Mon July 13, 2020

Mirror symmetry breaks and determines exciton dipole orientation in atomically thin semiconductors

The structural engineering of van der Waals (vdW) heterostructures via stacking and twisting has been recently used to create moiré superlattices, enabling engineering of the optical and electronic properties of solid-state systems reminiscent to ultracold atomic gases. Indeed, recent experiments on transition metal dichalcogenides (TMDs), a class of layered vdW semiconductors, have shown that moiré...
News type:
Wed July 8, 2020

Scalable assembly of artificial atoms in photonic chips

A central goal in quantum information processing is the development of scalable quantum processors and quantum networks. Towards this end, solid-state “artificial atoms” such as colour centres in diamond are especially promising because they combine efficient optical interfaces, minutes of spin coherence, and potentially very-large-scale fabrication. Indeed, in the past 20 years of quantum engineering,...
News type:
Thu June 25, 2020

Single molecules assembled and under control!

In a recent publication in PRL, we demonstrate the assembly of a single molecule with full quantum state control – including both internal and external states – starting from a single pair of atoms. Molecules, compared to their atom counterparts, generally possess a much richer internal structure and can interact with each other via long-range...
News type:
Sat June 13, 2020

‘Photon crystals’ could be made using Rydberg atoms

Physicists in the US have come up with a way of making photons repel each other by sending them through an ultracold atomic gas. This astonishing feat could lead to the creation of “photon crystals” and exotic quantum states such as a Mott insulator.   Image caption: In vacuum optical system for photon-photon interactions.
News type:
Tue June 9, 2020

Black Lives Matter

CUA Equity Journal Club, every-other Wednesday at 1:30PM ET for students, postdocs, and faculty. Contact Alyssa Rudelis at for more details.
Sun June 7, 2020

Entanglement-based Optical Atomic Clock beats the Standard Quantum Limit

Optical lattice clocks (OLC) are widely recognized as the next golden standard for timekeeping. Over the past decades, researchers around the world have made the second the best characterized among all seven of International System of Units (SI units), reaching an unprecedented fractional stability at few parts-of-ten-Quintillion (1019). Despite the tremendous effort of improving technology...
News type:
Mon May 18, 2020

Observing the path less traveled boosts quantum gain

When probing the subtle effects of quantum mechanics, all the parameters in the system and its measurements need to be finely tuned to observe the result you are hoping for. So what happens when you gear everything towards detecting what you least expect?
Fri May 1, 2020

Committed to Caring Award, Paola Cappellaro

Quantum scientist Paola Cappellaro works to ensure students are at their “best state, and moving towards one better,” according to student nominators. Cappellaro effectively navigates the balance between attending closely to students’ needs while also giving them space to explore. Paola Cappellaro is a Professor of Nuclear Science and Engineering. She leads the Quantum Engineering...
News type:
Fri April 10, 2020

Bose polarons meet their fate at quantum criticality

An electron moving through the crystal lattice of a solid slightly attracts the ions on its path. The electron and the crystal deformations move together a “quasi-particle”, heavier than the bare electron – the so-called polaron. Such quasi-particles form the basis of descriptions of many solids. However, in modern materials, such as the high-temperature superconducting cuprates,...
News type:
Wed April 8, 2020

New “refrigerator” super-cools molecules to nanokelvin temperatures

For years, scientists have looked for ways to cool molecules down to ultracold temperatures, at which point the molecules should slow to a crawl, allowing scientists to precisely control their quantum behavior. This could enable researchers to use molecules as complex bits for quantum computing, tuning individual molecules like tiny knobs to carry out multiple...
News type: