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Abstract Many effects in the interaction between atoms and a cavity
that are usually described in quantum mechanical terms (cav-
ity quantum electrodynamics, cavity QED) can be understood
and quantitatively analyzed within a classical framework. We
adopt such a classical picture of a radiating dipole oscilla-
tor to derive explicit expressions for the coupling of single
atoms and atomic ensembles to Gaussian modes in free
space and in an optical resonator. The cooperativity parame-
ter of cavity QED is shown to play a central role and is given a
geometrical interpretation. The classical analysis yields trans-
parent, intuitive results that are useful for analyzing applica-
tions of cavity QED such as atom detection and counting,
cavity cooling, cavity spin squeezing, cavity spin optomechan-
ics, or phase transitions associated with the self-organization
of the ensemble-light system.

1. INTRODUCTION

The interaction of atoms with a single electromagnetic mode is a problem
of significant fundamental interest. The quantum mechanical system con-
sisting of a single atom interacting with a single mode can be analyzed
exactly in the rotating wave approximation for arbitrary coupling con-
stant. This famous Jaynes–Cummings model (Jaynes & Cummings, 1963)
of cavity quantum electrodynamics (cavity QED) gives rise to many inter-
esting effects such as Rabi oscillations with a single photon (vacuum Rabi
oscillations), collapse and revival effects due to a dependence of the Rabi
frequency on photon number, or optical nonlinearity at the single-photon
level. Many of these effects have been observed in pioneering experiments
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both in the microwave domain by Haroche and coworkers (Goy et al.,
1983; Haroche & Raimond, 1985; Kaluzny et al., 1983) and Walther and
coworkers (Meschede et al., 1985), and in the optical domain by Kimble
(Birnbaum et al., 2005; Boozer et al., 2007; Kimble, 1998; McKeever et al.,
2004b; Rempe et al., 1991; Thompson et al., 1992; Turchette et al., 1995),
Rempe (Kuhn et al., 2002; Legero et al., 2004; Maunz et al., 2004; Nuß-
mann et al., 2005b; Pinkse et al., 2000; Schuster et al., 2008; Wilk et al.,
2007), and others (Brennecke et al., 2007; Colombe et al., 2007; Heinzen
et al., 1987; Heinzen & Feld, 1987). Studies have concentrated on funda-
mental aspects of the system such as the vacuum Rabi splitting (Agarwal,
1984; Boca et al., 2004; Brennecke et al., 2007; Colombe et al., 2007; Kaluzny
et al., 1983; Raizen et al., 1989; Thompson et al., 1992; Zhu et al., 1990),
nonclassical light generation (Gupta et al., 2007; Kuhn et al., 2002; Legero
et al., 2004; McKeever et al., 2004a; Schuster et al., 2008; Simon et al., 2007b;
Thompson et al., 2006; Wilk et al., 2007), single-atom maser (Meschede
et al., 1985) and laser operation (McKeever et al., 2003a), or superradiance
in the case of many atoms (Kaluzny et al., 1983; Raimond et al., 1982).
Significant effort has gone toward increasing the single-photon Rabi fre-
quency 2g (also called vacuum Rabi frequency), at which a single quantum
of excitation is exchanged between the atom and the cavity, above the dis-
sipation rates κ and 0 at which the photon is lost from the cavity or from
the atom by emission into free space, respectively. In this so-called strong-
coupling limit of cavity QED, namely 2g � (κ ,0), the coherent, reversible
light–atom interaction dominates over dissipative processes. This should
enable full quantum mechanical control over the atoms and photons, e.g.,
in the form of quantum gates between two atoms (Pellizzari et al., 1995)
or quantum networks (Cirac et al., 1997).

Besides being of fundamental interest, cavity QED enables an increas-
ing number of applications related to atom detection (Bochmann et al.,
2010; Gehr et al., 2010; Heine et al., 2009; Hope & Close, 2004, 2005;
Kohnen et al., 2011; McKeever et al., 2004b; Poldy et al., 2008; Puppe et al.,
2007; Teper et al., 2006; Terraciano et al., 2009; Trupke et al., 2007; Wilzbach
et al., 2009) and manipulation—be it of the spatial degrees of freedom
(Black et al., 2005a; Hood et al., 2000; Münstermann et al., 1999; Murch
et al., 2008; Nußmann et al., 2005a) such as in cavity cooling (Boozer
et al., 2006; Cirac et al., 1993, 1995; Domokos et al., 2001; Gangl & Ritsch,
2000a,b; Hechenblaikner et al., 1998; Horak et al., 1997; Leibrandt et al.,
2009; Lev et al., 2008; Maunz et al., 2004; McKeever et al., 2003b; Morigi
et al., 2007; Mossberg et al., 1991; Murr, 2006; Nußmann et al., 2005b;
Vuletić & Chu, 2000), feedback cooling (Fischer et al., 2002; Koch et al.,
2010; Vuletić et al., 2007), self-organization and the superradiant phase
transition (Baumann et al., 2010; Black et al., 2003, 2005a), or of the spin
degrees of freedom such as in spin squeezing (Appel et al., 2009; Dantan
et al., 2003a,b; Genes et al., 2003; Kuzmich et al., 1997, 1998, 2000; Leroux
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et al., 2010a,b; Schleier-Smith et al., 2010a,b), spin optomechanics (Brahms
& Stamper-Kurn, 2010), preparation of nonclassical atomic states (Mekhov
et al., 2007; Mekhov & Ritsch, 2009a,b; Simon et al., 2007a), or cavity-based
quantum memories for light (Black et al., 2005b; Simon et al., 2007a,b; Tanji
et al., 2009; Thompson et al., 2006).

Many of the above applications make use of atomic ensembles rather
than single atoms, in which case the complete quantum description of the
ensemble–cavity interaction is nontrivial as it in general involves a very
large Hilbert space (Baragiola et al., 2010). (Under assumptions of symme-
try, exact solutions are possible in a much smaller Hilbert space, see Tavis
and Cummings 1968.) On the other hand, many of these applications oper-
ate via coherent (Rayleigh) scattering, whereas incoherent spontaneous
emission (Cohen-Tannoudji et al., 1998; Mollow, 1969) is either negligible
or an undesired process whose effect can be estimated by means other
than solving the problem exactly. In such circumstances, the full quantum
description may not be necessary, and a simpler classical picture may yield
the correct results and provide a complementary or more intuitive under-
standing. An example of this is cavity cooling, where the full quantum
mechanical description yields complex dynamics (Horak et al., 1997; Zip-
pilli & Morigi, 2005), but in the relevant limit of interest for applications
(large light-atom detuning and low saturation of the atomic transition),
a classical model yields simple and correct results that can be understood
in terms of cavity-enhanced coherent scattering (Vuletić & Chu, 2000;
Vuletić et al., 2001).

Furthermore, it has become increasingly clear that features that were
originally assigned a quantum mechanical origin, such as the vacuum
Rabi splitting (Agarwal, 1984; Cohen-Tannoudji et al., 1998), can be in fact
described within a classical framework, and arise simply from a combi-
nation of linear atomic absorption and dispersion (Dowling, 1993; Zhu
et al., 1990). This is not surprising as in the limit of low saturation the
atom can be modeled as a harmonic oscillator, and the classical theory
of coupled harmonic oscillators (cavity mode and weakly driven atom)
gives the same mode structure as the quantum-mechanical treatment. It
can then be advantageous to use the classical theory—within its limits
of applicability—to describe, and develop an intuition for, more complex
problems involving atomic ensembles.

The classical description also leads to some results that are of course
contained in the quantum theory, but that are not necessarily obvious
within that formalism. For instance, the quantum description in terms
of a vacuum Rabi frequency (that perhaps should be more appropri-
ately called single-photon Rabi frequency) that scales inversely with the
square root of the mode volume (Cohen-Tannoudji et al., 1998) may lead
one to believe that strong-coupling and coherent atom–light interaction
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require small cavity volume. However, the classical description imme-
diately reveals that the mode area plays a more fundamental role than
the mode volume. As discussed below, this feature is captured in the
so-called cooperativity parameter η = 4g2/(κ0) of cavity QED (Kimble,
1998), that, as we shall show, is a geometric parameter that characterizes
the absorptive, emissive, or dispersive coupling of an atom to the cavity
mode.

