News: Research Highlights

Fri February 9, 2024

Technique could improve the sensitivity of quantum sensing devices

In quantum sensing, atomic-scale quantum systems are used to measure electromagnetic fields, as well as properties like rotation, acceleration, and distance, far more precisely than classical sensors can. The technology could enable devices that image the brain with unprecedented detail, for example, or air traffic control systems with precise positioning accuracy.    
News type:
Fri December 22, 2023

High-fidelity parallel entangling gates in atom arrays

Recently, neutral-atom arrays have emerged as a promising platform for quantum computing. Atom arrays are highly flexible and reconfigurable, allowing coherent control over hundreds of qubits and connectivity between any qubits in the array. The main outstanding challenge of using atom arrays has been to reduce errors in entangling operations, which rely on highly-excited atomic...
News type:
Fri December 15, 2023

Scalable Quantum Memory Control in Photonic Circuits

In a study published in “Nano Letters,” MIT and MITRE researchers describe an important advance in controlling spin quantum memories in photonic circuits. Their paper, “Selective and Scalable Control of Spin Quantum Memories in a Photonic Circuit,” offers a new approach for individual-qubit control even when the system is “under-actuated” — i.e., the number of...
News type:
Tue December 12, 2023

Programmable Quantum Simulators Meet Quantum Chemistry

In an interdisciplinary collaborative effort, a team of CUA members in the Yelin, Lukin, and Yao groups joined forces with computational quantum chemists in Martin Head-Gordon’s group (UC Berkeley) to develop a novel approach to simulate quantum properties of molecules and materials on state-of-the-art atomic quantum processors. Quantum chemistry is seen as a promising potential...
News type:
Mon December 11, 2023

Quantum-computing approach uses single molecules as qubits for first time

Platforms based on molecules manipulated using ‘optical tweezers’ might be able to perform complex physics calculations. Physicists have taken the first step towards building quantum computers out of individual molecules trapped with laser devices called optical tweezers. Two teams report their results in Science on 7 December in both cases making pairs of calcium monofluoride...
News type:
Tue October 31, 2023

Building Big Quantum Computers by Connecting Smaller Ones

Building quantum computers that can function despite their inherently noisy components is a long-standing goal for physicists. Quantum error correcting codes promise to make this possible, but to use them, physicists need to carefully choreograph the interactions between large numbers of qubits. Such scaling to large numbers of qubits is generally anticipated to require connecting...
News type:
Wed October 25, 2023

Self-correcting quantum computers within reach?

Quantum computers promise to reach speeds and efficiencies impossible for even the fastest supercomputers of today. Yet the technology hasn’t seen much scale-up and commercialization largely due to its inability to self-correct. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way. Now, a new...
News type:
Fri April 14, 2023

Measuring Arbitrary Physical Properties in Analog Quantum Simulation (Choi Group)

Quantum simulators—carefully engineered and programmable quantum systems—provide an exciting avenue to explore the laws of nature and to realize complex physical phenomena. However, current quantum simulators still lack the sophisticated controls needed to interrogate a prepared state in depth, limiting the information that can be extracted by measurements. Here, we propose a novel measurement protocol...
News type:
Tue April 11, 2023

Quantum Scrambling with Time-Reversal: A Powerful Tool for Exponentially Enhanced Metrology

The quantum analog of chaotic dynamics, quantum scrambling, spread quantum information exponentially fast within a quantum many-body system. Understanding how the information spread is a highly nontrivial and crucial question in the field of quantum information science (QIS). Recently, it has been theoretically argued that quantum scrambling is intimately connected with quantum metrology (QM), where...
News type:
Tue April 11, 2023

Field programmable spin arrays for scalable quantum repeaters

 In the progress report, it was noted that for “quantum computational advantage” in harnessing many-body quantum stages with spins, large scale control over thousands of spin qubits and their interaction was needed, but was limited by power consumption and cross-talk inherent in current microwave techniques. To this end, we analyzed the problem from first principles...
News type: