary measurements.

The application of a potential gradient results in an energy difference ∆E between adja-

cent lattice sites. In a conducting state, neighboring sites accrue a phase difference, resulting

in a current. Nonlinear effects can randomize this phase across the sample, broadening the

interference pattern in time of flight. On the other hand, the phase between adjacent lat-

tice sites in a Mott insulator state is completely uncertain, rendering any accrual of relative

phase meaningless. An insulator is not excited by a gradient, and can therefore be converted

back into a superfluid, producing a sharp interference pattern in expansion.

The excitation spectrum of the Mott insulator does, however, exhibit resonances. An

excitation gap opens up for ∆E = U , due to the creation of particle-hole pairs. This

excitation gap has been measured for a BEC in the Mott insulator state [45]. The width

of the central peak in time of flight was used as a measure of excitation. At low V0, the

superfluid is uniformly excited as a function of ∆E. At deeper V0, however, excitation is

only observed at distinct values of ∆E, indicative of a Mott insulator.

Technical limitations precluded the replication of this experiment with our Li gas. Our

pinch coils produce a gradient of 0.4 G/cm, per 1 A of current. This corresponds to a
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∆E = h× 20 hz, across lattice sites2. (For comparison, the pull of gravity is equivalent to

a magnetic gradient of 2 G/cm.) For our strongly interacting system, we do not expect to

open an excitation gap until the gradient is on the order of the harmonic oscillator spacing

h̄ω of the lattice, which is tens of khz.

We did, however, study the excitation of our system in response to a fixed gradient,

as we varied the lattice depth. Figure 6-4 shows the response to an applied gradient, as

a function of V0. At low lattice depths, the central peak width is significantly broadened,

indicating excitation, whereas for deeper lattices the effect of the gradient is negligible. This

would seem to indicate insulating behavior. However, the depth V0 above which the width

is not affected appears to be dependent on the duration ∆T of the applied gradient. This

may be an effect of inhomogeneous density, and requires further study.

6.3 Recoherence

The field ramp technique which we employ (Figure 6-1), in order to reduce the collision

cross section, raises a question: Are we actually probing the physics at the initial magnetic

field? We may wish to infer from the sharp interference peaks in the time of flight images

that the sample was coherent. However, is it possible that this coherence is established

during the 150 µs field ramp? After all, the interactions are very strong, which may imply

a short time scale for such an effect.

In order to address this question, we study the timescale on which coherence can be

reestablished. A lattice is adiabatically ramped up to 8 Er; a depth at which the interference

pattern is essentially absent. The lattice depth is subsequently ramped down to 2.5 Er over

a variable ramp-down time τ , and held for 150 µs during the magnetic field ramp, before

release. Again the width of the central peak is used as a measure of coherence. In Figure

6-5, the narrowing of the central peak shows that coherence is restored on a relatively short

time scale of ∼ 500 µs, indicating that the sample remains in the ground state during the

application of the lattice. This is on the order of the single-particle tunneling time h/J for a

V0 = 2.5Er lattice. While the 150 µs duration of the field ramp is not completely negligible

in comparison, we can conclude that the interference pattern we observe is indicative of the

coherence of the sample at the original field.
2 1.4 mhz

G
× 0.4 G

cm
× 0.5√

2
µm, where the

√
2 reflects the 45◦ orientation of the lattice with respect to the

pinch coil axis.
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Figure 6-5: Restoring coherence from a deep lattice. a) The lattice is adiabatically ramped
up to V0 = 8 Er. A sample released from a lattice of this depth does not exhibit interference.
In order to study the time scale on which coherence can be reestablished, we ramp V0 down
to 2.5 Er over a variable ramp time τ . The sample is held here for 150 µs, while the
magnetic field is ramped down, before release. b) As a measure of coherence, the widths of
the central peak after 6.5 ms expansion, obtained from a gaussian (bimodal) fit, are plotted
as solid circles (diamonds), as a function of τ . The fast time scale over which coherence is
restored indicates that the sample stays in the ground state during the application of the
lattice. A sample which has been decohered (open circles), through the application of a
magnetic gradient during the lattice ramp-up, does not regain coherence under the same
conditions.
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Additionally, we can study a system which is not in the ground state. If we apply a

magnetic gradient during the ramp up of the lattice, we can excite the sample. Such a

dephased cloud will not recohere for any experimentally accessible ramp times. This illus-

trates the difference between a dephased sample and a ground state with phase uncertainty,

and demonstrates that any recoherence, due to evaporative cooling for example, is negligible

during the field ramp.

6.4 Conclusion and Outlook

In this chapter we discussed some of the first findings resulting from the loading of a

superfluid Fermi gas into a 3D optical lattice. The future has much in store for this system.

The search for anti-ferromagnetic order and d-wave superfluidity will occupy much of the

coming research agenda. Degenerate Fermi gases are likely to produce a tremendous amount

of insight into the workings of strongly correlated many-body quantum systems.
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Chapter 7

Critical Velocity in the BEC-BCS

Crossover

The flow of a current without dissipation has intrigued physicists since Kamerlingh-Onnes’

discovery of superconductivity in 1911. Since then, the realm of superfluidity has expanded

to include liquid helium, and more recently cold atomic gases, and comes in both bosonic

and fermionic flavors. The nature of superfluidity can be understood as a consequence of

collective excitations, which modify the free particle dispersion relation so as to render flow

below a critical velocity dissipationless. Above the critical velocity, the current suffers an

energetic (Landau) instability, resulting in excitations. Superfluid atomic Fermi gases offer

the unique opportunity to study the transformation between bosonic superfluidity, such as

in 4He, to fermionic superfluidity, as in 3He.

This chapter supplements work reported in the following publication:

D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan, C. Sanner and W.

Ketterle “Critical velocity for superfluid flow across the BEC-BCS

crossover,”

preprint condmat/0707.2354 (2007).

(Included in Appendix D) Ref [28]
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7.1 The Landau criterion

While superfluidity is, in essence, a quantum mechanical phenomena, we need nothing more

than high-school mechanics to arrive at a fairly satisfying explanation of its origin. Consider

an object of mass m moving with velocity ~v0 through a stationary fluid at zero temperature.

The object may create an excitation in the fluid with momentum ~p and energy E(p). This

has the effect of damping the object’s motion, reducing its velocity to ~v. Conservation of

energy gives us
1
2mv2

0 = 1
2mv2 + E(p) (7.1)

whereas conservation of momentum gives

m~v0 = m~v + ~p (7.2)

From these conditions we find

~p · ~v0 =
p2

2m
+ E(p) . (7.3)

This is just another way of saying that, in the frame moving at v0, the work done by the

fluid is equal to the energy of the fluid excitation plus the kinetic energy transferred to the

object. If we recognize that ~p · ~v0 ≤ p v0, and consider an object of very large mass, we see

that excitations are only possible for

v0 ≥ E(p)
p

. (7.4)

This is the Landau criterion, which establishes a critical velocity for dissipation

vc = minE(p)/p . (7.5)

For motion below this velocity, viscosity will be absent, and the flow is superfluid.

The complicated part, of course, is in the determination of the dispersion relation E(p),

which is where quantum mechanics enters the picture. The quadratic free particle dispersion

E(p) = p2/2m gives a critical velocity of zero, i.e., no superfluidity. Collective excitations,

however, can produce a more interesting dispersion relation, such as the one pictured in

Figure 7-1. The Landau criterion may be depicted graphically as finding the line of the

shallowest slope which passes through the origin and is tangent to E(p). The slope of this
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~v0 ~v

~p

a) b) c)

E(p)

p

Figure 7-1: The Landau criterion for superfluidity. (a) An object passing through a fluid
with velocity v0 can (b) create an excitation in the fluid with momentum p. As a result, the
motion is damped, reducing the velocity to v. Conservation of energy and momentum place
a lower bound on the velocity for which excitations can occur, known as the Landau criterion
(Equation 7.4). (c) This critical velocity, vc = minE(p)/p, can be depicted graphically as
the slope of a (dashed) line which is tangent to the dispersion relation E(p) (solid line).

line is the critical velocity.

Energetic instability

In general, we can calculate the energy spectrum of excitations by considering small pertur-

bations to the ground state. A Landau instability develops when the energy of an excitation

with some wavevector k becomes negative. The system can lower its energy by incorporating

elementary excitations. In this way, we refer to dissipation above the Landau threshold as

an energetic instability. For a superfluid, the energy of the system is a local minimum, and

it is stable against small perturbations. Above the critical velocity, however, the superfluid

flow lies at an energetic saddle point and is unstable [113].

7.1.1 Phonon excitation spectrum

In Chapter 2.1.6 we introduced the Bogliubov excitation spectrum, which describes the

elementary excitations for a BEC. From Figure 2-2, it is clear that, according to the Landau

criterion, the critical velocity is given by the speed of sound. The sound velocity was found

to be

c =

√
4πh̄2a

m2
n . (BEC) (7.6)

This is, of course, a specific case of a more general thermodynamic relation. The hydro-
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dynamic description [57, 109, 81] is based on the continuity equation

∂

∂t
n +∇(n~v) = 0 (7.7)

and the Euler equation

m
∂

∂t
~v +∇

[
µ(n) + 1

2mv2
]

= 0 , (7.8)

where ~v is the velocity field. Together, they produce a wave equation for small density

perturbations, which travel at the speed of sound.

c =

√
n

m

∂ µ

∂n
(7.9)

In the case of a two-component Fermi gas in the deep BCS limit (1/kF a → −∞) the

sound mode equivalent is known as the Bogoliubov-Anderson mode [53, 44]. Here, the gas

behaves essentially as a noninteracting Fermi gas. Equation 2.9 tells us that µ ∝ n2/3, from

which it follows that

c =
vF√

3
(BCS) (7.10)

Figure 7-2 illustrates the evolution of the speed of sound throughout the BEC-BCS

crossover [26, 53]. On the BEC side, c increases gradually with increasing interactions. This

trend continues monotonically until c reaches the noninteracting Fermi gas limit vF /
√

3.

We can solve for the speed of sound on resonance using the chemical potential for a zero

temperature universal Fermi gas (UFG) which we derived in Equation 2.16.

c =
vF√

3
(1 + β)1/2 (UFG) (7.11)

A recent experiment at Duke [65] has measured the propagation of sound in an elongated

superfluid Fermi gas across the BEC-BCS crossover, using a technique first implemented

here at MIT [5] in which a far detuned laser creates a density perturbation which then

travels down the sample. From the measurements on resonance, the universal parameter

β was determined to be -0.570, in good agreement with other experimental measurements

and theory [44].
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7.1.2 Pair-breaking excitation spectrum

For a gas of superfluid Fermion pairs, phonons are not the only type of excitation which

contribute to the Landau instability. Pair-breaking excitations may also contribute to dis-

sipation. The solution of the Bogoliubov-de Gennes equation [31] gives the excitation spec-

trum

E(p) =

√(
p2

2m
− µ

)2

+ ∆2 (7.12)

The pairing gap ∆ represents the minimum energy required to create a single particle

excitation, and thus break a pair. At unitarity, it is on the order of the Fermi energy. In

the BCS limit, the gap falls off exponentially with (kF a)−1, indicating the fragile nature of

the BCS superfluid.

The critical velocity for these single particle excitations is, according to the Landau

criterion,

vsp =




√
∆2 + µ2 − µ

m




1/2

. (7.13)

7.1.3 The Landau criterion in the BEC-BCS crossover

A simple estimate of the critical velocity in the crossover is given by the minimum velocity

of these two loss mechanisms.

vc = min (c, vsp) (7.14)

In Figure 7-2, we see that this intersection yields a pronounced maximum near resonance.

The critical velocity also defines a generalized healing length

ξ =
h̄

m vc
. (7.15)

In the BEC limit this was given by Equation 2.4, and related to the speed of sound. In the

BCS regime, it corresponds to the size of Cooper pairs.
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Figure 7-2: Speed of sound and pair-breaking threshold in a two-
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tonically across the BEC-BCS crossover. The threshold velocity vsp for
pair-breaking falls exponentially in the BCS limit. The Landau critical
velocity is given by the minimum velocity of these two, and is sharply
peaked near resonance. Adapted from [26].
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7.2 Measuring dissipation in a quantum gas

In this section we will review some of the previous experiments which have measured the

critical velocity in an atomic BEC, as well as introduce the techniques we employed in our

studies of a superfluid Fermi gas.

7.2.1 Stirring a BEC

Appropriately enough, the first measurements of critical velocity in a BEC were performed

in the New Lab, by Chandra Raman and Roberto Onofrio [92, 89, 93]. In these experiments,

a blue detuned beam (split off from the Argon ion laser which used to pump the dye laser)

was used to stir a magnetically trapped BEC, as illustrated in Figure 7-3a. The beam was

passed through an AOM, and the pointing could be controlled dynamically by changing

the driving frequency. The stirring beam was scanned back and forth, along the long axis

of the condensate, heating the sample. A bimodal fit to the expanded cloud produced a

calorimetric measure of the heating. As a function of the stirring velocity, the heating

rate showed an abrupt onset at some critical velocity vc ' 0.1 c, where c was the speed

of sound calculated at the peak density of the condensate. This value of vc was obtained

by considering a drag force F = κ (v − vc), where κ is the drag coefficient [61, 41], which

transfers energy to the system at a rate

dE

dt
= F · v = κ v (v − vc) . (7.16)

Such a small value of vc/c may come as a surprise, based on our previous discussion

of the Landau criterion. There are, however, a number of effects in this experiment with

act to reduce vc. The first is a purely geometrical concern. In the case of an impenetrable

stirring object, the fluid must flow around the perimeter. Therefore, the actual velocity

of the fluid is faster than that of the stirrer [41]. The second correction we must make is

to account for the inhomogeneous density of the sample [62]. One may expect that the

local speed of sound depends on the local density, which decreases towards the edge of

the cloud. In such a case, there should be no sharp onset of dissipation, since the stirring

beam pierces through a region were the density, and therefore, the critical velocity goes to

zero. The MIT experiment did, however, observe an abrupt onset, and it turns out that the

proper treatment of the density inhomogeneity is more complicated than we have let on.
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a) b) c)

d)

Figure 7-3: Various configurations for perturbing a condensate. a) A single far-detuned
laser beam is focused at the center of an elongated cloud. The beam is scanned back and
forth. b) Uniform lattice: Two intersecting laser beams with some frequency difference
produce a moving optical lattice. An atomic sample is confined in the center, experiencing
a relatively homogeneous lattice depth. c) Centered lattice: Two intersecting laser beams
are focused to a size smaller than the trapped cloud, producing a moving optical lattice
which probes a relatively homogeneous region of density. Trapping potentials (optical or
magnetic) are not shown. The arrows indicate the direction of motion. d) Absorption
images of a pair condensate subject to a lattice moving with increasing velocity (left to
right) show an abrupt threshold for dissipation.

We will find that accounting for density inhomogeneity will be a recurring theme in such

experiments.

7.2.2 BEC in a moving lattice

Similar experiments were conducted in Florence, in which a 1D optical lattice was used to

perturb the system, rather than a stirring beam. The conclusions reached, however, were

rather different. In the initial experiment [14], the BEC was displaced in the harmonic trap

and set to oscillate. A more controlled experiment was performed later, in which the lattice

was moved at a constant velocity [32]. The Florence group observed a gradual increase in

dissipation with velocity, which saturated at a particular value. In their interpretation, the

critical velocity is given by the local speed of sound. The lattice velocity v then sets some

threshold density nth, for which the speed of sound is c(nth) = v. For a given velocity, the
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fraction of the cloud which is below this threshold density experiences loss, while the rest is

immune. When the lattice velocity exceeds c(np), at the peak density np, the entire sample

will incur dissipation, and the loss is flat with respect to v.

The behavior at low velocities, however, was not studied in detail. It is difficult to

exclude the possibility of an abrupt onset of dissipation, such as that which was found in

the MIT experiment. Additionally, the suggestion that the loss reaches a plateau seems

difficult to reconcile with most models of friction, which are velocity dependent, as in

Equation 7.16. The presence of a dynamical instability, which we introduced in Chapter

3.5, greatly limits the range of velocity over which the loss appears constant. In addition,

lifetime data in this same paper does not show the same plateau as the condensate number.

The Florence group has also shown that thermal atoms participated in the loss process.

For these experiments, the atomic sample was held in a magnetic trap. The application of

an “RF-shield” prevented the accumulation of a thermal component as the condensate was

heated by the moving lattice. The lifetime of shielded cloud was shown to exceed that of the

unshielded cloud by an order of magnitude, at velocities below the threshold for dynamical

instability. This strongly suggests that the loss they observe at low velocities is due, at

least in part, to the collision of thermal impurities with the condensate; a finding which

will guide the interpretation of our own data in the following Sections.

7.2.3 Superfluid Fermi gas in a moving lattice

In our determination of the critical velocity in a superfluid Fermi gas, we also study the

dissipation induced by a moving 1D optical lattice. There are two lattice geometries that

are used, which are shown in Figure 7-3, the experimental details of which are given in

Chapter 4.4.1. In the first, the lattice beams extend to cover the entire trapped sample.

The lattice depth is then fairly uniform across the pair condensate. The density which we

probe, however, is not. In a second configuration, the lattice beams are focused down to a

size smaller than the trapped cloud, sampling only the center of the cloud where the density

is relatively homogeneous. In both cases, we observed a threshold velocity for dissipation,

as shown in Figure 7-3d. In the following Sections we describe how we parameterized the

loss signal, and how it was interpreted in the context of Landau instability.

97



5

4

3

2

1

0

3002001000

0.50-0.5

Position (mm)

D
en

si
ty

P
ro

fi
le

(a
.u

.)

Hold time (ms)

A
to

m
n
u
m

b
er

(×
10

5
)

a) b)

Figure 7-4: Dissipation in a moving lattice. a) A bimodal fit of the density profile, after
17 ms expansion, provides a measure of the heating incurred in the moving lattice. b) The
number of pairs in the thermal component Nth (open circles) and those remaining in the
condensate Nc (filled circles) as a function of the time held in the moving lattice. The
thermal component grows approximately linearly (dashed line), whereas Nc is fit to model
(solid line) in which the loss is proportional to Nth (Equation 7.18).

7.3 Uniform lattice / inhomogeneous density

The first system we studied was that of the uniform lattice, depicted in Figure 7-3b. After

the preparation of a pair condensate, near resonance, the optical lattice is adiabatically

ramped up, moving with a fixed velocity. The lattice is kept on for a duration up to 2 s.

After the lattice is ramped off, we allow the cloud to expand, ramping the magnetic field

as usual to preserve the momentum distribution [121].

From a bimodal fit to the density distribution, we extract the number of condensed

pairs Nc, as well as the number in the thermal component Nth. Figure 7-4b shows the

temporal dynamics of the dissipation (which is characteristic of both lattice configurations

used). Atoms which are excited from the pair condensate either escape the optical trap or

contribute to the thermal fraction. In order to quantify the loss, we first use a linear loss

model.

Nc(t) = N0 (1− γ t) (7.17)

In Figure 7-5, we interpret the dissipation through the linear loss fit parameter γ(v). The

loss at low velocities is essentially zero, whereas above some critical velocity there is a kink,

and the loss rate increases sharply.

Furthermore, we study the loss on both sides of the resonance. Before the lattice is
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brought up, we adiabatically ramp the magnetic field to probe the sample at the desired

value of kF a. We find that the superfluid is most robust near resonance, in that the onset of

dissipation occurs at the highest velocity. This velocity is, however, quite small: about an

order of magnitude smaller than the speed of sound c ' 19 mm/s, as calculated by Equation

7.11. We attribute this discrepancy to the inhomogeneous density of the cloud. The speed

of sound which we have quoted is that at the trap center, i.e. for the peak density. As the

density falls off radially, so does the local speed of sound. It is interesting, then, that we

see a discontinuity in the loss rate at all. After all, the lattice probes the outer edges of the

cloud, where the density approaches zero.

This observation, however, is not inconsistent with the M.I.T. stirring experiments [92,

93] which probed regions of vanishing density, as well. The propagation of sound in an

elongated degenerate Fermi gas [18, 65] also discredits the simplistic portrait of a local

speed of sound. Axially propagating wavefronts do not distort in accordance with the

radially decreasing density profile. Rather, they remain flat, in apparent defiance of the

local sound velocity. In fact, the concept of a local speed of sound may not even be valid

in the outer wings of the cloud, at least insofar as we have defined it. The local density

approximation, which we have invoked, fails at the outer boundary of the cloud, where the

density can not be considered slowly varying.

In any case, it is clear that accounting for the inhomogeneous density is a messy affair.

This is what motivated us to use a different lattice geometry, in which only the central

region of the cloud was probed. I will address these results in a later Section, but before

doing so, I would like discuss the temporal dynamics of the loss process.

7.3.1 Loss dynamics

Figure 7-4b offers a characteristic portrait of the loss dynamics. We chose to parameterize

this data in terms of a linear loss model (Equation 7.17), which was adequate for identifying

the sharp onset of loss. Yet, this was merely a convenient choice which lacked any physical

motivation, and it is interesting to speculate upon the nature of the dissipation so as to

construct a more robust model.

In Section 7.2.2 we discussed an experiment which provided evidence for the participa-

tion of thermal atoms in the dissipation of an atomic BEC in a moving lattice. We have

seen evidence that the thermal component plays a similar role in our fermionic system. We
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can prevent the accumulation of a thermal component during exposure to the lattice by

gradually reducing the trap depth from U0 to some final value Umin, allowing the heated

pairs to evaporate. We find that the lifetime is enhanced by at least a factor of two over

that of a sample held in a fixed trap, at either U0 or Umin. An experiment with greater

control over the temperature would certainly shed more light. Unfortunately, the use of an

optical trap does not permit the variation of the trap depth independently of the trapping

frequencies, and therefore the density of the sample.

Nevertheless, our finding supports a picture of dissipation which is driven by the collision

of thermal impurities with the condensate. This may suggest a model of an exponential loss

Nc(t) = Nc(0) e−Γt , (7.18)

in which the loss rate Γ = γ0 Nth is proportional to the number of thermal atoms Nth.

In Figure 7-4 we apply this fitting function, where we have approximated the thermal

component as growing linearly in time. This model satisfactorily describes a loss which is

faster than linear, consistent with our observation. Impurities in the form of unpaired atoms

would allow us to better test the validity of this model. Unfortunately, phase separation

effects [102] make controllably varying the population imbalance difficult for our geometry.

A dissipation which is driven by thermal impurities is also more consistent with the

threshold behavior we observe. The lattice potential itself should only provide a matrix

element between momentum states differing by h/λL. This would result in a loss which is

resonant, centered at a lattice velocity v = 22 mm/s, corresponding to the Bragg resonance.

Rather, we observe a threshold behavior. If the loss is driven by thermal impurities which

are dragged along by the lattice [71], the matrix element is essentially a point source which

can couple to excitations at all wavevectors. This type of coupling can be used as a probe

for Landau instability.

7.4 Centered lattice / homogeneous density

The obvious shortcomings in a system of inhomogeneous density motivated us to adopt a

lattice configuration in which only the central region of the cloud is probed (Figure 7-3c).

This arrangement also yielded a threshold for loss. In the previous Section, we extracted

a loss rate from the temporal behavior, a process which is both data intensive and model
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Figure 7-6: Critical velocity at the cloud center. a) Number of pairs which remained in
the condensate Nc after being subjected to a V0 = 0.2EF deep optical lattice for 500 ms,
moving with velocity vL, at a magnetic field of 822 G (1/kF a = 0.15)) An abrupt onset of
dissipation is observed above a critical velocity vc, which we identify from a fit to Equation
7.19. b) The critical velocity we obtain (filled circles) is weakly dependent on the time held
in the lattice (logarithmic scale). Some of this variation may in fact be attributed to the
reduction in numbers, and therefore speed of sound, due to the sample’s finite lifetime. We
show Nc as a function of hold time in a stationary lattice (crossed circles).

dependent. Here we identify the critical velocity from a trace taken for a single exposure

time in the lattice. In Figure 7-6a, we show the number of condensed pairs remaining as a

function of lattice velocity vL. We define the critical velocity vc from a fit to the intersection

of two lines.

Nc(v) = Nc(0)× [ 1−max(0, α× (v − vc)) ] (7.19)

As we show in Figure 7-6b, this approach gives a fairly consistent value over a large range

of hold times. Longer hold times do consistently point to a somewhat smaller vc. Some of

this effect, however, may be due to the reduced numbers at long hold times. In a stationary

lattice (or without a lattice at all) the total number will decay substantially over 2 s. This

has the effect of reducing the density, and thus the speed of sound.

7.4.1 Critical velocity throughout the BEC-BCS crossover

We repeat this measurement of the critical velocity at different magnetic fields, as shown

in Figure 7-7. We find that vc is maximum near resonance, falling off precipitously on the

BCS side and more gradually on the BEC side. This behavior is consistent with the model

for Landau instability which we discussed in Section 7.1.3. On the BEC side, the critical
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velocity is determined by the speed of sound, whereas on the BCS side it is given by the

pair breaking threshold.

While this data is in qualitative agreement with such an understanding, there are still

some quantitative issues which need to be resolved. As most theory papers discuss homoge-

nous systems, or equivalently work in the local density approximation, it is most convenient

to reference the local Fermi velocity (see Equation 2.19) at the trap center

vF = (1 + β)−1/4
√

2EF /m (7.20)

The (non-interacting) Fermi energy for this system is EF = h×7.6 khz. The corresponding

Fermi velocity is then vF = 39 mm/s.

In terms of the Fermi velocity, the speed of sound is cs = 0.37 vF , according to Equation

7.11. The pair breaking threshold, given by Equation 7.13, is vsp = 0.34 vF , where we have

used ∆ = 0.50 εF [19, 20]. These two values should provide a good estimate of the critical

velocity on resonance, although our measurements appear to come up short. If we are to

make a quantitative comparison with theory, we need to address the effects of a finite lattice

potential.

7.4.2 Critical velocity at different lattice depth

Numerical simulations for both a BEC [58] and a superfluid fermi gas [103] have shown that

the Landau criterion provides an upper bound for the critical velocity which is attained

only in the limit of vanishing perturbing potential. While the lattice does reduce the speed

of sound [73], through the effective mass, this effect is insignificant for the lattice depths

we explore. Rather, nonlinear corrections to the Bogoliubov spectrum [84] are expected to

play a role. In Figure 7-8, we explore the critical velocity near resonance (1/kF a = 0.15)

over a large range of lattice depths. In the limit of low lattice depth, vc converges to

vpeak
c ≈ 0.25 vF . Measurements at the smallest lattice depths became more uncertain as

the hold time required to observe an effect of the lattice approached the natural lifetime

of our sample. It is for this reason that we studied the field dependence (Figure 7-7) at

an intermediate lattice depth where vc was more well defined. Nevertheless, the value we

obtain for vpeak
c near resonance is within 10% of the predictions. Extrapolation between the

pair breaking and collective excitation branches may reduce the effective vc. Any additional
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discrepancy which we observe may be attributed to the density variation across the lattice.

7.4.3 Dynamical instability

While we have framed our results in the context of an energetic instability, there exist other

loss mechanism which may occur in a moving lattice. A dynamical instability, which we

introduced in Chapter 3.5, occurs when two particles from the condensate collide and scatter

into states with opposite momentum ±δk. The lattice modifies the dispersion relation so

that this process becomes energetically possible when condensate has a certain momentum

in the lattice frame. Our results, however, are not consistent with the simple understanding

of a dynamical instability, which can not set in below 0.5 qB, corresponding to v = 11

mm/s, where qB = h/2λL is the Bragg momentum which defines the edge of the Brillouin

zone. The highest critical velocity observed, in the low V0 limit, is just below this threshold

(see Figure 7-8). However, vc falls rapidly for increasing V0. Recently it has been shown

[86] that strong interactions can lower the threshold for dynamical instability, reaching zero

at the Mott Insulator transition. However, it is very likely that the range of lattice depths

explored here (V0 ≤ 2Er) are too shallow to exhibit this effect. The loss of coherence which

typically accompanies the superfluid to Mott insulation transition was found to occur at

V0 ' 6Er in a 3-D optical lattice [24]. We have observed that coherence persists in a 1-D

lattice up to V0 ' 25 Er. For these reasons, we rule out the role of dynamical instability in

the dissipation which we observe.

7.5 Bragg spectroscopy in the BEC-BCS crossover

In the previous sections we discussed using a 1D moving lattice to probe excitations at all

wavevectors, through collisions with thermal impurities. Such a lattice can also be used

to study excitations at a single wavevector, given by the spatial period of the lattice. In

Figure 3-8 we saw that Bragg diffraction could impart a quantity (two photons worth) of

momentum unto either a single atom or bound diatomic molecule. Distinguishing between

the two was straightforward as for a molecule the doubled mass halves the recoil energy and

recoil velocity. The molecular Bragg resonance occurs at half the frequency of the atomic

peak. It is interesting to ask what happens to the spectrum when we can tune continuously

between these two cases, i.e. in the BEC-BCS crossover. We have taken some preliminary
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data to address this question.

Traditionally, in Bragg spectroscopy , one relies on the out-coupled fraction which ap-

pears in time of flight, as in Figure 3-2c, for a signal. This is not possible in the strongly

interacting regime, because the distinct momentum component collide violently as the pass

one another. However, after collisions, a small out-coupled fraction manifests as a protuber-

ance, and the width of the expanded cloud can be used as a measure of the Bragg diffraction

efficiency.

Figure 7-9 we show Bragg spectra taken throughout the crossover. On the BEC side, we

observe a peak corresponding to the Bragg scattering of molecules. As we move towards the

BCS limit, the peak shifts towards the atomic resonance, but also broadens significantly.

This may be related to a broad pair breaking feature such as that observed in Ref. [21].

This interesting behavior certainly warrants greater attention. In particular, one may wish

to vary the recoil energy with respect to EF (by changing the angle of the Bragg beams,

perhaps).

7.6 Conclusion and Outlook

In this chapter we have explored the limits of superfluidity in the BEC-BCS crossover. The

technique we use may find application in identifying superfluidity in other systems, such

as degenerate Fermi gases in lower dimensions. The role of the thermal component, as

well as a greater understanding of the dissipation mechanism, in general, requires further

investigation.
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Figure 7-9: Bragg spectroscopy in the BEC-BCS crossover. Strong collisions prevent the
identification of the out-coupled fraction as a signal. Rather, the width of the cloud in
expansion, which is distorted due to the collisions, provides a measure of the Bragg diffrac-
tion efficiency. The Fermi energy is EF = h×12.4 khz. The recoil energy for a pair is
Er = h× 7.3 khz. Measurements of the BEC side of the resonance, at a) 750 G and b) 820
G, show a peak at the molecular resonance h δν = 4 Er. On the BCS side of the resonance,
at c) 890 G and d) 960 G, the spectra shift towards an atomic resonance, in which the
Bragg process breaks a pair and the momentum is carried by a single atom. The resolution,
given by the finite pulse duration, is 3.5 khz.
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Epilogue

“I don’t want to achieve immortality through my work ...

I want to achieve it through not dying.”

- Woody Allen

After five years, and countless late nights in the lab, I can attest to the incompatibility

of these two aims. Graduate school has been a remarkable experience; one of great intensity

and freedom. I have been extremely fortunate to have had this opportunity to have rubbed

elbows with some brilliant individuals, to have witnessed a number of impressive milestones

in the advancement of science, and to have played my own small role in this great theater.
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High-contrast interference in a thermal cloud of atoms

D. E. Miller, J. R. Anglin, J. R. Abo-Shaeer, K. Xu, J. K. Chin, and W. Ketterle*
Department of Physics, MIT-Harvard Center for Ultracold Atoms,

and Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA
sReceived 23 December 2004; published 29 April 2005d

The coherence properties of a gas of bosonic atoms above the Bose-Einstein-condensation transition tem-
perature were studied. Bragg diffraction was used to create two spatially separated wave packets, which
interfere during expansion. Given sufficient expansion time, high fringe contrast could be observed in a cloud
of arbitrary temperature. Fringe visibility greater than 90% was observed, which decreased with increasing
temperature, in agreement with a simple model. When the sample was “filtered” in momentum space using
long, velocity-selective Bragg pulses, the contrast was significantly enhanced in contrast to predictions.

DOI: 10.1103/PhysRevA.71.043615 PACS numberssd: 03.75.Hh, 34.20.Cf, 32.80.Pj, 33.80.Ps

Images of interfering atomic clouds are widely considered
a hallmark of Bose-condensed systems and a signature of
long-range correlationsf1g. A thermal atomic cloud is often
regarded as an incoherent source, with a coherence length
too short to obtain high-contrast interference patterns when
two clouds are overlapped. Here we show that ballistic ex-
pansion can increase the coherence length such that “Bose-
Einstein-condensation-type”s“BEC-type”d interference can
be observed in a thermal cloud. Currently, there is consider-
able interest in characterizing the coherence properties of
noncondensed systems including ultracold fermionsf2g, fer-
mion pairsf3–5g, and ultracold moleculesf6–8g. In this pa-
per we show that an interferometric autocorrelation tech-
nique, previously only applied to condensatesf9,10g, can be
used to study the coherence properties of samples at finite
temperature.

We studied the first-order spatial coherence of a trapped
thermal cloud of atoms. After release from the trap, the atom
cloud expanded ballistically, and Bragg diffraction was used
to create an identical copy of the initial cloud displaced by a
distanced. Therefore, our study was analogous to Young’s
double-slit experimentf11g. We investigate the conditions
under which two such overlapping clouds produce a high-
contrast interference pattern. Our result is that for sufficiently
long expansion times, there will always be high contrast, but
the required time of flight becomes longer at higher tempera-
tures.

The experiment used a magnetically trapped thermal
cloud of,53107 sodium atoms, prepared in a manner simi-
lar to our previous workf12g. Atoms in theuF=1,mF=−1l
state were loaded from a magneto-optical trapsMOTd into a
magnetic trap, where they were further cooled by radio fre-
quencysrfd evaporation. The rf evaporation was stopped be-
fore the critical temperature for Bose-Einstein condensation,
Tc, was reached, yielding a thermal cloud at a controlled
temperature. Shortly after being released from the trap
s2 msd, the cloud was exposed to two successive Bragg
pulses, separated by wait timetw. The effect of the Bragg
beamsf13,14g was to couple two momentum statesu"k0l and

u"sk0+k rdl via a two-photon transition, wherek r =sk1−k2d
andk1, k2 are the wave vectors of the two Bragg beams. The
coupling-induced Rabi oscillations and the pulse area were
experimentally chosen to correspond top /2 si.e., an atom
originally in a well-defined momentum state was taken to an
equal superposition of the two statesd. During the wait time
tw the two states accrued different phases before a second
p /2 pulse mixed the states again. Considering only two mo-
mentum states, this is equivalent to Ramsey spectroscopy
f15g ssee Fig. 1d.

One can regard a thermal cloud as an ensemble of atoms,
each having its initial amplitude spread over a range of mo-
mentum states centered about zero, with rms widthh/lT,
where lT=h/ÎmkBT is the thermal de Broglie wavelength
and m the atomic mass. The relative detuning ofdn
=45 kHz between the Bragg beams and pulse durationtp
=10 ms were chosen to couple all initial momentum compo-
nents to those centered atk r. During tw the relative phase
accumulated between coupled states is proportional tok0,
and the momentum distribution shows a sinusoidal modula-
tion sRamsey fringesd after the Bragg sequence. In long time
of flight sTOFd, the spatial density simply mimics this mo-
mentum distribution. Interference fringes were observed at a
spacingl f =httof /md, where

d = vrstw + 4/ptpd s1d

is the cloud separation discussed in the equivalent picture of
two overlapping clouds.vr is the two-photon recoil velocity.
The factor of 4/p emerges from a simple Rabi oscillation
model and includes the extra phase accumulated while the
Bragg beams effect ap /2 pulse. The sum of single-particle
interference patterns results in a density along thex direction
with reduced contrastC:

nsxd = fsxdF1 + C sinS2p

l f
x + fDG , s2d

where fsxd is an envelope function.
To find the expected contrast we consider thek-space dis-

tribution of noninteracting bosons in a harmonic trap assum-
ing the high-temperaturesMaxwell-Boltzmannd limit. This
may be written exactly as an ensemble of single-particle*Website: cua.mit.edu/ketterleIgroup
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Gaussian states, incoherently averaged over their positions.
Thus, it is appropriate to regard the thermal cloud as a col-
lection of wave packets of Gaussian widthlT, distributed in
space according to Maxwell-Boltzmann statistics.

The incoherent sum over all particles results in contrast

C = expS−
2p2RT

2

l f
2 D = expS−

d2

2,c
2D , s3d

where RT=ÎkBT/mv2 is the thermal size of a cloud in a
harmonic trap of frequencyv and where we have defined the
coherence length as

,c =
lT

2p

size in TOF

size in trap
. s4d

Equation s3d gives two different, but equivalent criteria
for the loss of contrast. While the interference pattern of a

single-particle quantum statesas well as that of a pure con-
densated should always show perfect contrast, the incoherent
sum over a thermal cloud washes out the fringe visibility.
Contrast is lost when the single-particle interference pattern
is smeared out over an initial sizeRT that is larger than the
fringe spacingl f. However, because the fringe spacing
grows as the cloud expands, contrast will always emerge
with enough time of flight. Alternatively, Eq.s3d states that
interference is lost when the separationd of the two sources
exceeds the coherence length,c. Here it is important to note
that the coherence length increases with time of flightfEq.
s4dg. The coherence length is inversely proportional to the
local momentum spread which decreases in ballistic expan-
sion as atoms with different velocities separate from each
other. For very long expansion times, the coherence length
becomes arbitrarily large resulting in high-contrast interfer-
encesFig. 2d. This can also be understood by the conserva-
tion of local phase-space density during ballistic expansion,
where the decrease in density is accompanied by a decrease
in momentum spread.

We repeated the experiment over a range of temperatures
for several values of the cloud separationd. The temperature
was controlled by varying the final value of the rf evapora-
tion. Each temperature was calibrated by measuring the size
of a cloud in expansion without pulsing on the Bragg beams.
The temperature calibration was consistent with the observed
onset of BEC at the calculated temperature ofTc=0.6 mK.
The Bragg beams were detuned 30 GHz from the atomic
transition and heating was demonstrated to be negligible by
observing the effects of the light with the two-photon detun-
ing dn set far from the Bragg resonance. Absorption images
of our samples were taken after 48 ms time of flightfFig.
1sadg. A cross section of the atomic density was fit to Eq.s2d
to determine the contrast. Deviation of the pulse area from
p /2 reduces the number of atoms in the out-coupled cloud;
however, it does not reduce the contrast assuming the two
pulses are equal.

Figure 3sad shows the measured fringe contrast of the out-
coupled cloud as a function of the cloud temperature for
three different fringe spacingsl f. The data are compared to
the contrast expected from Eq.s3d sdashed lined with no free
parameters. At low temperature this equation provides an

FIG. 1. Interference of spatially separated thermal clouds:sad
An absorption image, taken after 48 ms time of flight, shows
fringes with a spatial period ofl f =340mm. sbd A cross section of
the optical densitysblack circlesd taken through the center of the
image was fitsgray lined to extract the fringe contrast.scd Schematic
depiction of the Bragg pulse sequence. The firstp /2 pulse att=0
created a superposition of stationary and moving clouds. Att=tp

+tw the clouds had separated by distanced, and a second pulse
created a superposition of cloud pairs: one pair moving with recoil
momentumpr, the other stationary. Each pair developed an inter-
ference pattern.

FIG. 2. Emerging contrast during ballistic expansion. The co-
herence length,c grew larger than the initial separationd=2 mm as
the cloud expanded forsad 14 ms,sbd 20 ms, andscd 25 msfsee Eq.
s4dg.
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accurate description of the observed fringe visibility. At
higher temperatures, however, the observed contrast is con-
sistently greater than expected. While Bose-Einstein statis-
tics can considerably enhance contrast at temperatures even
aboveTc f16,17g, our experiment does not achieve the high
densities necessary to make this effect pronounced. One pos-
sible explanation for the discrepancy in Fig. 5, below, is that
our model fails when the Bragg diffraction becomes velocity
selective—i.e., when the Doppler width of the atoms exceeds
the Fourier width of the Bragg pulses.

In order to further investigate this effect, we repeated the
experiment with longer, more velocity-selective pulses. The
absorption images showed that these pulses addressed a nar-
row range of atomic velocitiessFig. 4d. In this case the fit
routine was modified to account for thesGaussiand back-
ground of atoms unaffected by the Bragg pulses. While the
fraction of out-coupled atoms decreased with increasing tem-
perature, the interference was still clearly visible. In Fig. 5
the measured contrast deviates substantially from theory
sdashed lined. While velocity selectivity clearly plays a role,
the mechanism for this enhanced contrast is not apparent. We
have shown that it is only the initial cloud sizeRT that de-
termines the contrast for a givenl f fEq. s3dg. Since the
Bragg pulses are not spatially selective, we do not expect
their details to influence the contrast. Similarly, Eq.s4d illus-
trates why velocity selection does not increase the coherence
length in time of flight: the narrowed momentum distribution
implies a larger effective de Broglie wavelength which is
exactly canceled by the reduced expansion in time of flight.
Therefore, the enhanced contrast in Fig. 5 cannot be de-
scribed by the single-particle free expansion of a thermal gas.
We suspect that particle interactions play a role.

In conclusion, we have shown how the coherence length
of a trapped gas is modified during ballistic expansion. This

allows for the observation of high-contrast interference in a
sample at any temperature and is not limited to condensates.
For the technique employed here, the only advantage of a
BEC is its larger initial coherence length, which is equal to
the size of the condensatef1,9,16g. However, it is the ability
of two independent condensates to interfere that sets this
state of matter apartf18g. Two independent thermal clouds
would not interfere. The self-interference technique charac-
terized here can be used to study the coherence properties of
other novel quantum degenerate systems. One example is
molecular clouds created by sweeping an external magnetic

FIG. 3. Contrast vs temperature for 10-ms Bragg pulses. Differ-
ent fringe spacingsl f were realized by varying the wait timetw

between the two Bragg pulses. The time of flight was kept fixed at
48 ms. At lower temperatures the observed contrast agreed well
with theorysdashed linesd given by Eq.s3d. At higher temperature,
however, the contrast was higher than predicted, owing to the ve-
locity selectivity of the Bragg pulses. The BEC transition tempera-
ture was atTc=0.6 mK.

FIG. 4. Velocity-selective Bragg diffraction:sad Absorption im-
age of atoms subject to 40-ms Bragg pulses. The fringe spacing was
l f =210mm after 48 ms time of flight. These longer Bragg pulses
addressed only a subset of the momentum distribution.sbd Cross
section and fitsblack circles and gray line, respectivelyd.

FIG. 5. Measured contrast fortp=30 ms velocity-selective
Bragg pulses. The contrast was significantly higher than that pre-
dicted by Eq. s3d sdashed lined. The fringe spacing wasl f

=170mm after 48 ms expansion time.
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043615-3



field across a Feshbach resonance. While the rapid decay of
such a sample precluded thermalization, an interferometric
method has already been used to demonstrate coherence in
this systemf19g.
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Coherent Molecular Optics Using Ultracold Sodium Dimers
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Coherent molecular optics is performed using two-photon Bragg scattering. Molecules were produced
by sweeping an atomic Bose-Einstein condensate through a Feshbach resonance. The spectral width of the
molecular Bragg resonance corresponded to an instantaneous temperature of 20 nK, indicating that atomic
coherence was transferred directly to the molecules. An autocorrelating interference technique was used to
observe the quadratic spatial dependence of the phase of an expanding molecular cloud. Finally, atoms
initially prepared in two momentum states were observed to cross pair with one another, forming
molecules in a third momentum state. This process is analogous to sum-frequency generation in optics.

DOI: 10.1103/PhysRevLett.94.040405 PACS numbers: 03.75.Be, 32.80.Pj, 33.80.Ps, 34.20.Cf
Similar to the field of optics, where the high intensity
and coherence of lasers allow for the observation of effects
such as frequency doubling and wave mixing, atom optics
has benefited greatly from the realization of Bose-Einstein
condensates (BECs). High phase-space density (atoms per
mode) and a uniform phase [1,2] give the condensate its
laserlike qualities. Although not fundamentally required
[3,4], BECs have led to the observation of such phenomena
as four-wave mixing [5], matter wave amplification [6,7],
and atom number squeezing [8].

The current state of molecular optics is similar to atom
optics prior to the realization of BECs. Diffraction and
interferometry of thermal molecular beams has been dem-
onstrated [9–12], yet monoenergetic beams lack the den-
sity necessary to observe nonlinear effects. However,
recent experiments using Feshbach resonances have dem-
onstrated the conversion of degenerate atomic bosons [13–
15] and fermions [16–20] into ultracold molecules. These
sources have the potential to greatly advance molecular
optics. Furthermore, atom-molecule coupling can be
studied as the first steps towards ‘‘superchemistry,’’ where
chemical reactions are stimulated via macroscopic occu-
pation of a quantum state [21].

The coherent manipulation of atomic matter waves via
stimulated light scattering has been crucial in the develop-
ment of nonlinear atom optics (for a review, see [22]). Here
we demonstrate the ability to apply Kapitza-Dirac and
Bragg diffraction [23] to cold molecules. Using optical
standing waves of suitably chosen frequencies, sodium
dimers were coherently manipulated with negligible heat-
ing or other incoherent processes. First, we characterized
the coherence of our ‘‘source’’ molecules, created via
Feshbach resonance. By measuring the Bragg spectrum
of the molecules immediately after their creation, the
conversion from atoms to molecules was shown to be
coherent—the matter wave analog to frequency doubling
in optics. The quadratic spatial dependence of the phase of
the expanding molecules was observed using an autocor-
relation interference technique. By creating a duplicate
sample of molecules and overlapping it with the original,
05=94(4)=040405(4)$23.00 04040
matter wave interference was observed. Finally, the matter
wave analog to sum-frequency generation was demon-
strated. Atoms prepared in two momentum states, prior
to creating molecules, were observed to cross pair, gener-
ating a third momentum state.

To produce molecules, sodium condensates were pre-
pared in a crossed optical dipole trap in the jF;mFi �
j1;�1i state. Trap frequencies of �!x;!y;!z� �

2�� �146 105 23� Hz yielded a typical peak density of
n0 ’ 4:3� 1014 cm�3 for 25� 106 atoms. Atoms were
then spin-flipped to the j1; 1i state, in which a 1 G wide
Feshbach resonance exists at 907 G [24].

The magnetic field sequence used to create and detect
Na2 molecules was identical to our previous work [15,25].
Briefly, the axial (z axis) magnetic field was ramped to
903 G in 100 ms. In order to prepare the condensate on the
negative scattering length side of the resonance, the field
was stepped up to 913 G as quickly as possible (	1 �s) to
jump through the resonance with minimal atom loss. After
waiting 1200 �s for the transient field to die down, the
field was ramped back down to 903 G in 50 �s to form
molecules. In order to remove nonpaired atoms from the
trap, the sample was irradiated with a 10 �s pulse of
resonant light. Because 903 G is far from the Feshbach
resonance, the mixing between atomic and molecular
states was small, and therefore molecules were transparent
to this ‘‘blast’’ pulse. By ramping the field back to 913 G,
molecules were converted back to atoms. Absorption im-
ages were taken at high fields (either at 903 G or 913 G),
with the imaging light incident along the axial direction of
the condensate. Bragg scattering of atoms and molecules
was carried out using two nearly orthogonal beams (�B �
84
), aligned such that particles were scattered along the x
axis of the trap. The beams were far detuned from atomic-
molecular transitions to limit spontaneous scattering. For
atoms the detuning was ’ 4 nm from the sodium D lines.
To find a suitable transition for the molecules, we scanned
the laser wavelength and measured the Rabi frequency for
Bragg transitions. Several narrow transitions were ob-
served, but not carefully characterized. For this work the
5-1  2005 The American Physical Society
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laser was set to 590.159 nm and detuned 	50 MHz from
the apparent resonance, yielding a Rabi frequency of
2 kHz.

Figure 1 shows time-of-flight images of Bragg scattering
for atoms and molecules. Because the kinetic energy of the
scattered particles was much larger than their mean-field
energy, individual momentum states were well resolved
in ballistic expansion. Both atoms and molecules
receive equal two-photon recoil momentum, pr �
2h sin��B=2�=�L, where �L is the wavelength of the
Bragg beams. However, scattered molecules move away
from the central peak with half the velocity of atoms,
owing to their doubled mass. Figures 1(c) and 1(d) show
Kapitza-Dirac scattering, where multiple atomic and mo-
lecular momentum states were populated due to the broad
frequency distribution of the short pulse (5 �s).

In order to study the coherence properties of the sample,
Bragg spectra [1] were taken with 	1 kHz resolution by
pulsing on the two laser beams (250 �s square pulse)
before releasing the particles from the trap. For noninter-
acting particles, the Bragg resonance occurs at a relative
detuning of �0 � �p2

r=2mh between the beams, where the
sign of �0 dictates the direction of outcoupling. Inter-
actions in a condensate give rise to a mean-field shift of
the resonance �� � 4n0U=7h, where U � 4� �h2a=m and
a is the scattering length. Figure 2 shows three spectra for
(a) atoms above the Feshbach resonance, as well as (b)
atoms and (c) molecules after sweeping through the reso-
a)

b)

c)

d)

Molecular Momentum (pr)

Atomic Momentum (p )
1-1 20-2

1-1 20-2

r

FIG. 1. Bragg diffraction of (a) atoms and (b) molecules.
Scattered particles recoil with identical momenta, pr.
However, during ballistic expansion, diffracted molecules ex-
pand with half the velocity of atoms, due to their doubled mass.
The pulse duration in each image was 200 �s. A shorter pulse
(5 �s) populated multiple (c) atomic and (d) molecular momen-
tum states. The halos in (c) are due to collisions between
different momentum states [36]. The time of flight in each image
is 17 ms.
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nance. The reduced mean-field shift for atoms below the
resonance [Fig. 1(b)] can be attributed to inelastic losses
caused by passing through the resonance. Atoms below the
resonance coexisted with a small fraction of molecules
(2%). The peak output for each set of data is normalized
to 1. The actual peak outcoupled fractions were 0.06 for the
atoms and 0.5 for the molecules. The atomic signal was
kept intentionally low to minimize collisions which make
the data analysis difficult [see halos in Fig. 1(c)]. As
expected from the resonance condition, molecular reso-
nances occur at half the frequency of atomic resonances.

Two mechanisms contribute to the fundamental width of
the Bragg resonance [1,26]. For a parabolic density distri-
bution, the finite size of the sample yields a momentum
spread

��p � 1:58
pr

2�mx0
; (1)

where x0 is the Thomas-Fermi radius. In addition, the
inhomogeneous density distribution of the sample pro-
duces a spread in mean-field energy

��n �

��������
8

147

s
n0U
h
: (2)

The fundamental width is approximately given by the
quadrature sum of these two broadening mechanisms

�� �
�������������������������
��2

n � ��2
p

q
.

The fundamental width, ��, and measured rms
width, �, are compared for each case in Table I. n0

and x0 were determined from the size of the condensate
in time of flight. The measured widths cannot be accounted
for by fundamental broadening mechanisms alone.
For atoms above resonance, the fundamental width is
�� � 1:39 kHz, compared to the measured value of
1
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FIG. 2. Bragg spectra for atoms and molecules. In (a) the
spectrum is taken for a pure atomic sample above the
Feshbach resonance (913 G). (b) and (c) are spectra of atoms
and molecules, respectively, below the resonance (903 G). In (c)
atoms were removed from the trap with resonant light to limit
losses due to atom-molecule collisions. The Bragg resonance
condition for molecules occurs at half the frequency of the
atomic resonance.
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4.46 kHz. Therefore, another broadening mechanism must
contribute 	4 kHz to the width. Most likely this is due to
Doppler broadening caused by random center-of-mass mo-
tion and other collective excitations of the condensate. This
was investigated by mixing two frequencies into each
Bragg beam to outcouple particles in both �x directions.
For particles at rest, the outcoupling should always be
symmetric. However, we observe the ratio of outcoupled
particles in either direction to fluctuate. In addition, we
measure a small, consistent shift in the Bragg spectrum,
indicating a drift velocity. A line broadening of 4 kHz
corresponds to a velocity of ’ 2 mm=s, or a vibrational
amplitude of ’ 2 �m (compared to x0 � 13 �m). This is
not unreasonable, because the field ramping scheme used
to bring the atoms to high field is violent and may induce
collective excitations such as breathing modes.

Despite vibrational noise making the dominant contri-
bution to the width of the spectra, the measured values are
still narrow enough to indicate quantum degeneracy. For a
given �, the corresponding temperature for a thermal
distribution of particles is

T �
mh2�2

kBp
2
r
: (3)

Thus, for an rms width of 4.5 kHz, the temperature for a
thermal distribution of molecules would be 20 nK, com-
parable to a previous value obtained using a time-of-flight
technique [15]. The BEC transition temperature for our
trap parameters [27] and 5� 104 molecules is much higher
(115 nK). This demonstrates a deeply degenerate, purely
molecular sample, where as previous experiments have
demonstrated coherent admixture of molecular character
into an atomic BEC [28].

The molecular Bragg spectrum showed a surprisingly
large shift of �� � 625 Hz. If interpreted as a mean-field
shift, this would imply either a very high density (possible
due to a spatial collapse) or an anomalously large molecu-
lar scattering length outside the Feshbach resonance.
Further study is necessary.