In this work, we will analyze the atom–cavity interaction from the
classical point of view and derive analytical formulas that remain valid
quantum mechanically. We shall see that in this description the dimen-
sionless cooperativity parameter η governs all aspects of the atom–cavity
interaction. A strong-coupling limit can be defined by the condition η > 1,
corresponding to a situation where we can no longer assume the atomic
dipole to be driven by the unperturbed incident field, but have to self-
consistently include the field emitted by the atom, and circulating in the
cavity, into the total driving field. Thus for η > 1, the backaction of the
cavity field generated by the oscillating atomic dipole on that same dipole
is not negligible. This leads, among other effects, to the interesting result
known from a quantum mechanical analysis (Alsing et al., 1992) that the
emission by the atom into free space can be substantially modified by a
cavity, even if the cavity subtends only a small solid angle.

For equal cavity and atomic line widths, κ = 0, the thus defined
classical strong-coupling condition η > 1 is equivalent to the standard
strong-coupling condition 2g > (κ ,0) of cavity QED, but it is less stringent
than the latter for κ > 0 or κ < 0. (The classical strong-coupling condi-
tion η > 1 corresponds to the single-photon Rabi frequency 2g being larger
that the geometric mean of the atomic and cavity line widths.) In general,
the system can be parameterized in terms of two dimensionless param-
eters, namely the ratios g/κ and g/0 in the cavity QED description, or,
in the classical description, the cooperativity parameter η, and the line
width ratio κ/0. The cavity QED strong-coupling condition 2g > (κ ,0)
corresponds to a normal-mode splitting that is much larger than the line
widths of the normal modes. In contrast, the less stringent classical condi-
tion η > 1 also includes situations where the normal modes overlap within
their line widths, but destructive interference between them arises in a
manner that is closely related to electromagnetically induced transparency
(Harris, 1989, 1997; Litvak & Tokman, 2002).

In most cases, the coherent emission into the cavity will be associated
with the desired “signal” process, whereas the emission into free space
constitutes a “noise” process that leads to atomic decoherence, motional
heating, etc. To understand the fundamental limitations to processes like
cavity cooling, spin squeezing, spin optomechanics, or phase transitions
due to self-organization, we must therefore quantify both the emission
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into the cavity mode of interest, and into all other (free-space) modes. In
the following, we will usually express the results as power ratios that can
be given simple physical or geometrical interpretations.

In the following, we always consider two different scenarios: in the
“scattering” or “driven-atom” setup, radiation is coupled into the mode
of interest M via the atom that is driven by an external field incident
from the side. In the “absorption/dispersion” or “driven-mode” setup,
the mode of interest M is excited directly, and the atom modifies the field
in M via forward scattering, while also emitting radiation into all other
modes. We will analyze both scenarios for M being either a free-space
mode or a cavity mode.

2. INTERACTION BETWEEN A SINGLE ATOM
AND A FREE-SPACE MODE

In the following, we analyze the interaction of a single atom, described as
a point-like classical dipole oscillator, with a single transverse electromag-
netic mode in free space. We will consider a Gaussian TEM00 mode with
a waist w that is at least somewhat larger than an optical wavelength λ,
such that the paraxial approximation for the propagation of Gaussian
beams (Kogelnik & Li, 1966; Siegman, 1986) remains valid. The classical-
oscillator description of the atom agrees with the quantum mechanical
treatment in the limit where the saturation of the atomic transition is neg-
ligible, be it due to low beam intensity, or large detuning of the light
from atomic resonances (Cohen-Tannoudji et al., 1998; Mollow, 1969). The
assumption that the atom is point-like, i.e., that it can be localized to a
small fraction of an optical wavelength implies that the atom’s kinetic
temperature is well above the recoil limit.

The electric-field component Ẽ(t) = 1
2 êEe−iωt

+ c.c. of a linearly polar-
ized light field oscillating at frequency ω = ck induces a proportional
atomic dipole moment p̃ = 1

2 êpe−iωt
+ c.c. that is oscillating at the same fre-

quency. Here, ê is the unit polarization vector, and p = αE is the amplitude
of the induced dipole moment. The complex polarizability α is given by
(see, e.g., Grimm et al. [2000]; Milonni et al. [2008])

α = 6πε0c3 0/ω2
0

ω2
0 − ω

2 − i(ω3/ω2
0)0

. (1)

Here, ω0 = ck0 = 2πc/λ0 denotes the atomic resonance frequency and 0 is
the line width of the atomic transition. Equation (1) is valid both classically
and quantum mechanically. In the classical description, the oscillating
electron is damped due to the emission of radiation. In the quantum
mechanical description, 0 = k3

0|µ|
2/(3πε0~) is the spontaneous population
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decay rate of the atomic excited state, given in terms of the dipole matrix
element µ ≡ 〈e|µ|g〉 between ground state

∣∣g〉 and excited state |e〉. Due to
the validity of Equation (1) in both the classical and quantum domains, the
classical results we will derive below agree with the semiclassical results
derived from quantum theory in the limit of low saturation of the atomic
transition.

The polarizability α obeys the relation

|α|2 =
6πε0

k3
Im(α), (2)

which will be useful in relating the total scattered power, proportional
to |α|2, to the absorption, given by the out-of-phase component of the
forward-scattered field that is proportional to Im(α) (see, Section 2.2).
Equation (2) ensures that the optical theorem is satisfied, i.e., that the rate
at which energy is absorbed from the incident mode by the atom equals
the power scattered into other field modes (Berman et al., 2006).

The oscillating dipole emits a radiation field whose amplitude at large
distance R � λ from the atom is given by (Jackson, 1998)

Erad(R, θ) =
k2 sin θ
4πε0

eikR

R
αE, (3)

where θ is the angle between the polarization ê of the driving field and
the direction of observation.

A fraction of the radiated power can be collected in some mode of inter-
est. The field radiated into the same mode as the driving field can interfere
with the latter, resulting in attenuation of the driving field, i.e., absorp-
tion, and a phase shift of the total field, i.e., dispersion. In the following
sections, we derive simple expressions for these quantities, and interpret
them geometrically.

2.1 Scattering into a Free-Space Mode: Emission

We consider a traveling-wave TEM00 Gaussian mode M of wave num-
ber k = 2π/λ = ω/c, waist w, and Rayleigh range zR = πw2/λ. The atom
is located on the axis of that mode at the waist, as shown in Figure 1,
and driven by an external field E propagating in some other direction.
The driving field polarization is assumed to be linear and perpendicular
to the direction of propagation of the mode M. We would like to know
what fraction of the total power scattered by the driven atom is emitted
into M. This question can be answered by decomposing the dipole emis-
sion pattern into Hermite-Gaussian modes in a tangential plane located at
distance z = R � zr in the far field (see, Figure 1). The normalized mode
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R

Atom

Erad
x

y

εM

E, ε

z

Figure 1 Scattering of radiation by a weakly driven atom. The incident field E is
polarized perpendicular to the TEM00 mode of interest M and drives an atomic dipole
oscillator that emits an electromagnetic field Erad at large distance R from the atom.
For the analysis, we choose R much larger than the Rayleigh range zR of M.

function eM(ρ, z) can be found in Siegman (1986), and in the tangential
plane at z � zR is approximately

eM(ρ, z) ≈
(

2
πw̃2

)1/2

exp
(
−
ρ2

w̃2
+ ikz+ ik

ρ2

2z
− i
π

2

)
. (4)

Here, the first term in the exponent accounts for the intensity profile of the
expanding Gaussian beam with w̃(z) = w

√
1+ (z/zR)

2
≈ wz/zR, the sec-

ond and third term describe the beam wave fronts, and the last term is
the Gouy phase shift of π/2 at z � zR.

