People: Vladan Vuletic

Lester Wolfe Professor of Physics
Publications
  1. E. Pedrozo, S. Colombo, C. Shu, A. Adiyatullin, Z. Li, E. Mendez, B. Braverman, A. Kawasaki, V. Vuletic, D. Akamatsu, and Y. Xiao. Entanglement on an optical atomic-clock transition. Nature, 588:414–418, December 2020. View Abstract
  2. Y. Duan, M. Hosseini, K. Beck, V. Vuletic, Heralded Interaction Control between Quantum Systems. Phys. Rev. Lett., 124(223602), 2020.
  3. D. Gangloff, A. Bylinskii, V. Vuletic, Kinks and Structural Phase Transition in Few-Atom Chains. Phys. Rev. Research, 2(013380), 2020.
  4. U. Delic, V. Vuletic, M. Reisenbauer, K. Dare, D. Grass, N. Kiesel, and M. Aspelmeyer. Motional Quantum Ground State of a Levitated Nanoparticle from Room Temperature. Science, 367:892-895 , 2020.
  5. P. Samutpraphoot, T. Dordevic, P. Ocola, H. Bernien, C. Senko, V. Vuletic, M. Lukin, Strong coupling of two individually controlled atoms via a nanophotonic cavity. Physical Review Letters, 124(063602), February 2020.
  6. U. Delic, V. Vuletic, M. Reisenbauer, D. Grass, N. Kiesel, and M. Aspelmeyer. Cavity Cooling of a Levitated Nanosphere by Coherent Scattering. Phys. Rev. Lett, 122(123602), March 2019.
  7. A. Urvoy, Z. Vendeiro, J. Ramette, V. Vuletic, and A. Adiyatullin. Direct laser cooling to Bose-Einstein condensation in a dipole trap. Phys. Rev. Lett., 122(203202), May 2019.
  8. A. Omran, H. Levine, A. Keesling Contreras, G. Semeghini, S. Ebadi, H. Bernien, A. Zibrov, H. Pichler, S. Choi, M. Endres, M. Greiner, V. Vuletic, M. Lukin, T. T. Wang, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, and T. Calarco. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science, 365(6453):570-574, August 2019.
  9. A. Kawasaki, B. Braverman, E. Pedrozo, C. Shu, S. Colombo, Z. Li, I. Ozel, W. Chen, D. Levonian, Y. Xiao, V. Vuletic, L. Salvi, A. Heinz, and D. Akamatsu. Geometrically asymmetric optical cavity for strong atom-photon coupling. Phys Rev A January 2019.
  10. H. Levine, A. Omran, A. Keesling Contreras, H. Bernien, M. Greiner, V. Vuletic, M. Lukin, M. Endres, G. Torlai, B. Timar, E.P.L. va Nieuwenburg, and R.G. Melko. Integrating neural networks with a quantum simulator for state reconstruction. Physical Review Letters, 123(230504), December 2019.
  11. B. Braverman, A. Kawasaki, E. Pedrozo, S. Colombo, C. Shu, Z. Li, E. Mendez, Y. Xiao, V. Vuletic, M. Yamoah, L. Salvi, and D. Akamatsu. Near-Unitary Spin Squeezing in 171Yb. Phys. Rev. Lett., 122(223203), June 2019.
  12. H. Levine, A. Keesling Contreras, G. Semeghini, A. Omran, T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletic, H. Pichler, M. Lukin, Parallel Implementation of High-fidelity Multi-qubit Gates with Neutral Atoms. Physical Review Letters, 123(170503), October 2019.
  13. A. Keesling Contreras, A. Omran, H. Levine, H. Bernien, H. Pichler, S. Choi, M. Endres, M. Greiner, V. Vuletic, M. Lukin, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, and P. Zoller. Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature, 568:207–211, April 2019.
  14. E. Demler, M. Greiner, M. Lukin, R. Ma, K. Ni, M. Schleier-Smith, V. Vuletic, M. Zwierlein, E. Altman, K.R. Brown, G. Carleo, L.D. Carr, C. Chin, B. DeMarco, S.E. Economou, M.A. Eriksson, K.-M.C. Fu, K.R.A. Hazzard, R.G. Hulet, A.J. Kollar, B.J. Lev, X. Mi, S. Misra, C. Monroe, K. Murch, Z. Nazario, A.C. Potter, and et al. Quantum Simulators: Architectures and Opportunities. ArXiv December 2019.