The spatial phase of the expanding molecular cloud was
directly imaged using an autocorrelation method [29],
which gives rise to the self-interference of the molecular
sample (see Fig. 3). To accomplish this, two identical
copies of the sample were made using a short Kapitza-
TABLE I. Fundamental width (��), measured rms width (�),
and the corresponding temperature (T), assuming a thermal
distribution.

Spectrum �� (kHz) � (kHz) T (nK)

Atoms (above) 1.39 4.46(17) 10
Atoms (below) 1.03 4.50(60) 10
Molecules 0.36a 4.53(14) 20

aThis lower bound assumes that the molecules have the same
spatial profile as the atoms, which our results indicate is not the
case.

04040
Dirac pulse (10 �s), applied after 2 ms of ballistic expan-
sion. The copies, with momentum �pr, moved away from
the zero momentum peak for time �t before an identical
pulse recombined them with the original. This type of
interferometer has three readout ports, with momenta 0,
�pr. The straightline interference fringes are character-
istic of a quadratic spatial phase. We observe fringe con-
trast as high as 50% and a fringe spacing consistent with
�f � ht=md [30], where d � pr�t=m is the distance the
copies moved between pulses [31]. Interference fringes can
only be resolved for small d. Therefore, this method cannot
be used to observe coherence lengths longer than those
inferred from Bragg spectroscopy. It should be noted that
the appearance of interference fringes does not imply that
the sample is condensed. Rather, it demonstrates only that
the coherence length in time of flight is longer than the
separation d. Therefore, similar interference can also be
observed for a cloud of thermal atoms [32,33].

The conversion of atoms to molecules may be viewed as
the atom optic equivalent of frequency doubling [34]. The
relevant Hamiltonian for the atom-molecule coupling has
the same form as that for the optical frequency doubling
process:

ay2mamam; (4)

where am is the annihilation operator for the atomic field
and ay2m is the creation operator for the molecular field. The
measurement of the Bragg spectrum shows that the sharp
‘‘linewidth’’ of the seed (atom) laser is inherited by the
molecular laser. In nonlinear optics, photon interactions are
Momentum (pr)
-1 10

FIG. 3. Matter wave interference of molecules. (a) The mo-
lecular sample is split with a short Kapitza-Dirac pulse, creating
two identical copies with momenta �pr. (b),(c) After the copies
have separated for time �t � 100 �s, a second pulse recom-
bines them, giving rise to interference in each momentum
component. The time of flight in each image is 12 ms.
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FIG. 4. Sum-frequency generation of atomic matter waves.
(a) Atoms were initially prepared in momentum states 0, 1.
(b) By sweeping through the Feshbach resonance, atoms com-
bine to form molecules with momenta 0, 1, and 2. Momentum
state 1 is the sum frequency of the two atomic matter waves. The
‘‘nonlinear medium’’ is provided by the atomic interactions. The
time of flight in each image is 17 ms.
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typically mediated by a refractive medium. Here, the non-
linearity arises from the atoms themselves, in the form of
s-wave interactions. The high density, or ‘‘brightness,’’ of
the source, together with the enhanced interactions at the
Feshbach resonance provide the means to combine two
matter waves. By combining two disparate matter waves,
rather than identical ones, we extend the analogy of fre-
quency doubling to the more general process of sum-
frequency generation. To do this, atoms were initially
prepared in momentum states 0, 1 (in units of pr). By
sweeping through the resonance, molecules were produced
in three momentum states: 0, 1, and 2 (see Fig. 4). States 0
and 2 are simply the frequency doubled components of the
two initial matter waves. State 1, however, results from
cross pairing between the initial momentum states and is
thus their sum frequency. This is the first time that a
Feshbach resonance was observed between atoms colliding
with a controlled nonvanishing momentum. The Feshbach
resonance should be slightly shifted compared to the reso-
nance for atoms at rest, which reflects the same physics
encountered in the temperature dependence of the position
of the resonance [35].

In conclusion, we have demonstrated coherent molecu-
lar optics using standing light waves. The ability to coher-
ently convert atoms into molecules makes molecular optics
even richer than atom optics. In addition, the techniques
demonstrated in this Letter could prove useful for probing
molecules formed in quantum-degenerate Fermi systems,
and possibly even Cooper pairs.
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LETTERS

Evidence for superfluidity of ultracold fermions
in an optical lattice
J. K. Chin1, D. E. Miller1, Y. Liu1, C. Stan1{, W. Setiawan1, C. Sanner1, K. Xu1 & W. Ketterle1

The study of superfluid fermion pairs in a periodic potential has
important ramifications for understanding superconductivity in
crystalline materials. By using cold atomic gases, various models of
condensed matter can be studied in a highly controllable envir-
onment. Weakly repulsive fermions in an optical lattice could
undergo d-wave pairing1 at low temperatures, a possible mech-
anism for high temperature superconductivity in the copper
oxides2. The lattice potential could also strongly increase the crit-
ical temperature for s-wave superfluidity. Recent experimental
advances in bulk atomic gases include the observation of fer-
mion-pair condensates and high-temperature superfluidity3–8.
Experiments with fermions9–11 and bosonic bound pairs12,13 in
optical lattices have been reported but have not yet addressed
superfluid behaviour. Here we report the observation of distinct
interference peaks when a condensate of fermionic atom pairs is
released from an optical lattice, implying long-range order (a
property of a superfluid). Conceptually, this means that s-wave
pairing and coherence of fermion pairs have now been established
in a lattice potential, in which the transport of atoms occurs by
quantum mechanical tunnelling and not by simple propagation.
These observations were made for interactions on both sides of a
Feshbach resonance. For larger lattice depths, the coherence was
lost in a reversible manner, possibly as a result of a transition from
superfluid to insulator. Such strongly interacting fermions in an
optical lattice can be used to study a new class of hamiltonians with
interband and atom–molecule couplings14.

Previous experiments showing long-range phase coherence in
Bose–Einstein condensates (BECs) and in fermion superfluids used
ballistic expansion to observe the interference of two independent
condensates15, vortex lattices8,16,17 or interference peaks after release
from an optical lattice18,19. However, for strongly interacting fer-
mions, elastic collisions can change the momentum distribution
and wash out interference peaks. For an initially superfluid cloud,
such dissipative dynamics corresponds to superfluid flow faster than
the critical velocity. Consistent with this expectation is the obser-
vation that a strongly interacting Fermi superfluid initially contain-
ing distinct momentum components yielded a broad diffuse cloud
after expansion (Fig. 1). This issue was addressed by using a magnetic
field ramp that quickly increased the detuning from a Feshbach res-
onance, taking the system out of the strongly interacting regime and
enforcing ballistic expansion. In previous studies of strongly inter-
acting Fermi gases, magnetic field sweeps were applied to prevent
fermion pairs above the Feshbach resonance from dissociating6,7,20 .In
contrast, our experiment required a magnetic field sweep both above
and below the Feshbach resonance to avoid elastic collisions.

Our experiments used a balanced mixture of 6Li fermions in the
two lowest hyperfine states. Evaporative cooling produced a nearly
pure fermion pair condensate that was adiabatically loaded into a

three-dimensional optical lattice. A broad Feshbach resonance
centred at 834 G enabled tuning of the interatomic interactions over
a wide range. On resonance, a bound molecular state becomes degen-
erate with the open atomic scattering channel, leading to a divergence
in the scattering length a. Here we explore the region of strong inter-
actions, also known as the BEC–BCS (Bardeen–Cooper–Schrieffer)
crossover, in which the magnitude of the interaction parameter jkFaj
is greater than unity, and kF is defined as the peak Fermi wavevector
of a two-component non-interacting mixture of 6Li atoms. In the
crossover region, pairing occurs as a result of many-body interac-
tions. Below resonance, for strong interactions, the bare two-body
state has a bond length larger than the interatomic spacing and is
irrelevant. In a lattice, atom pairs above and below the resonance can
be confined to one lattice site11, and crossover physics may require an
occupation larger than or equal to one.

The peak pair filling factor of the lattice was about unity. At
this density in the bulk, the fermion pair size is on the order of
1/kF 5 170 nm, comparable to the lattice spacing of 532 nm. To probe
the momentum distribution, we ramped the magnetic field out of the
strongly interacting regime as fast as technically possible (about
150 ms) and then turned off the confining potential. Absorption

1Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
USA. {Present address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
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Figure 1 | Dissipative collisions during expansion of a strongly interacting
fermionic superfluid. The schematic shows the time sequence of the
magnetic field ramp used throughout this paper. A one-dimensional optical
standing wave was pulsed onto the superfluid at different magnetic fields Bp

(indicated by arrows at 822 G (a), 749 G (b) and 665 G (c)) during expansion,
creating particles at twice the photon recoil30. Absorption images taken at the
time marked with the cross show distinct momentum peaks only at magnetic
fields Bp # 750 G, where kFa # 1. At higher magnetic fields, the peaks blurred
into a broad diffuse cloud as a result of the larger collision cross-section.
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images taken after 6.5 ms of expansion reveal sharp peaks at the
reciprocal lattice vectors—the signature of long-range coherence, a
strong indicator for superfluidity.

We observed these interference peaks at magnetic fields both above
and below the Feshbach resonance (Fig. 2). The six first-order dif-
fracted peaks are clearly visible around the zero momentum fraction
and their positions correspond to the expected momentum quanta of
2BkL carried by molecules of mass 2m, where kL is the lattice wave-
vector. At high magnetic fields (Fig. 2d) the visibility of the interfer-
ence peaks decreased and some additional heating was observed. This
degradation could be due to a higher fraction of thermal atoms as we
approached the BCS limit, but it was not studied in detail.

The narrow interference peaks clearly reveal the presence of a
macroscopic wavefunction possessing long-range phase coherence.
The separation between the interference peaks relative to their width
gives an estimate of the coherence length of about ten lattice sites.
This estimate is a lower bound, because effects of finite resolution and
mechanisms of residual broadening have been neglected. With unity
occupation, and in the absence of any discernible background at
magnetic fields near the Feshbach resonance, this implies a minimum
phase space density of 103 and shows that our samples are deep in the
quantum-degenerate regime. In previous studies of ultracold Bose
and Fermi gases, the appearance of a condensate fraction and long-
range phase coherence was shown to occur concurrently with the
possibility to excite superfluid flow8,16,17,21. Superfluid hydro-
dynamics is usually regarded as the direct proof for superfluidity.
However, all reports of superfluidity of bosons in three-dimensional
optical lattices have relied solely on observations of sharp interfer-
ence peaks and inferred superfluidity from the established connec-
tion between long-range coherence and superfluidity19,22. Similarly,
our observations directly show long-range coherence and indirectly
show superfluidity of fermion pairs in an optical lattice.

For deep lattices, breakdown of superfluid behaviour has been
observed for weakly interacting BECs of different bosonic species19,23.
This phase transition to the Mott-insulator state occurs when on-site
interactions start to suppress atom number fluctuations and the
system undergoes a transition from a delocalized superfluid

described by a macroscopic wavefunction to a product of Wannier
states tightly localized at each lattice site. Experimentally, this is
manifested as a smearing of the distinct 2BkL interference peaks.