In general, the electric field EM(ρ, z) in modeM at position (ρ, z) can be
written as EM(ρ, z) = eM(ρ, z)EM/

√
ε0c in terms of a position-independent

quantity EM that we will refer to as the mode amplitude. EM is related
to the total power PM in mode M via PM = |EM|2/2, and to the elec-
tric field at the waist EM(0, 0) via EM = EM(0, 0)

√
ε0cA, where A = πw2/2

is the effective mode area. In the following, it will be useful to simi-
larly formally define a mode amplitude for the field E driving the atom
as E =

√
ε0cAE, even if the driving field is some arbitrary mode. As the

induced dipole depends only on the electric field E at the atom’s posi-
tion, all atomic absorption and emission can be expressed in terms of the
rescaled quantity E .

The mode M with w � λ subtends only a small far-field angle
λ/(πw)� 1 (Siegman, 1986), such that the spatial dependence of the emit-
ted dipole field Erad, Equation (3), over the region occupied by M can be
approximated as sin θ ≈ 1 and eikR/R ≈ eikz+ikρ2/(2z)/z. Then the mode ampli-
tude EM arising from the radiated field can be calculated easily as the
projection EM =

√
ε0c
∫

e∗MErad2πρdρ in the plane at z � zR. This yields the
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simple result

EM = iβE (5)

in terms of a dimensionless parameter

β =
k
πw2

α

ε0
(6)

that characterizes the coupling of the incident field E to mode M via the
atom with polarizability α at the drive frequency ck. From Equation (2), it
follows that β obeys the optical-theorem relation

|β|2 =
6

k2w2
Im(β) = ηfsIm(β), (7)

where we have defined another dimensionless parameter, which we will
call the single-atom cooperativity in free space, as

ηfs =
6

k2w2
. (8)

The total scattered power into all directions P4π can be calculated
by integrating the intensity Irad = ε0c|Erad|

2/2 of the radiated field, Equa-
tion (3), over the surface of the sphere of radius R. Using Equations (5)–(7),
the total emitted power can be expressed as

P4π =
ck4

12πε0
|αE|2 = Im(β)|E |2 =

1
ηfs
|EM|2. (9)

The power emitted into both directions of modeM is 2PM = |EM|2, and
hence the cooperativity ηfs is equal to the ratio of (bidirectional) emission
into mode M and free-space emission P4π ,

2PM
P4π
= ηfs, (10)

independent of the light frequency or value of the atomic polarizability.
The free-space cooperativity ηfs is a purely geometric quantity, and can be
interpreted as the mode of interest subtending (bidirectionally) the effec-
tive solid angle 1� = 4/(k2w2). An additional factor 3/2 accounts for the
directionality of the dipole emission pattern, and would be absent if the
atomic dipole was driven by unpolarized light. Equation (10) is correct to
lowest order in (kw)−2

� 1, and thus valid as long as the mode of interest
is not focussed too strongly, i.e., w & λ.
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2.2 Scattering from a Free-Space Mode: Absorption

We consider the same modeM as in the previous Section 2.1, but now take
the light to be incident in that mode with power Pin = |E |2/2, as shown in
Figure 2. The power P4π scattered by the atom located at the mode waist
on the mode axis, as given by Equation (9), by virtue of energy conserva-
tion must equal the power Pabs absorbed from the driving field. Then the
fractional attenuation can be expressed as

Pabs

Pin
=

P4π

Pin
= Im(2β). (11)

Within the rotating wave approximation (RWA), 1 ≡ ω − ω0 � ω0, the
mode-coupling parameter β in terms of the light-atom detuning 1 takes
the simple form

βRWA = ηfs (Ld(1)+ iLa(1)) , (12)

where La(1) = 0
2/(02

+ 412) and Ld(1) = −210/(02
+ 412) are the

Lorentzian absorptive and dispersive lineshapes, respectively. Then the
fractional attenuation can be written as(

P4π

Pin

)
RWA

= 2ηfsLa(1). (13)

On resonance (1=0), the beam attenuation (single-atom optical depth)
equals twice the free-space cooperativity ηfs. These results are valid for
w & λ, i.e., for ηfs . 6/(2π)2

≈ 0.2. Comparison of Equations (10) and (13)
reveals that the same geometric parameter ηfs governs the fractional emis-
sion by the atom into a particular mode, and the resonant fractional
absorption from a mode of the same geometry.

ε + ε
Pin

P4π

ε

Atom

Figure 2 Absorption by an atom placed at the center of a TEM00 mode M. The
absorption can be calculated from the power P4π radiated into free space, or from the
field EM emitted by the atom in the forward direction that interferes with the incident
field E .
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The atomic scattering cross section σ is defined as the ratio of scattered
power P4π and incident intensity Iin = Pin/A,

σ =
P4π

Iin
= Im(2β)A. (14)

In the RWA, the scattering cross section according to Equation (12) is given
by

σ =
6π
k2

0

La(1). (15)

The resonant absorption, and hence the cooperativity ηfs = 6/(k2w2) ≈

6/(k2
0w2), can thus also be understood in terms of the ratio of the resonant

scattering cross section σ0 = 6π/k2
0 and effective beam area A = πw2/2, i.e.,

ηfs ≈ σ0/(2A).
It is instructive to derive the atomic absorption from the requirement

that the power reduction in the forward direction must be arising from
destructive interference between the incident field E and the field EM =
iβE (Equation [5]) forward-scattered by the atom into the same mode M.
The total mode amplitude in the forward direction is E + EM, and the
fractional absorption can be calculated as

Pabs

Pin
=
|E |2 − |E + EM|2

|E |2
≈ −

EE∗M + E∗EM
|E |2

= Im(2β), (16)

in agreement with the derivation based on the radiated power P4π (Equa-
tion [11]). In Equation (16), we have neglected the term |EM|2 that is
smaller by a factor (kw)−2

� 1.
Note that the polarizability α on resonance is purely imaginary. There-

fore, from the expression for the radiated field Erad, Equation (3), it would
appear that the forward-scattered field on resonance is π/2 out of phase
with the incident field, and thus cannot cancel the latter. However, we
must keep in mind that the field Erad in Equation (3) is a radial wave,
whereas the input field is a Gaussian mode. To understand the implica-
tion of this, we can decompose the radial wave into Gaussian modes, or
equivalently, consider the relative phase in the far field, where both modes
are approximately spherical waves, and therefore interfere directly. In the
far field z � zR, there is a π/2 Gouy phase shift of the input field (rela-
tive to the driving field at the waist) (Kogelnik & Li, 1966; Siegman, 1986),
as obvious from the mode function, Equation (4), and indicated by the
wave fronts in Figure 2. This additional phase shift of π/2 ensures that on
atomic resonance the forward-scattered field destructively interferes with
the input field. The above derivation represents a version of the optical
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theorem that states that the total scattered power P4π is proportional to
the imaginary part of the forward-scattering amplitude (see, e.g., Berman
et al. [2006]; Jackson [1998]).

2.3 Phase Shift of a Free-Space Mode: Dispersion

In general, the driving field in mode M is not only attenuated, but also
experiences a phase shift in the presence of the atom. This phase shift,
corresponding to the atomic index of refraction, can be simply under-
stood as arising from the interference of the out-of-phase component of
the forward-scattered field by the atom EM with the incident field in the
same mode E (Feynman et al., 1977). Writing the field in the forward
direction using Equation (5) as E + EM = (1+ iβ)E ≈ eiβE , we see that the
atom-induced phase shift of the light is

φ = Re(β). (17)

In the RWA, the atom-induced phase shift of the incident mode for
1� 0 can be written as

φRWA = ηfsLd(1) ≈ −ηfs
0

21
. (18)

At large detuning 1 � 0 from atomic resonance, the real part of the
polarizability exceeds the imaginary part by a factor 1/0, so the dis-
persion dominates the absorption (Equation [12]).We see that the effect
of the atom’s index of refraction on the Gaussian mode also scales with
the cooperativity ηfs.