  15. B. Braverman, E. Pedrozo, A. Kawasaki, V. Vuletic, M. Yamoah, and B. Zlatkovic. Robust kHz-linewidth distributed Bragg reflector laser with optoelectronic feedback. Optics Express, 27(26):37714-37720, 2019.
  16. P. Solano, Y. Duan, Y. Chen, A. Rudelis, V. Vuletic, and C. Chin. Strongly Correlated Quantum Gas by Direct Laser Cooling. Physical Review Letters, 123(173401), October 2019.
  17. H. Levine, A. Keesling Contreras, A. Omran, H. Bernien, A. Zibrov, M. Endres, M. Greiner, V. Vuletic, M. Lukin, and S. Schwartz. High-fidelity control and entanglement of Rydberg atom qubits. Phys. Rev. Lett, 121(123603), 2018.
  18. H. Levine, A. Keesling Contreras, A. Omran, H. Bernien, A. Zibrov, M. Endres, M. Greiner, V. Vuletic, M. Lukin, and S. Schwartz. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. Phys. Rev. Lett, 121(123603), September 2018.
  19. B. Braverman, A. Kawasaki, V. Vuletic, Impact of Non-Unitary Spin Squeezing on Atomic Clock Performance. New Journal of Physics October 2018.
  20. A. Bylinskii, D. Gangloff, K. Islam, V. Vuletic, D. Gelbwaser-Klimovsky, and A. Aspuru-Guzik. Single-Atom Heat Machines Enabled by Energy Quantization. Phys. Rev. Lett. , 120(170601), 2018.
  21. V. Vuletic, L. Salvi, N. Poli, and G.M. Tino,. Squeezing on momentum states for atom interferometry. Phys. Rev. Lett. , 120(033601), 2018.
  22. M. Hosseini, Y. Duan, K. Beck, Y. Chen, V. Vuletic, Cavity cooling of many atoms. Physical Review Letters , 118(183601), May 2017.
  23. J. Hu, A. Urvoy, Z. Vendeiro, W. Chen, V. Vuletic, and V. Crepel. Creation of a Bose-condensed gas of rubidium 87 by laser cooling. Science, 358:1078-1080, November 2017.
  24. I. Counts, D. Gangloff, A. Bylinskii, J. Hur, K. Islam, V. Vuletic, Multislip Friction with a Single Ion. Phys. Rev. Lett. , 119(043601), July 2017.
  25. Q. Liang, A. Venkatramani, S. Cantu, T. Nicholson, M. Gullans, A. Gorshkov, J. Thompson, M. Lukin, V. Vuletic, and C. Chin. Observation of three-photon bound states in a quantum nonlinear medium. Science, 359(6377):783-786, 2017.
  26. H. Bernien, A. Keesling Contreras, H. Levine, A. Omran, H. Pichler, S. Choi, A. Zibrov, M. Endres, M. Greiner, V. Vuletic, M. Lukin, and S. Schwartz. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551:579-584, 2017.
  27. J. Hu, W. Chen, H. Zhang, Z. Vendeiro, V. Vuletic, and A. Sorensen. Strictly non-classical behavior of a mesoscopic system. Physical Review A , 95(030105), March 2017.
  28. J. Thompson, T. Nicholson, Q. Liang, S. Cantu, A. Venkatramani, S. Choi, M. Lukin, V. Vuletic, I.A. Fedorov, D. Viscor, and T. Pohl. Symmetry-protected collisions between strongly interacting photons. Nature January 2017.
  29. V. Vuletic, M. Wang, W. Qu, P. Li, H. Bao, and Y. Xiao. Two-axis-twisting spin squeezing by multi-pass quantum erasure. Phys. Rev. A, 96(013823), July 2017.
  30. J. Hu, W. Chen, Z. Vendeiro, A. Urvoy, B. Braverman, V. Vuletic, Vacuum spin squeezing. Phys. Rev. A, 96(050301), November 2017.
  31. M. Endres, H. Bernien, A. Keesling Contreras, C. Senko, V. Vuletic, M. Greiner, M. Lukin, H. Levine, E.R. Anschuetz, and A. Krajenbrink. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science, 375(6315), November 2016.
  32. M. Gullans, J. Thompson, Q. Liang, V. Vuletic, M. Lukin, A. Gorshkov, and Y. Wang. Effective Field Theory for Rydberg Polaritons. Phys. Rev. Lett. , 117(113601), September 2016.
  33. M. Gullans, J. Thompson, Q. Liang, V. Vuletic, M. Lukin, and Y. Wang. Effective Field Theory for Rydberg Polaritons. Phys. Rev. Lett., 117(113601), September 2016.