Figure 3 shows the change in the coherence properties when the
lattice depth was increased. The interference peaks became more
pronounced initially, because of increased modulation of the wave-
function. The interference peaks began to smear out, rapidly giving
way to a featureless cloud, beyond a critical lattice depth Vc < 6Er,
where Er 5 B2kL

2/4m 5 h 3 15 kHz is the recoil energy. This indicates
that all phase coherence had been lost. On subsequent ramping down
of the lattice, interference peaks became visible again (Fig. 3h), show-
ing reversibility of the lattice ramp.

We repeated this sequence for a wide range of initial magnetic
fields, both above and below the resonance, and observed the same
marked change in the interference pattern. Figure 4 displays the peak
optical density of the interference peaks for different lattice depths at
representative fields. Across all fields, the sharp decrease in peak
optical density occurred between 5Er and 6Er. A further increase in
the magnetic field resulted in decreasing overall visibility, until inter-
ference peaks could no longer be observed regardless of lattice depth.

The loss of phase coherence with increasing lattice depth is con-
sistent with the qualitative description of the superfluid to Mott-
insulator transition. However, the usual single-band description is
no longer applicable, because in the strong-coupling regime the
on-site interaction strength should be comparable to the band gap
Bv, where v is the onsite trap frequency. Furthermore, Pauli block-
ing forbids the multiple occupation of the lowest state of an

a

b c d

Figure 2 | Observation of high-contrast interference of fermion pairs
released from an optical lattice below and above the Feshbach resonance.
a, The orientation of the reciprocal lattice, also with respect to the imaging
light. b–d, Interference peaks are observed for magnetic fields of 822 G
(b), 867 G (c) and 917 G (d). The lattice depth for all images is 5Er, and each
image is the average of three shots. The field of view is 1 mm 3 1 mm.
Density profiles through the vertical interference peaks are shown for each
image.
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Figure 3 | Interferograms of fermion pairs released from different lattice
depths V0 at a field of 822 G. Values of V0 are 0Er (a), 2.5Er (b), 4Er (c), 5Er

(d), 6Er (e), 7Er (f), 9Er (g) and 2.5Er (h). a–g were taken after an adiabatic
ramp up to the final V0, whereas h was taken after first ramping up to 10Er

before ramping down to 2.5Er.
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Figure 4 | Peak optical density of interference peaks for increasing lattice
depths at different magnetic fields. Values of magnetic fields are 842 G
(filled circles), 892 G (open squares) and 942 G (filled triangles). Peak optical
densities were estimated from fits to the peaks, including background
subtraction. The inset shows a sample density profile of the central and one
pair of interference peaks (dotted line), with a bimodal fit to one side peak
(solid line). Each point is the average of three different images with six
interference peaks per image. Error bars show s.d.
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individual lattice site by identical fermions, and modification of the
single-particle tunnelling rate is expected as a result of virtual pair-
breaking transitions14. One may still be tempted to use the standard
bosonic Hubbard model and estimate the critical lattice depth Vc for
an assumed value of onsite interaction energy U 5 Bv and non-
interacting, single-particle tunnelling J, but the obtained Vc < 3Er

is significantly smaller than our observation, which is in turn much
smaller than the Vc . 10Er observed for weakly interacting atomic
BECs19,23. Together with the observed insensitivity of Vc to the mag-
netic field, this shows that models based on weak interactions are
inadequate.

Figure 3h shows the reversibility of the transition from a long-
range coherent state to a state without strong coherence. We now
study the timescale for this recoherence, by analogy with similar
measurements performed across the transition from superfluid to
Mott insulator in atomic BECs19. Figure 5 shows that phase coher-
ence was restored on a submillisecond timescale, on the order of the
single-particle tunnelling time of about 500 ms (for a shallow lattice of
2.5Er). When the same lattice ramp sequence was applied to a super-
fluid that had been dephased by a magnetic field gradient19, the
system did not regain phase coherence on the timescales that we
probed. Evaporative cooling is therefore negligible during this time.
The short recoherence time of the condensate is evidence that the
system stayed in its ground state or at least in a low-entropy state
when the lattice was ramped up.

Figure 5 also provides evidence that the system could not recohere
during the 150-ms magnetic field ramp. In Fig. 3h, the central peak is
well fitted by a bimodal distribution with a width of 35 mm, in clear
contrast to the gaussian width of 105 mm obtained from Fig. 5 after
150 ms. We therefore conclude that the observed interference patterns
in Fig. 1 reflect the coherence of the cloud at the initial magnetic field,
in the strongly interacting regime.

We have shown long-range phase coherence of fermion pairs in an
optical lattice in the BEC–BCS crossover region by observing sharp
interference peaks during ballistic expansion. This indicates that we
have achieved s-wave pairing and superfluidity in a lattice potential.
Further studies will reveal how the pair wavefunction is affected
by confinement24, and whether the lattice shifts the BEC–BCS cross-
over away from the Feshbach resonance25. The loss of coherence
during the lattice ramp up and the rapid recoherence are character-
istic of a Mott insulator. However, definitive proof will require a

better understanding of the unitarity-limited interactions in such a
Fermi system. Recent theoretical work14,26 predicts that strongly
interacting fermions in an optical lattice feature multiband couplings
and next-neighbour interactions and can realize the important t–J
and magnetic XXZ models of condensed-matter theory. This demon-
strates that such atomic systems are an ideal laboratory for the
exploration of novel condensed-matter physics.

METHODS

Clouds of superfluid fermion pairs were created in a new experimental setup27,28

by using techniques similar to those described elsewhere8. In brief, a combina-

tion of laser cooling and sympathetic cooling of spin-polarized fermions by

bosonic 23Na was followed by a spin transfer to create a two-component

Fermi gas, allowing further cooling through direct evaporation of the fermions.

As the fermions cooled, they formed pairs that Bose-condensed.

Estimates of the scattering length, and hence the interaction parameter, from

the magnetic field were obtained with a(B) 5 21,405a0[1 1 300/(B 2 834)]

[1 1 0.0004(B 2 834)] (ref. 29), where B is measured in gauss and a0 is the

Bohr radius. The calibration of the magnetic field in our system had an uncertainty

of about 5 G.

Evaporation was performed at a magnetic field of 822 G, at which strong

interactions permitted efficient evaporation. An estimated average final

number of N < 2 3 105 6Li pairs and harmonic trapping frequencies of

nx,y,z 5 (270,340,200) Hz gave a trap depth of 1.7mK and a Fermi energy of

EF 5 kB 3 1.4mK, where EF 5 B (6N)1/3 and is the average trapping fre-

quency. After evaporation, the magnetic field was brought to a desired value

B0 in 20 ms and the condensate was allowed to equilibrate for a further 200 ms.

Before ramping to values of B0 on the BCS side, we also recompressed the optical

trap to (340,440,270) Hz and 2.2 mK depth in 100 ms to accommodate the larger

Fermi clouds above the resonance7.

A three-dimensional optical lattice was formed from three optical standing

waves, oriented such that the resulting unit cell had a sheared cubic structure,

with one axis tilted about 20u from the normal for reasons of optical access (see

Fig. 1a)23. The incident laser beams were focused down to the condensate with

waists of about 90 mm, then retroreflected and overlapped at the condensate to

generate the standing-wave potentials. All lattice light was derived from a 1,064-

nm single-frequency fibre laser, and each beam was detuned by tens of MHz with

respect to the others to eliminate interference between different beams.

The lattice potential was imposed on the condensate by adiabatically increas-

ing the intensity of the laser beams to a variable final value V0. The calibration of

V0 had an uncertainty of about 20%. A simple linear ramp with a constant rate

dV0/dt of 0.5Er ms21 was used unless otherwise specified. This satisfies the inter-

band adiabaticity condition of dV0/dt= 16Er
2/B.

Ballistic expansion for the detection of the different momentum components

was provided by a magnetic field sequence (shown in Fig. 1) that quickly brought

the system out of the strongly interacting regime when all confinement was

switched off. During the magnetic field ramp of about 150ms, the lattice potential

was kept on. The first 2 ms of expansion took place at 470 G, at which the

molecules are tightly bound, before the field was ramped back up to 730 G in

the next 4.5 ms, at which the weakly bound molecules strongly absorb light near

the atomic resonance line and could be observed by absorption imaging. The

specific magnetic field sequence was chosen to minimize collisions within tech-

nical capabilities.
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Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS
crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most
robust for resonant atomic interactions. Critical velocities were determined from the abrupt onset of
dissipation when the velocity of a moving one-dimensional optical lattice was varied. The dependence of
the critical velocity on lattice depth and on the inhomogeneous density profile was studied.
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The recent realization of the BEC-BCS crossover in
ultracold atomic gases [1] allows one to study how bosonic
superfluidity transforms into fermionic superfluidity. The
critical velocity for superfluid flow is determined by the
low-lying excitations of the superfluid. For weakly bound
fermions, the (Landau) critical velocity is proportional to
the binding energy of the pairs, which increases monotoni-
cally along the crossover into the Bose-Einstein condensa-
tion (BEC) regime. However, the speed of sound, which
sets the critical velocity for phonon excitations, is almost
constant in the BCS regime, but then decreases monotoni-
cally on the BEC side, since the strongly bound molecules
are weakly interacting. At the BEC-BCS crossover, one
expects a rather narrow transition from a region where
excitation of sound limits superfluid flow, to a region where
pair breaking dominates. In this transition region, the
critical velocity is predicted to reach a maximum [2– 4].
This makes the critical velocity one of the few quantities
that show a pronounced peak across the BEC-BCS cross-
over in contrast to the chemical potential, the transition
temperature [5], the speed of sound [6,7], and the frequen-
cies of shape oscillations [8], which all vary monotonically.

In this Letter, we report the first study of critical veloc-
ities across the BEC-BCS crossover, where a Feshbach
resonance allows the magnetic tuning of the atomic inter-
actions, and find that superfluid flow is most robust near the
resonance. Our observation of a pronounced maximum of
the critical velocity is in agreement with the predicted
crossover between the two different mechanisms for
dissipation.

Critical velocities have been determined before in
atomic BECs perturbed by a stirring beam [9–11] as well
as by a 1D moving optical lattice [12]. In both cases, the
inhomogeneous density of the harmonically trapped sam-
ple had to be carefully accounted for in order to make
quantitative comparisons to theory. Here we mitigate this
problem by probing only the central region of our sample
with a tightly focused moving lattice formed from two
intersecting laser beams. For decreasing lattice depths,
the critical velocity increases and, at very small depths,

approaches a value that is in agreement with theoretical
predictions.