3. INTERACTION BETWEEN AN ATOMIC ENSEMBLE
AND A FREE-SPACE MODE

3.1 Absorption and Dispersion by an Ensemble

For an ensemble of N atoms located on the mode axis, the total absorption
cross section equals N times the single-atom cross section, Equation (14),
producing Beer’s law of exponential attenuation

Pin − Pabs

Pin
= e−Im(2Nβ). (19)

The exponential absorption arises as each layer of atoms is driven by a
total field that consists of the incident field on the previous layer and the
forward scattered field by that previous layer (Feynman et al., 1977). If the
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laser is tuned to atomic resonance,(
Pin − Pabs

Pin

)
ω=ω0

= e−2Nηfs , (20)

i.e., the resonant ensemble optical depth equals twice the collective coop-
erativity Nηfs.

Similarly, the phase shift induced by the ensemble on the light field
is just N times the single-atom phase shift, Equation (17), φN = Nφ =
Re(Nβ), and at large detuning 1 from atomic resonance, but within the
RWA, 0 � 1� ω0 can be written as

(φN)RWA = NηfsLd(1) ≈ −Nηfs
0

21
. (21)

Comparing the absorption and dispersion by a single atom to that by
an atomic ensemble, we see that the single-atom cooperativity ηfs, Equa-
tion (8), for the former is replaced by the collective cooperativity Nηfs for
the latter. The fact that the phase shift experienced by the light at fixed
light-atom detuning is proportional to the atom number and a geomet-
ric parameter can be used for dispersive measurements of atom number
or atomic state (Hope & Close, 2004, 2005; Lodewyck et al., 2009), and
for measurement-induced spin squeezing in free space (Appel et al., 2009;
Kuzmich et al., 1998).

Neither the absorption nor the dispersion depend (with interferomet-
ric sensitivity) on the distribution of atoms although both effects rely on
a definite phase relationship between the incident field and the forward-
scattered field by the atoms. The reason is the cancelation of the phases of
the incident and scattered fields in the forward direction: an atom at posi-
tion z1 > 0 experiences a drive field whose phase is delayed by kz1 relative
to an atom at z = 0, but the phase of the field emitted forward is advanced
by the same amount. Therefore, the contributions of all atoms are phase
matched in the forward direction, producing maximum interference, inde-
pendent of the distribution of atoms along the beam. As we shall now see,
this is no longer the case when we consider the scattering into a direction
other than the direction of the incident beam: the scattered power in any
given direction is strongly influenced by the atomic distribution due to
interatomic interference.

3.2 Scattering into a Free-Space Mode by an Ensemble: Cooperative
Effects from Spatial Ordering

In the geometry of Figure 1 for scattering from a driving beam into mode
M, we assume that the single atom is replaced by N atoms that for
simplicity are located at positions rj sufficiently close to the mode axis
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such that they all couple to M with the same magnitude. We also assume
that the scattered field EMN in mode M is small compared with the inci-
dent field so that we can take the induced dipoles to be proportional to
the incident field E alone, whose magnitude is assumed to be the same for
all atoms (i.e., the sample is optically thin along the incident beam). The
phase of the contribution from any atom to the mode amplitude EM of the
radiated field depends on the atom’s position, and we can use Equation (5)
to write

EMN = iNFβE (22)

in terms of a collective coupling parameter

F =
1
N

N∑
j=1

ei(k−kM)·rj ≡ {ei(k−kM)·r
}. (23)

Here, k and kM are the wave vectors of the incident field and mode M,
respectively, and {} denotes the average atomic coupling for the given
fixed atomic distribution as defined by Equation (23). The power PMN =

|EMN|
2/2 scattered by the ensemble (unidirectionally) into mode M rela-

tive to the power scattered by a single atom into free space P4π = Im(β)|E |2
(Equation [9]) is then given by

PMN

P4π
=

1
2
|F|2N2ηfs. (24)

(Compared with Equation [10], the additional factor 1
2 appears here

because we consider only one direction ofM, as in general the factor F will
be different for the two directions of propagation.) Due to the phase factors
in F, the emission intoM by the ensemble depends on the spatial ordering
of the atoms that determines the extent of interference between the fields
coherently scattered by different atoms. In particular, |F|2 can take on any
value between 0 and 1. The lowest value |F|2 = 0 corresponds to perfect
destructive interference between the contributions by different atoms and
is, e.g., attained for a perfectly ordered ensemble that contains an inte-
ger number n ≥ 2 of atoms per wavelength. The highest possible value
|F|2 = 1 is attained for a periodic lattice of atoms with reciprocal lattice
vector k− kM, such that the fields emitted by all atoms into M interfere
constructively. This situation corresponds to Bragg scattering and inter-
estingly can arise in a self-organizing manner, due to light forces on the
atoms generated by the interference pattern between the incident and the
scattered fields (Baumann et al., 2010; Black et al., 2003, 2005a; Domokos
& Ritsch, 2002; Zippilli et al., 2004). In this situation, the power emitted
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intoM scales as N2, similar to the situation encountered in superradiance
(Dicke, 1954).

Finally, in the common situation of a gaseous ensemble, corresponding
to a random distribution of atoms, 〈F〉 = 0 and 〈|F|2〉 = 1/N, i.e the phase
of the emitted light field is completely random when an ensemble-average
over different atomic distributions is performed, and the ensemble-
averaged emitted power is proportional to the atom number N. The fact
that for a random distribution of atoms the emitted power in any given
direction is (on average) proportional to the atom number also explains
why the usual picture of each atom emitting power independently is valid
for gaseous samples, even though in the low-saturation limit all emit-
ted light is coherent, and thus the fields from different atoms interfere.
However, we have also seen that the absence of interatomic interfer-
ence (on average) is just a special, although common, case occurring for
disordered ensembles, and that for ordered ensembles both superradi-
ant (emitted power scales as N2) and subradiant (little emitted power)
coherent Rayleigh scattering into a given mode is possible.

We have already noted in Section 3.1 that the absorption from a mode
does not depend on the atomic distribution, whereas the emission into a
particular mode does. Since the absorbed power must equal the total scat-
tered power by virtue of energy conservation, it follows that cooperative
effects in scattering from an (ordered) distribution of atoms correspond
merely to a directional redistribution between different free-space modes,
and that the total power emitted into free space does not change. In par-
ticular, it is not possible to change the scattering cross section per atom
by ordering the ensemble. It should be kept in mind, however, that in this
argument and in the derivation of the formulas of this section we have
assumed that the scattered field in modeM is much smaller than the driv-
ing field (|EMN|

2
� |E |2), so that we could ignore the backaction of EMN on

the atomic dipoles, and assume that they are driven by the incident field E
alone. When below analyzing the interaction with a cavity mode, we will
drop this restriction, with interesting consequences.

4. INTERACTION BETWEEN A SINGLE ATOM
AND A CAVITY MODE

Based on the quantitative understanding of atomic emission into and
absorption from a single Gaussian mode in free space, we can now analyze
the classical interaction between a single atom and a single mode of an
optical resonator. In the microwave domain, the cavity can partly or com-
pletely surround the atom, modifying strongly the total emitted power
P4π (Haroche & Raimond, 1985; Kleppner, 1981). In contrast, the active
modes of an optical resonator typically subtend only a very small solid
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angle. Since we are concerned with optical transitions, we will assume as
in the previous section that the solid angle subtended by the cavity mode
is small. One might naı̈vely expect that in this case the scattering into free
space is not affected by the cavity, but as we will see, a cavity supporting a
strongly coupled mode can reduce the atomic emission into all free-space
modes by acting back on the induced dipole p = αE, which depends on the
total field E experienced by the atom. This situation arising in a two-level
atom driven by two fields is akin to electromagnetically induced trans-
parency (EIT) (Harris, 1997, 1989) occurring in a three-level atom driven
by two fields.

We assume that the atom is at rest and ignore light forces and the pho-
ton recoil. A stationary atom that is continuously and weakly driven can
be treated as a classical dipole since it simply scatters the incoming nar-
rowband radiation elastically without changing the radiation frequency
(coherent or elastic Rayleigh scattering) (Cohen-Tannoudji et al., 1998;
Mollow, 1969). The driven atom inside the optical resonator can then be
treated as a monochromatic source of radiation at the frequency ω = ck of
the driving light.

4.1 Attenuation of a Cavity Mode: Cavity-Enhanced Absorption

We consider a standing-wave resonator of length L with two identical,
lossless, partially transmitting mirrors (Figure 3) with real amplitude
reflection and transmission coefficients r and iq, respectively (r, q real,
r2
+ q2
= 1), and q2

� 1. The resonator supports a TEM00 mode with waist
size w (modeM), and the atom is located on the mode axis near the waist
at an antinode. Ein =

√
ε0cAEin is the mode amplitude incident onto the

cavity, and Ec is the mode amplitude of the traveling intracavity field. The
mode amplitude leaking into the cavity through the input mirror is iqEin,
and the atom at the antinode, driven by a field E = 2Ec, coherently scatters
a field 2EM = 4iβEc (see, Equation [5]) into the resonator that adds to Ec.

P4π

Pin

Ptr

εin

εc

εM

Figure 3 Transmission through an optical standing-wave resonator containing an
atom. An incident field Ein produces a steady-state intracavity field with traveling
mode amplitude Ec . The atom at an antinode driven by the field 2Ec contributes a
field 2EM per round trip. The transmitted power is Ptr , the power scattered by the
atom into free space is P4π .
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(The factor of 2 here arises from simultaneous scattering into both cavity
directions by the atom at an antinode.) The traveling field Ec thus experi-
ences reflection at the cavity mirrors, as well as input coupling and atomic
source terms, iqEin and 2EM, respectively, per round trip. The steady-state
amplitude Ec can be determined from the condition that the field after one
round trip be unchanged:

Ec = r2e2ikLEc + iqEin + 2EM, (25)

where e2ikL accounts for the round-trip phase experienced by the cir-
culating light of frequency ω = ck. For not too large detuning δ ≡

ω − ωc � πc/L from cavity resonance ωc, we can approximate r2e2ikL
≈

1− q2
+ 2iq2δ/κ , where κ = q2c/L is the resonator line width (decay rate

constant of the energy), see e.g., Siegman (1986).
Solving for the cavity field, we find

Ec =
iEin

q

[
1− i

2δ
κ
− i

4β
q2

]−1

. (26)

The ratio of transmitted power Ptr = q2
|Ec|

2/2 to incident power Pin =

|Ein|
2/2 is then

Ptr

Pin
=

[(
1+

Im(4β)
q2

)2

+

(
2δ
κ
+

Re(4β)
q2

)2
]−1

, (27)

Here, β = kα/(πw2ε0), Equation (6), containing the atomic polarizability
α, is evaluated at the frequency ω = ck of the incident light. The atom
can change the transmission through the cavity not only via absorption
∝ Im(β) ∝ Im(α), but also by shifting the cavity resonance via Re(β) ∝
Re(α), i.e., via the atom’s index of refraction that introduces a phase
shift of the light (see, Section 2.3). Both absorptive and dispersive effects
can be used for single-atom detection by means of an optical resonator
(Bochmann et al., 2010; Gehr et al., 2010; Heine et al., 2009; Hope & Close,
2004, 2005; McKeever et al., 2004b; Poldy et al., 2008; Puppe et al., 2007;
Teper et al., 2006; Trupke et al., 2007).

The power P4π emitted by the atom into free space is given by Equa-
tion (9), with EM = 2iβEc. The ratio of emitted to incident power Pin can be
written as

P4π

Pin
=

Im(8β)
q2

[(
1+

Im(4β)
q2

)2

+

(
2δ
κ
+

Re(4β)
q2

)2
]−1

, (28)
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In the RWA, the coupling factor β takes the simple form of Equa-
tion (12), and we can write(

4β
q2

)
RWA

= η (Ld(1)+ iLa(1)) , (29)

where we have defined a cavity cooperativity parameter (also called the
Purcell factor [Motsch et al., 2010; Purcell, 1946])

η =
4ηfs

q2
=

24
q2k2w2

=
24F/π

k2w2
. (30)

Here,F = πc/(Lκ) = π/q2 is the cavity finesse, andLa(1) = 0
2/(02

+ 412)

and Ld(1) = −210/(02
+ 412) are the Lorentzian absorptive and disper-

sive lineshapes, respectively. The cavity cooperativity can be understood
as the free-space cooperativity ηfs augmented by the average number of
photon round trips F/π inside the cavity, with an additional factor of four
accounting for the four times larger intensity at an antinode of a standing
wave compared with a traveling mode. [Note also that the above defined
cooperativity parameter η is twice as large as the cooperativity parameter
C1 most widely used in cavity QED, see, e.g., Horak et al. (2003).]

Equation (29) can be substituted into Equation (27) and (28) to write
explicit expressions in the RWA for the resonator transmission and free-
space emission as a function of cavity cooperativity η, detuning between
the incident light and the cavity resonance δ = ω − ωc, and detuning
between the incident light and the atomic resonance 1 = ω − ω0:(

Ptr

Pin

)
RWA

=
1

[1+ ηLa(1)]
2
+
[

2δ
κ
+ ηLd(1)

]2 (31)

and (
P4π

Pin

)
RWA

=
2ηLa(1)

[1+ ηLa(1)]
2
+
[

2δ
κ
+ ηLd(1)

]2 . (32)

Similar expressions were already derived by Zhu et al. (1990) with a classi-
cal formalism as used here, and they agree with the quantum mechanical
formulas in the low-saturation limit. Atomic absorption, spectrally char-
acterized by the absorptive Lorentzian La(1) and scaled by the cavity
cooperativity parameter η, reduces the intracavity power and the trans-
mission, whereas Lorentzian atomic dispersion ηLd(1) shifts the cavity
resonance. In the expression for the free-space emission, Equation (32),
the absorptive Lorentzian appears also in the numerator since for a given
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Figure 4 Transmission through the cavity (solid) and free-space scattering (dashed)
for a resonant atom-cavity system (ωc = ω0) vs. detuning 1 = δ in units of κ = 0 for a
weakly coupled system (η = 0.05, thin black lines) and for a strongly coupled system
(η = 10, thick blue lines). Both transmission and scattering are normalized to the
power incident on the cavity. The strongly coupled system exhibits vacuum Rabi
splitting, i.e., the normal-mode splitting exceeds the normal-mode widths.

intracavity power the atomic free-space emission scales in the same way
as the absorption.

The transmission and scattering into free space are plotted as a function
of incident frequency ω for fixed cavity frequency in a few representa-
tive cases in Figures 4 and 5. For η < 1 (weak-coupling limit), the atomic
absorption broadens the line width and reduces the transmission, whereas
the atomic dispersion induces a cavity shift. In the weak-coupling limit,
the two eigenmodes of the system, one atom-like, the other cavity-like,
maintain their character, each with a little admixture of the other mode.
In the opposite strong-coupling limit η > 1, the two modes are strongly
mixed when the cavity resonance coincides with the atomic resonance.
Both cavity transmission and atomic emission into free space show a
normal-mode splitting, given by 2g =

√
η0κ , that in the quantum descrip-

tion for 2g > (0, κ) is interpreted as the vacuum (or single-photon) Rabi
splitting of cavity QED (Cohen-Tannoudji et al., 1998; Kimble, 1998).

In the classical picture, the single-photon Rabi splitting or normal-
mode splitting for a resonant atom-cavity system (ωc = ω0, i.e., δ = 1)
and similar cavity and atomic line widths (κ ∼ 0) can be understood as
follows (Figure 4): On resonance for η > 1, the atomic absorption spoils
the cavity finesse, and the intracavity and transmitted power are low.
As the laser is detuned away from resonance, the atomic absorption is
reduced and the transmission increases until the cavity loss due to atomic
emission no longer limits the remaining constructive interference arising
from multiple round trips of the light in the detuned cavity. (The round-
trip phase also includes the atomic contribution that has the opposite
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Figure 5 Transmission through the cavity (solid) and free-space scattering (dashed)
for a resonant atom-cavity system (ωc = ω0) vs. detuning 1 = δ in units of 0 for
κ = 100 for a weakly coupled system (η = 0.05, thin black lines) and for a strongly
coupled system (η = 10, thick blue lines). Both transmission and scattering are
normalized to the power incident on the cavity. In this situation, there is no standard
Rabi splitting as the cavity width is larger than the normal-mode splitting, but the
transmission drops sharply near 1 = 0, akin to the situation in EIT.

sign as the cavity contribution and tends to decrease the total round-trip
phase, and increase the intracavity power.) Further detuning |δ| then again
decreases the intracavity power as the increasing round-trip phase shift
decreases the constructive interference inside the cavity. The combination
of atomic absorption and dispersion results in two transmission peaks that
are symmetric about δ = 0.

If the atomic line width is much narrower that the cavity line width
(0 � κ), then the atomic absorption affects the cavity transmission only
in a narrow region near atomic resonance (Figure 5). The transmission is
substantially reduced for η > 1, but if the cooperativity parameter is not
too large (η < κ/0) the normal-mode splitting is less than the cavity line
width, and there is no standard Rabi splitting. Rather, there is a dip in the
transmission and in the free-space scattering.

The ratio of atomic free-space scattering to cavity transmission is given
by the simple expression

(
P4π

Ptr

)
RWA

= 2ηLa(1), (33)
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and independent of the atom-cavity detuning δ −1. For a resonant sys-
tem (δ = 1 = 0), the transmission and free-space scattering are given by

(
Ptr

Pin

)
1=δ=0

=
1

(1+ η)2
, (34)

and (
P4π

Pin

)
1=δ=0

=
2η

(1+ η)2
. (35)

Comparison of Equation (35) with the corresponding free-space Equa-
tion (11) shows that in the weak-coupling limit η < 1 the quantity 2η =
8Fηfs/π can be interpreted as the cavity-aided optical depth. In the strong-
coupling limit η � 1, both the transmission and the free-space scattering
decrease with coupling strength η, but the transmission decreases faster
than the free-space scattering. This is closely related to EIT (Harris, 1989,
1997) where the population of the state or mode driven by the probe field
(here the resonator, in EIT the atomic excited state) is more suppressed
than that of the indirectly driven state or mode (here the free-space modes,
in EIT the outer atomic ground state).

Equation (34) also shows that in a cavity the transmitted power
decreases only quadratically, rather than exponentially, with optical depth
2η > 1. The reason is that the enhanced absorption resulting in η =

(4F/π)ηfs is due to multiple round trips inside the cavity: as the atomic
absorption per round trip increases, the cavity finesse F and the num-
ber of round trips F/π decrease, which acts to convert the exponential
absorption into a polynomial one. (The single-pass optical depth is 2ηfs =

12/(k2w2) < 1.)

4.2 Frequency Shift of a Cavity Mode: Dispersion

In the limit of sufficiently large detuning from atomic resonance, such that
the cavity finesse is not spoiled by atomic absorption (ηLa(1) < 1), the
dominant effect of the atom on the resonator is a shift of the cavity res-
onance frequency by atomic dispersion, since the real part of the atomic
polarizability falls off more slowly with detuning than the imaginary part.
From Equation (31), it follows that the atom-induced cavity resonance
shift δωc, in units of the cavity line width κ , in the RWA is given by

(
δωc

κ

)
RWA

= −
η

2
Ld(1) ≈ η

0

41
, (36)
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which is proportional to the cavity cooperativity parameter η. The atom-
induced cavity shift can be used for atom detection or atomic-state detec-
tion (Bochmann et al., 2010; Gehr et al., 2010; Heine et al., 2009; Hope &
Close, 2004, 2005; McKeever et al., 2004b; Poldy et al., 2008; Puppe et al.,
2007; Teper et al., 2006; Terraciano et al., 2009; Trupke et al., 2007), or, in
the case of an atomic ensemble, for generating cavity-mediated infinite-
range atomic-state-dependent interactions between atoms enabling spin
squeezing (Leroux et al., 2010a,b; Schleier-Smith et al., 2010a).

4.3 Scattering into a Cavity Mode: Cavity-Enhanced Emission

We now consider the scattering of radiation by an atom into a resonator
of the same geometry and parameters as in Section 4.1. The atomic dipole
is driven by a mode amplitude Ein of frequency ω = ck from the side, and
emits monochromatic radiation of the same frequency into the resonator
(Figure 6). In particular, the atom at an antinode contributes a mode ampli-
tude 2EM per round trip to the mode amplitude Ec of the circulating field
inside the cavity. In steady state, Ec can be determined from the condition
that the field after one round trip, experiencing reflection at the mirrors as
well as the atomic source term, be unchanged (Siegman, 1986):

Ec = r2e2ikLEc + 2EM, (37)

which, under the same conditions as in Section 4.1 [not too high mirror
transmission q2

� 1 and not too large detuning from cavity resonance
δ � c/(2L)], has a solution of the form

Ec =
2EM

q2

1
1− 2iδ/κ

. (38)

The power emitted by the atom into the cavity is determined by the
field leaking through both cavity mirrors, Pc = q2

|Ec|
2. The power emitted

P4π

Pc

εc

εM

ε

Pc

Figure 6 An atom driven by an incident field E scattering monochromatic radiation
into an optical standing-wave resonator. The traveling mode amplitude is Ec , the atom
at an antinode adds a mode amplitude 2EM per round trip. The power leaving the
cavity in both directions is Pc , the power scattered by the atom into free space is P4π .
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into free space is P4π = |EM|2/ηfs (Equation [9]) and using Equation (30)
the ratio of cavity-to-free-space emission can be simply written as

Pc

P4π
= η

κ2

κ2 + 4δ2
. (39)

Compared with the emission into the same free-space mode ηfs, as given
by Equation (8), the resonant cavity (δ = 0) enhances the emission by a
factor 4/q2

= 4F/π . This factor arises from the constructive interference
between the images of the atomic dipole formed by the cavity mirrors,
or equivalently, from the constructive interference of the atomic emission
on successive round trips of the light during the lifetime of the cavity.
This frequency-dependent enhancement of coherent scattering that per-
sists even at large detuning from atomic resonance, as observed by Motsch
et al. (2010), is the principle behind cavity cooling (Horak et al., 1997;
Leibrandt et al., 2009; Lev et al., 2008; Maunz et al., 2004; Morigi et al.,
2007; Mossberg et al., 1991; Nußmann et al., 2005b; Vuletić et al., 2001;
Vuletić & Chu, 2000; Zippilli & Morigi, 2005).

Note the formal similarity between the result for cavity emission by
the driven atom (Equation [39]) and free-space emission when the cav-
ity is driven (Equation [33]): apart from the factor of 2 difference between
absorption and scattering [compare also Equations (10) and (13) for scat-
tering and absorption in free space), the roles of the cavity field and
the atomic emission are interchanged in the two cases, and so are the
corresponding Lorentzian factors.

Although the ratio between cavity (Pc) and free-space (P4π ) emission is
independent of atomic parameters and detuning relative to atomic reso-
nance, the individual terms Pc and P4π depend on the atomic polarizability
at the frequency of the driving light. To obtain a solution that remains
valid in the limit of strong light-atom coupling (large cooperativity η > 1),
we need to take self-consistently into account that the atomic dipole
(∝ EM) is driven not only by the external field Ein but also by the field Ec of
the same frequency circulating inside the cavity. An atom at an antinode
experiences a total field E = Ein + 2Ec, and we write Equation (5) as

EM = iβ (Ein + 2Ec) . (40)

Substituting EM into the steady-state condition for the cavity field Ec,
Equation (37), and solving for Ec, we find

Ec =
2iβEin

q2

1
1− i 2δ

κ
− i 4β

q2

. (41)

We can now also find the atomic source term EM (driven by both inci-
dent and cavity fields) by substituting Ec into Equation (40) for the
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atomic dipole,

EM = iβEin

1− i 2δ
κ

1− i 2δ
κ
− i 4β

q2

. (42)

The bidirectional cavity emission rate Pc = q2
|Ec|

2, relative to the power
emitted into free space in the absence of the cavity P(0)

4π = |βEin|
2/ηfs,

Equation (9), is then

Pc

P(0)
4π

=
η(

1+ Im(4β)
q2

)2

+

(
2δ
κ
+

Re(4β)
q2

)2 . (43)

The emission into free space P4π = |EM|2/ηfs is similarly modified by the
presence of the cavity from its value P(0)

4π in the absence of the cavity:

P4π

P(0)
4π

=
1+

(
2δ
κ

)2(
1+ 4Im(β)

q2

)2

+

(
2δ
κ
+

4Re(β)
q2

)2 . (44)

It is highly interesting to see that power emitted into free space can be
enhanced or reduced by a cavity that subtends only a tiny solid angle, as
has been first noted by Alsing et al. (1992) using a quantum mechanical
description. The modification of free-space emission is not a saturation
effect of the atom, as we have explicitly constructed a classical model that
does not include atomic saturation. Rather, it is the backaction of the cavity
field driving the atomic dipole in antiphase with the incident field, which
reduces the magnitude of the dipole, and thus the amount of emission into
free space.

On atomic and cavity resonance (δ = 1 = 0), the emission into the
cavity and into free space are given by the simple expressions(

Pc

P(0)
4π

)
δ=1=0

=
η

(1+ η)2 (45)

and (
P4π

P(0)
4π

)
δ=1=0

=
1

(1+ η)2 , (46)

respectively. Note again the complementarity between these formulas and
Equations (34) and (35) for the driven cavity. Although we are considering
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here only a two-level atom, these formulas are closely related to electro-
magnetically induced transparency in a three-level system (Harris, 1989,
1997) as both the incident light and the light inside the cavity couple to
the atomic excited state (Field, 1993; Rice & Brecha, 1996). The intracavity
field builds up π out of phase with the driving field at the location of the
atom, and acts to reduce the emission by the atom, both into the cavity
and into free space (Alsing et al., 1992; Heinzen et al., 1987; Zippilli et al.,
2004). In the limit of strong coupling η � 1, the intracavity electric field
experienced by the atom, 2Ec ≈ −Ein is independent of the atomic or cav-
ity properties, and builds up to be (almost) equal in value to the driving
field at the position of the atom. This reduces the atomic emission into
free space by (1+ η)2, and the dominant emission process is into the cav-
ity. A cavity with perfectly reflecting mirrors (η→∞) would cancel all
resonant free-space emission, even when it subtends only a small solid
angle 1�� 1 (Alsing et al., 1992).

In the RWA, we can substitute Equation (29) to write explicit expres-
sions for the cavity and free-space scattering as a function of laser
frequency:

Pc

P(0)
4π

=
η

[1+ ηLa(1)]
2
+
[

2δ
κ
+ ηLd(1)

]2 (47)

and

P4π

P(0)
4π

=
1+

(
2δ
κ

)2

[1+ ηLa(1)]
2
+
[

2δ
κ
+ ηLd(1)

]2 . (48)

Both quantities are plotted in Figure 7 vs. detuning of the incident laser
when the cavity resonance is chosen to coincide with the atomic resonance
(i.e., ωc = ω0, 1 = δ). For strong atom-cavity coupling, η � 1, both cavity
and free-space emission display two maxima split by 2g =

√
η0κ , i.e., the

system shows the normal-mode splitting usually associated with the vac-
uum Rabi splitting of cavity QED (Cohen-Tannoudji et al., 1998). We see
that this feature appears in linear dispersion theory also when the cou-
pled atom-cavity system is not probed via transmission through the cavity
(Section 4.1), but via excitation of the atom.

It is interesting to consider the transmission of the beam from the side,
T = 1− (P4π + Pc)/Pin, which can be calculated from Equations (47) and
(48) and Pin = |Ein|

2/2. The side-beam transmission, displayed in Figure 8,
for κ < 0 and η ≥ 1 shows a cavity-induced transmission window within
the atomic absorption line. The physical mechanism is the same as in EIT
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Figure 7 Scattering rate into the cavity Pc/P
(0)
4π (solid line) and into free space

P4π/P
(0)
4π (dashed line) for a cavity resonant with the atomic transition (ωc = ω0)

vs. probe laser detuning δ = 1 in units of 0 = κ. The displayed curves are for
cooperativity parameter η = 10. Note the suppression of free-space scattering (and
cavity scattering) on resonance, and the enhancement of free-space and cavity
scattering off resonance. The strong modification of free-space scattering by a cavity
subtending only a very small solid angle arises from the interference between the
cavity field and the incident field at the atom’s position.

(Harris, 1989, 1997), where the strongly coupled cavity mode replaces the
usual classical coupling beam (Field, 1993; Rice & Brecha, 1996).

In summary, we find that the cooperativity parameter η governs the
strength the atom–cavity interaction: the fractional scattering into a reso-
nant cavity, the reduction in cavity transmission, and the dispersive shift
of the cavity resonance frequency are all determined by the dimensionless
factor η. This factor is the product of the resonant single-pass absorption
of the light, as given by the ratio of atomic cross section and beam area,
and the average number of photon round trips in the optical resonator,
as determined by the cavity finesse F . Since the latter depends only on
mirror properties, we find that all resonators with the same mirror reflec-
tivity and the same waist size produce the same strength of atom–light
interaction, independent of the length of the cavity. In other words, the
atom–light interaction, at least in aspects that can be described classically,
depends on mode area, rather than mode volume. Any volume-dependent
effects enter through the ratio κ/0 of cavity to atomic line width, but the
classical strong-coupling condition η > 1 is determined by mode area and
cavity finesse alone.
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Figure 8 Transmission of the side beam in the “scattering scenario” of Figure 6 in
the presence of the cavity for a resonant atom-cavity system (ω0 = ωc) as a function of
detuning 1 of the side beam in units of 0. The cavity line width is chosen much
narrower than the atomic line width, κ = 0/10, and the absorption of the side beam in
the absence of the cavity is chosen to be 10%. The origin of the resonant transmission
peak is the same as in EIT, with the strongly coupled cavity (η = 1) replacing the
coupling laser in standard EIT.

5. INTERACTION BETWEEN AN ATOMIC ENSEMBLE
AND A CAVITY MODE

5.1 Absorption and Dispersion by an Ensemble in a Cavity Mode

As in the free space case, Section 3.2, we consider N atoms located at
positions rj sufficiently close to the cavity axis such that the radial vari-
ation of the coupling may be ignored (see, Figure 3). The cavity is driven
by an incident field. An atom at an antinode experiences a cavity mode
amplitude 2Ec (see, Section 4.1), and hence the atomic source term is

2EM = 4iβNHEc (49)

with the collective coupling parameter

H =
1
N

N∑
j=1

cos2 kzj ≡ {cos2 kz}. (50)
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With the cavity oriented along the z-axis, the cavity field at position zj

driving the dipole is proportional to cos kzj, and so is the field emitted
by the atom into the cavity mode for a given dipole, hence the cos2 kzj

dependence. As in Section 3.2, the curly brackets denote the average for
a given and fixed atom distribution. Solving the steady-state condition
for the cavity field, Equation (25), with this atomic source term 2EM from
Equation (49), we find for the ratio of transmitted to incident power

Ptr

Pin
=

[(
1+

Im(4NHβ)
q2

)2

+

(
2δ
κ
+

Re(4NHβ)
q2

)2
]−1

. (51)

Since the summands in H are all positive quantities, the result depends
only weakly on the ordering of the atoms. A perfectly ordered ensem-
ble with all atoms at antinodes has H = 1, while a random distribution of
atoms along the cavity standing wave has 〈H〉 = 1

2 when averaged over
different atomic spatial distributions.