  34. K. Beck, M. Hosseini, Y. Duan, V. Vuletic, Large conditional single-photon cross-phase modulation. PNAS, 113, June 2016.
  35. A. Bylinskii, D. Gangloff, I. Counts, V. Vuletic, Observation of Aubry-type transition in finite atom chains via friction. Nature Materials, 15, March 2016.
  36. M. Hosseini, K. Beck, Y. Duan, W. Chen, V. Vuletic, Partially Nondestructive Continuous Detection of Individual Traveling Optical Photons. Phys. Rev. Lett., 116(033602), April 2016.
  37. P. Komar, E. Kessler, V. Vuletic, M. Lukin, T. Topcu, A. Derevianko, and J. Ye. Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms. Phys. Rev. Lett., 117(060506), August 2016.
  38. P. Komar, E. Kessler, V. Vuletic, M. Lukin, T. Topcu, A. Derevianko, and J. Ye. Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms. Phys. Rev. Lett., 117(060506), August 2016.
  39. A. Eltony, D. Gangloff, M. Shi, A. Bylinskii, V. Vuletic, I. Chuang, Technologies for trapped-ion quantum information systems. Quantum Information Processing , 15, December 2016.
  40. J. Thompson, T. Peyronel, N. de Leon, V. Vuletic, M. Lukin, K. P. Nayak, and T. G. Tiecke. Efficient fiber-optical interface for nanophotonic devices. Optica, 2:70, 2015.
  41. A. Bylinskii, D. Gangloff, and V. Vuletic. Tuning friction atom-by-atom in an ion-crystal simulator. Science, 348:1115-1118, 2015.
  42. W. Chen, Q. Lin, M. Gullans, M. Lukin, and V. Vuletic. Cross Modulation of Two Laser Beams at the Individual-Photon Level. PHys. Rev. Letter, 113:113603, 2014.
  43. P. Samutpraphoot, Q. Lin, D. Gangloff, A. Bylinskii, B. Braverman, A. Kawasaki, V. Vuletic, S. Weber, C. Raab, and W. Kaenders. Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback. Opt. Express, 22:11592, 2014.
  44. L. Jiang, V. Vuletic, M. Lukin, J.B. Brask, and A.S. Sorensen. Fast Entanglement Distribution with Atomic Ensembles and Fluorescent Detection. Phys. Rev. A, 81:020303(R), 2010.
  45. V. Vuletic, I. Chuang, and J. Labaziewicz. Cavity Sideband Cooling of a Single Trapped Ion. Phys. Rev. Lett., 102:103001, 2009.
  46. M. Bajcsy, S. Hofferberth, T. Peyronel, M. Hafezi, A. Zibrov, V. Vuletic, M. Lukin, and V. Balic. Efficient All Optical Switching Using Slow Light Within a Hollow Fiber. Phys. Rev. Lett., 102:203902, 2009.
  47. M. Cetina, F. Orucevic, and V. Vuletic. Observation of cold collisions between Trapped Ions and Trapped Atoms. Phys. Rev. Lett., 102:223201, 2009.
  48. V. Vuletic, M. Lukin, E. Demler, D.E. Chang, V. Gritsev, and G. Morigi. Crystallization of Strongly Interacting Photons in a Nonlinear Optical Fibre. Nature Physics, 4:884-889, 2008.
  49. M. Cetina, A. Grier, I. Chuang, V. Vuletic, and J. Campbell. Bright Source of Cold Ions for Surface-Electrode Traps.. Phys. Rev. A, 76:41401, 2007.
  50. V. Vuletic, J. Simon, and A. T. Black. External-feedback laser cooling of Molecular gases. Phys. Rev. A, 75:051405, 2007.
  51. J. Simon, H. Tanji, and V. Vuletic. Interfacing Collective Atomic Excitations and Single Photons. Phys. Rev. Lett., 98:183601, 2007.
  52. J. Simon, H. Tanji, V. Vuletic, and S. Ghosh. Single-photon bus connecting spin-wave quantum memories. Nat. Phys., 3:765-769, 2007.
  53. J. Simon and V. Vuletic. High-brightness source of narrowband, identical-photon pairs. Science, 313 #5783:74-77, 2006.
  54. M. Cetina, J. Simon, V. Vuletic, Y.J. Lin, and I. Teper. Influence of grating parameters on the linewidths of external-cavity diode lasers. Appl. Opt., 45:9191-9197, 2006.
  55. V. Vuletic. Quantum networks: When superatoms talk photons. Nat. Phys., 2:801-802, 2006.
News
Sun February 7, 2021