In our experiments, we first create a superfluid of 6Li
pairs according to the procedure described in previous
work [13]. Forced evaporative cooling of an even mixture
of the two lowest hyperfine states is performed at a mag-
netic field of 822 G, on the BEC side of a broad Feshbach
resonance centered at B0 � 834 G. This results in a nearly
pure Bose-Einstein condensate of N � 5� 105 pairs in a
cross optical dipole trap with harmonic trapping frequen-
cies �x;y;z � �65; 45; 50� Hz. The Fermi energy of the sys-
tem is EF � h ���6N�1=3 � h� 7:6 kHz. To form the
moving lattice, we focus two phase-locked 1064 nm laser
beams to intersect at the sample with an angle of �90�

(see Fig. 1). The resulting 1D lattice has a spatial period
of �L � 0:75 �m. A frequency difference between the
two beams of �� causes the lattice to move with
velocity vL � �L��. The beams have e�2 waists of 20
and 60 �m, respectively, and address a relatively homoge-
neous region at the center of the cloud which has Thomas-
Fermi radii Rx;y;z � �63; 91; 82� �m. The minimum den-
sity at the position of the e�2 waist is 42% of the central
density.

The lattice which necessarily varies in depth across the
sample, is characterized by its peak depth V0 specified in
units of EF or the recoil energy Er � h2=�8m�2

L� � h�
7:3 kHz, where m is the molecular mass. The lattice depth
is calibrated using Kapitza-Dirac scattering. Because of the
inhomogeneity of the lattice, the uncertainty is 40%. The
lattice depths explored in this Letter are sufficiently small
such that motion induced in the laboratory frame is negli-
gible, in contrast to [14].

The lattice moving at a constant velocity is adiabatically
ramped up and held for a time t up to 2 s, after which the
lattice is ramped down and all confinement is switched off.
As in previous work [13], a fast magnetic field ramp is used
to reduce strong interactions in order to probe the center-
of-mass momentum distribution of the pairs. Subsequently,
absorption imaging is done on the atomic resonance line at
730 G. A bimodal fit reveals the number of pairs remaining
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in the condensate Nc, providing a measure of the heating
incurred during application of the moving lattice.

Figure 1 illustrates the characteristic dependence of
dissipation on the velocity of the moving lattice. At low
velocities, the sample is unaffected. Above some critical
velocity vc, dissipation sets in abruptly. We determine vc
from a fit ofNc to the intersection of two lines with slopes 0
and �:

 Ncond�v� � Ncond�0�f1�max	0; ��v� vc�
g: (1)

The critical velocity that we obtain from this procedure is
consistent for a large range of hold times, varying by less
than 15% when the hold time t is changed by a factor of 20.
We explore the BEC-BCS crossover by adiabatically ramp-
ing the magnetic field to different values after evaporation
and repeating the measurement as before. The crossover is
parametrized by the interaction parameter 1=kFa, where kF
is the Fermi wave vector and a is the B-field dependent
s-wave scattering length [15]. Again, we observe a thresh-
old for dissipation.

Figure 2 shows the measured critical velocity throughout
the BEC-BCS crossover. The maximum near resonance is
consistent with the picture of a crossover between two
different types of excitation, as discussed in the introduc-
tion, and confirms that superfluidity is most robust on
resonance.

To illuminate the role of the inhomogeneous density
distribution, we performed experiments in which the entire
sample was perturbed by a uniform lattice. Lattice beams
with 80 �m waists probed a more tightly confined sample

of 2� 105 pairs, with spatial extent RTF ’ 37 �m. The
onset of dissipation seen in Fig. 3 is still striking, but now
loss is observed at much lower lattice velocities, in spite of
a larger Fermi energy EF � h� 12:4 kHz. Moreover, the
onset of dissipation is slightly more gradual. When the
magnetic field was varied across the Feshbach resonance,
we again found a maximum of the critical velocity near
resonance. The lowering of the critical velocity due to the
inhomogeneous density profile is expected, since at lower
density, both the speed of sound and (on the BCS side) the
pairing energy decrease. Although the critical velocity
should approach zero in the low density wings of the cloud,
we still observe a sudden onset of dissipation at a finite
velocity, similar to studies in Refs. [9–11], where a laser
beam pierced through the whole condensate, but in contrast
to studies reported in [12].

In the limit of vanishing perturbation, the critical veloc-
ity should be given by the Landau criterion. In Fig. 4 we
address the effects of a finite lattice potential in the original
lattice configuration, as depicted in Fig. 1. The critical
velocity is shown to be a decreasing function of V0, satu-
rating in the limit of low lattice depth (V0 � 0:03EF). This
behavior is consistent with numerical simulation [4,16].
Measurements at the smallest lattice depths had large un-
certainties, as the hold time required to observe a heating
effect of the lattice approached the natural lifetime of our
sample. For this reason, we studied the field dependence
(Fig. 2) at an intermediate lattice depth, where vc was more
well defined.

For comparison with theory we reference the local Fermi
velocity at the trap center vF � v0F�1� ��

�1=4 �

39 mm=s, where v0F �
���������������
2EF=m

p
is the Fermi velocity of

a noninteracting gas at the trap center, and � � �0:58 is a
universal parameter characterizing unitarity limited inter-

FIG. 2. Critical velocities throughout the BEC-BCS crossover.
A pronounced maximum was found at resonance. Data are
shown for a V0 � 0:2EF deep lattice, held for t � 500 ms.
The solid line is a guide to the eye.

Lattice Velocity

FIG. 1. Onset of dissipation for superfluid fermions in a mov-
ing optical lattice. (Inset) Schematic of the experiment in which
two intersecting laser beams produced a moving optical lattice at
the center of an optically trapped cloud (trapping beams not
shown). Number of fermion pairs which remained in the con-
densate Nc after being subjected to a V0 � 0:2EF deep optical
lattice for 500 ms, moving with velocity vL, at a magnetic field
of 822 G (1=kFa � 0:15). An abrupt onset of dissipation oc-
curred above a critical velocity vc, which we identify from a fit
to Eq. (1).
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actions [17–19]. For vanishing lattice depth, the observed
critical velocity at unitarity approaches vc=vF � 0:25. If
we use the local Fermi velocity vF;w at the e�2 waist of the
lattice, we obtain vc=vF;w � 0:34. The difference between
these values indicates the uncertainty due to residual den-
sity inhomogeneity. The local speed of sound in a Fermi
gas at unitarity is

 cs � vF;loc�1� ��
1=2=

���
3
p
� 0:37vF;loc: (2)

The critical velocity for pair breaking is

 vpair � ��
�������������������
�2 ��2

q
���=m�1=2 � 0:34vF;loc; (3)

with � � 0:50v2
F;loc=2m [17,19] and � � �1�

��v2
F;loc=2m. These two values should provide approxi-

mate upper bounds to the critical velocity at unitarity
[2,3]. It seems natural that the combination of both exci-
tation mechanisms lowers the critical velocity further.
Within these uncertainties, and those of the density, the
theoretical predictions agree with the experimental results.

Up until now, we have deferred a discussion of how the
moving lattice couples to the excitations. In a pure system
at zero temperature, one would expect the excitation spec-
trum to exhibit discrete resonances, where the perturbation
couples only to modes with the k vector of the lattice. On
the other hand, at finite temperature, it is possible that the
lattice drags along thermal atoms which are pointlike
perturbations and can create excitations at all k vectors.
Our observation that the dissipation sets in at a certain
threshold velocity and increases monotonically with ve-
locity is consistent with the participation of the thermal
component.

We further elucidated the role of thermal excitations by
varying the temperature. Gradually reducing the trap depth
fromU0 toUmin, during exposure to a lattice moving above
vc, will suppress the accumulation of a thermal compo-
nent. The lifetime in this case exceeded that for a sample
held at a fixed depth of either U0 or Umin. For Bose-
Einstein condensates, theoretical papers emphasized the
role of the thermal component in the Landau damping
process in a moving lattice [20,21]. This was confirmed
qualitatively in an experiment at Florence [12] in which the
lifetime of the sample was drastically improved by elimi-
nating the thermal atoms.

In our experiments, the clouds heated up during the
exposure to the moving lattice. Figure 5 shows the increase
in the number of thermal atoms and the loss in the total
number of atoms due to evaporative cooling. In an ideal-
ized model, where density is fixed, constant dissipation
would result in a linear decrease in the number of atoms
due to evaporative cooling. Our data show an accelerated
decrease, possibly reflecting increased dissipation due to
the increasing fraction of thermal atoms. However, an
accurate model should include the change in density (and
therefore critical velocity) during the exposure time.
Additional impurity atoms (e.g., sodium atoms) could
cause dissipation even at zero temperature and would allow
more controlled studies of the dissipation mechanism.
Unpaired atoms in clouds with population imbalance
may not play this role because of phase separation effects
[22].

Another possible dissipation mechanism in a lattice is
the creation of two excitations through a dynamical or
modulational instability. Such an instability [23] occurs
already for weakly interacting particles moving through a
lattice with momentum q, when they collide and scatter
into states with momenta q
 �q, analogous to optical
parametric generation [24]. This process is energetically

FIG. 4. Critical velocities at different lattice depths. The re-
sults show vc to be a decreasing function of lattice depth V0. In
the limit of low V0, vc converges to a maximum value of 0.25 vF.
Data were taken near resonance, at 822 G (1=kFa � 0:15) for
hold times t � 250, 500, 1000, 2000 ms (squares, diamonds,
circles, triangles).

FIG. 3 (color online). Effects of density inhomogeneity on the
critical velocity. A configuration in which the lattice beams
(80 �m) were larger than the trapped sample (37 �m) results
in loss in the condensate number Nc at significantly lower
velocity. Data are shown for a V0 � 0:15EF deep optical lattice
held for 200 ms at a magnetic field of 822 G.
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possible only above 0:5qB, where qB � h=2�L is the Bragg
momentum that defines the edge of the Brillouin zone. This
corresponds to a velocity v � 11 mm/s for fermion pairs
(and twice this value for single atoms). Since the highest
critical velocities we observe are slightly below this thresh-
old, and strongly decrease already for relatively small V0, it
is very unlikely, that dynamical instabilities play a role in
our experiments. Moreover, such instabilities should be
strongly modified by Pauli blocking. For our ratio of local
Fermi momentum to the Bragg momentum of 0.9, the first
band is nearly full in the center of the cloud. For Bose-
Einstein condensates, it has been recently predicted [25]
and experimentally shown [14] that strong interactions can
lower the threshold for the dynamical instability, close to
the Mott-insulator transition. The range of 1D lattice
depths explored here (V0 � 2Er) is far from the 1D
Mott-insulator regime. We have observed the loss of co-
herence which typically accompanies the superfluid to
Mott insulation transition to occur only beyond V0 ’ 25Er.

In conclusion, we have used a novel optical lattice
geometry to determine critical velocities in the BEC-BCS
crossover without the complications of strong density in-
homogeneity. This configuration could be applied to stud-
ies in atomic Bose gases which so far have been limited by
the inhomogeneous density [9–12]. In addition, it would be
interesting to study dynamical instabilities for fermions
and the role of Pauli blocking.
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