For the total scattering into all free-space modes, there is no interference
between different atoms (see, Section 3.2, and the total emitted power is
obtained by adding the emitted power of all atoms, Equation (9). This
yields P4πN = Im(4β)|Ec|

2NH, and

P4πN

Pin
= NH

Im(8β)
q2

[(
1+

Im(4NHβ)
q2

)2

+

(
2δ
κ
+

Re(4NHβ)
q2

)2
]−1

. (52)

In the RWA, we can write for the transmission and free-space scattering(
Ptr

Pin

)
RWA

=
1

[1+HNηLa(1)]
2
+
[

2δ
κ
+HNηLd(1)

]2 (53)

and (
P4π

Pin

)
RWA

=
2HNηLa(1)

[1+HNηLa(1)]
2
+
[

2δ
κ
+HNηLd(1)

]2 . (54)

Comparison of these equations to Equations (31) and (32) shows that
for the ensemble the single-atom cooperativity η is replaced by the col-
lective cooperativity Nη, with a proportionality factor between 0 and 1,
given by H = {cos2 kz}, that depends on the atomic distribution relative to
the cavity standing wave. Similarly, the cavity shift at large detuning from
atomic resonance in the RWA, ω0 � 1� 0 is given by(

δωc

κ

)
RWA

=
1
2

HNηLd(1) ≈ HNη
0

41
. (55)
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Since H = {cos2 kz} depends only weakly on the atomic distribution as it
varies from a disordered

(
〈H〉 = 1

2

)
to a superradiant (H = 1) situation, one

does not expect the atomic trajectories to influence each other severely
(Domokos et al., 2001). The situation is very different if the system is
excited from the side, i.e., if the cavity mode is excited via the atomic
scattering, as discussed in the next section.

5.2 Scattering by an Ensemble into a Cavity Mode

We consider an ensemble of N atoms at positions rj in a cavity oriented
along z, as in the previous Section 5.1, but now being driven with a beam
from the side traveling along x, as in Figure 6. The ensemble is assumed to
be optically thin for the incident field so that all atoms experience the same
incident-field magnitude. As each atom is driven both by the incident field
(Ein) and the cavity mode (2Ec at an antinode), the atomic source term is

2EM = 2iβN (GEin + 2HEc) (56)

with the collective coupling parameter H = {cos2 kz} along the cavity
given by Equation (50), and the collective coupling parameter for the
incident beam being

G =
1
N

N∑
j=1

eikxj cos kzj ≡ {eikx cos kz}. (57)

Using the same procedure as in Section 4.3, i.e., inserting the expression
for EM into the steady-state condition for the cavity field, Equation (37),
and solving for Ec, we have now

Ec =
2iβNGEin

q2

1
1− i 2δ

κ
− i 4NHβ

q2

. (58)

This yields for the power scattered into the cavity relative to the power
P(0)

4π scattered by a single atom into free space in the absence of the cavity

PcN

P(0)
4π

=
|G|2N2η(

1+ Im(4NHβ)
q2

)2

+

(
2δ
κ
+

Re(4NHβ)
q2

)2 . (59)

In the RWA, we can use Equation (12) to write for the scattering into the
cavity

PcN

P(0)
4π

=
|G|2N2η

[1+HNηLa(1)]
2
+
[

2δ
κ
+HNηLd(1)

]2 , (60)
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The atomic distribution along the cavity axis as quantified by H = {cos2 kz}
determines the absorption and dispersion of the resonator, whereas the
distribution with respect to both the incident beam and the cavity as quan-
tified by G = {eikx cos kz} determines the scattering into the resonator. If the
atomic detuning 1 is large enough that the absorption can be ignored
(HNηLa(1) < 1), then the scattering into the cavity can have super- or
subradiant features similar to those discussed for the free-space case in
Section 3.2. In particular, for an average over randomly ordered ensem-
bles, we have 〈|G|2〉 = 1

2N , i.e., the scattering into the cavity is proportional
to the atom number, whereas for a perfectly ordered ensemble G = 1, i.e.,
the emission into the resonator is superradiant, and scales as N2.

The light field emitted into the cavity can interfere with the incident
field to form an optical lattice that is sufficiently strong to influence the
motion and spatial distribution of a laser-cooled atomic gas. In this case,
self-organization can set in suddenly as a phase transition above a certain
incident pumping threshold (Domokos & Ritsch, 2002; Fernández-Vidal
et al., 2010; Keeling et al., 2010; Nagy et al., 2010), as observed both
for a cold thermal ensemble (Black et al., 2003) and for a Bose–Einstein
condensate (Baumann et al., 2010).

6. QUANTUM MECHANICAL EXPRESSION FOR THE
COOPERATIVITY PARAMETER

Having concluded our purely classical treatment of atom–cavity interac-
tions, we now show that our definition of the cooperativity parameter is
equivalent to the standard cavity QED definition in terms of the quan-
tum mechanical vacuum Rabi frequency 2g (Cohen-Tannoudji et al., 1998;
Haroche & Raimond, 2006; Kimble, 1998). There, g is given by the atom’s
dipole coupling g = µEv/~ to the RMS vacuum field Ev at an antinode of
a cavity mode at the atomic transition frequency ω0 = ck0. The vacuum
energy in this mode is

1
2

~ω0 = ε0E2
vV, (61)

where V =
∫

exp(−2ρ2/w2) sin2
(k0z)2πρdρdz = πw2L/4 represents the

mode volume. Thus,

g = µ
√

ω0

2ε0~V
. (62)



AAMOP Ch04-9780123855084 2011/7/7 1:53 Page 231 #31

Interaction between Atomic Ensembles and Optical Resonators 231

We have already suggested a relation between the vacuum Rabi fre-
quency 2g and the normal-mode splitting

2gcl =
√
ηκ0 (63)

appearing in the cavity transmission and atomic emission spectra derived
in Section 4.1. That this classically derived normal-mode splitting is
indeed identical to the vacuum Rabi frequency in cavity QED can be veri-
fied by substituting into Equation (63) the cooperativity η = 24F/(πk2

0w2)

from Equation (30), the cavity line width κ = πc/(LF), and the atomic
excited-state line width 0 = k3

0|µ|
2/(3πε0~). One obtains

gcl = µ

√
2ω0

ε0~πw2L
= g. (64)

Rearranging Equation (63) thus gives the standard quantum mechani-
cal expression (Kimble, 1998) for the cooperativity parameter as an
interaction-to-decay ratio:

η =
4g2

κ0
. (65)

Note that this expression for η < 1 can also readily be interpreted as the
cavity-to-free-space scattering ratio, since the rate at which an excited
atom emits into the cavity is given by Fermi’s Golden Rule as 4g2/κ .

7. CONCLUSION

We have shown that a variety of fundamental features of the atom–cavity
interaction can be described in classical terms, and that the dimensionless
cooperativity parameter η that scales with the beam area, rather than the
beam volume, plays a central role in the classical description. The weak
and strong regime can be distinguished by the condition η ≶ 1, which
quantum mechanically corresponds to a single-photon Rabi frequency
that is small or large compared with the geometric mean of the atomic
and cavity line widths. In the strong-coupling regime even an optical
resonator mode that subtends a small solid angle can increase or sub-
stantially decrease the emission into free space by the atom, due to the
backaction of the cavity field on the atomic dipole.

The classical model is valid at low saturation of atomic transitions, be
it due to low beam intensity or large detuning from atomic resonances.
The limit of low saturation of the atomic transition exists even if a single
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cavity photon saturates the atomic transition, i.e., for 2g > 0 or critical
photon number less than one in cavity QED terms. In this case, a weak
coherent state with less than the critical photon number on average needs
to be used to avoid atomic saturation. Then the classical description used
here will remain valid.

Most applications of the atom–cavity interaction rely on the narrow-
band coherent scattering by the atom that can be correctly described in
classical terms. The classical model is easily expanded to include the
interaction of an atomic ensemble and a cavity mode. In this case, the col-
lective cooperativity parameter depends strongly on the ordering of the
ensemble.

It is particularly noteworthy that even the strong-coupling regime of
cavity QED, giving rise to a normal-mode or “vacuum Rabi splitting”
(Zhu et al., 1990) can be described in classical terms. One may even
ask with Dowling (1993) “How much more classical can you get?”, a
viewpoint that we cannot completely disagree with.
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Schleier-Smith, M. H., Leroux, I. D., & Vuletić, V. (2010b). States of an ensemble of two-level
atoms with reduced quantum uncertainty. Physical Review Letters, 104, 073604.

Schuster, I., Kubanek, A., Fuhrmanek, A., Puppe, T., Pinkse, P., Murr, K., et al. (2008).
Nonlinear spectroscopy of photons bound to one atom. Nature Physics, 4, 382–385.

Siegman, A. E. (1986). Lasers. Sausalito, CA: University Science Books.
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