‘Spooky action at a distance’ could create a nearly perfect clock

Physicists imagine a day when they will be able to design a clock that’s so precise, it will be used to detect subtle disturbances in space-time or to find the elusive dark matter that tugs on everything yet emits no light. The ticking of this clock will be almost perfect. That dream may not be far off:...
News type:
Fri January 22, 2021

Unraveling The Mysteries Of Time With Scientists From MIT

Turns out you don’t need to be a nuclear physicist to understand a new breakthrough in atomic timekeeping.

News type:
Thu December 17, 2020

New type of atomic clock keeps time even more precisely

Atomic clocks are the most precise timekeepers in the world. These exquisite instruments use lasers to measure the vibrations of atoms, which oscillate at a constant frequency, like many microscopic pendulums swinging in sync. The best atomic clocks in the world keep time with such precision that, if they had been running since the beginning...
News type:
Fri December 4, 2020

Researchers observe what could be the first hints of dark bosons

Extremely light and weakly interacting particles may play a crucial role in cosmology and in the ongoing search for dark matter. Unfortunately, however, these particles have so far proved very difficult to detect using existing high-energy colliders. Researchers worldwide have thus been trying to develop alternative technologies and methods that could enable the detection of...
News type:
Sat June 13, 2020

‘Photon crystals’ could be made using Rydberg atoms

Physicists in the US have come up with a way of making photons repel each other by sending them through an ultracold atomic gas. This astonishing feat could lead to the creation of “photon crystals” and exotic quantum states such as a Mott insulator.   Image caption: In vacuum optical system for photon-photon interactions.
News type:
Sun June 7, 2020

Entanglement-based Optical Atomic Clock beats the Standard Quantum Limit

Optical lattice clocks (OLC) are widely recognized as the next golden standard for timekeeping. Over the past decades, researchers around the world have made the second the best characterized among all seven of International System of Units (SI units), reaching an unprecedented fractional stability at few parts-of-ten-Quintillion (1019). Despite the tremendous effort of improving technology...
News type:
Mon May 18, 2020

Observing the path less traveled boosts quantum gain

When probing the subtle effects of quantum mechanics, all the parameters in the system and its measurements need to be finely tuned to observe the result you are hoping for. So what happens when you gear everything towards detecting what you least expect?
Mon March 30, 2020

Searching for new boson with isotope shift spectroscopy

Dark matter is one of the main unknowns in our understanding of the universe. There are numerous types and classes of candidates for dark matter. Light-force carriers may be exciting candidates given their potential for displaying intra-atomic forces that may be probed with precision atomic spectroscopy. They are so-far-unknown elementary bosons that may carry mass...
News type:
Mon March 30, 2020

Repulsive photons in a quantum nonlinear medium

Photons, the smallest energy carriers of light, interact extremely weakly in vacuum. However, realizing strongly interacting photons at the individual photon level is fascinating, as it allows people to use light to control light. This opens the possibility to implement quantum information science, to design all-optical quantum devices, and to form novel quantum many-body states...
News type:
Thu May 9, 2019

Near Unitary Squeezing

A group at the MIT led by Prof. Vladan Vuletić has recently generated significant amount of spin squeezing-a type of quantum entanglement-in an ultracold vapor of ytterbium-171. Spin squeezed states (SSS) can be used to overcome the standard quantum limit (SQL) which bounds state-of-the-art atomic sensors like optical clocks. The latter deploy a dilute vapor...
News type:
Mon April 22, 2019

Direct Laser Cooling Rubidium Atoms

A group at MIT led by Vladan Vuletic has recently created a Bose-Einstein Condensate (BEC) of rubidium atoms with a new method, direct laser cooling. Many researchers have attempted this elusive goal in the past, but due to various complications resorted to reaching BEC through evaporation instead. Compared to cooling through evaporation, laser cooling is...
News type:
Wed September 25, 2013

Scientists create never-before-seen form of matter

Wolfgang Ketterle, the John D. MacArthur Professor of Physics, was awarded a prize for graduate education for his courses 8.421 (Atomic and Optical Physics) and 8.422 (Atomic and Optical Physics II).
News type:
Thu July 4, 2013

MIT researchers build an all-optical transistor

To recognize and encourage outstanding research in Atomic, Molecular and Optical Physics by investigators who have held a Ph. D. for 10 years or less. The prize consists of $7,500 and a certificate citing the contributions made by the recipient. An allowance will be provided for travel expenses of the recipient to the Society meeting...
News type:
Fri September 9, 2011

Quantum computing with light

A research collaboration including CUA investigators at Harvard.
Tue September 8, 2009

Synopsis on the APS Website: Cooling with a cavity

This meeting will celebrate Professor Daniel Kleppner’s career of fundamental contributions in physics. An outstanding list of invited speakers will present the most recent and interesting topics in atomic physics.
News type:
Fri June 5, 2009

International Conference on Laser Spectroscopy in Japan

The 19th ICOLS conference takes place June 8-12 in Hokkaido, Japan, with CUA representation. Vladan Vuletic will report on a joint MIT-Harvard CUA experiment with Mikhail Lukin on switching of light with light using pulses containing only a few hundred photons. For a readable explanation of how to make light interact with light see the...
Mon May 18, 2009

Physics Viewpoint Article on “Efficient All-Optical Switching Using Slow Light within a Hollow Fiber”

A research collaboration including CUA investigators at Harvard.
News type:
Past Events
Fri May 4, 2018 2:00 pm
Location:MIT Papplardo Room (4-349)
Cheng Chin, University of Chicago
Richard Fletcher, MIT
Sandro Stringari, University of Trento

Please join us for an afternoon of talks by internal CUA speakers and specially invited outside speakers to celebrate the 20th anniversary of the discovery of Feshbach resonances.

Talks will discuss the history from theory to realization as well as  Feshbach resonances in various experimental applications

Reception to follow.

Event type:
Sat April 4, 2020 12:00 am

Virtual AMO Seminar series: Measurements of Isotope Shifts in Yb+ Search for Dark Matter

Location:Zoom
Event type: