Energy-Efficient Deep Learning: Challenges and Opportunities

Vivienne Sze

Massachusetts Institute of Technology

Example Applications of Deep Learning

Computer Vision

Speech Recognition

Medical

What is Deep Learning?

Image Source: [Lee et al., Comm. ACM 2011]

Weighted Sums

Image Source: Stanford

Why is Deep Learning Hot Now?

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Deep Convolutional Neural Networks

Convolutions account for more than 90% of overall computation, dominating **runtime** and **energy consumption**

Input Image (Feature Map)

Input Image (Feature Map)

Element-wise Multiplication

Sliding Window Processing

Many Input Channels (C)

Image batch size: 1 – 256 (N)

ns technology laboratories

Large Sizes with Varying Shapes

AlexNet¹ Convolutional Layer Configurations

Layer	Filter Size (R)	# Filters (M)	# Channels (C)	Stride
1	11x11	96	3	4
2	5x5	256	48	1
3	3x3	384	256	1
4	3x3	384	192	1
5	3x3	256	192	1

Layer 1

34k Params 105M MACs Layer 2

307k Params 224M MACs

885k Params 150M MACs

Popular CNNs

- LeNet (1998)
- AlexNet (2012)
- OverFeat (2013)
- VGGNet (2014)
- GoogleNet (2014)
- ResNet (2015)

ImageNet: Large Scale Visual Recognition Challenge (ILSVRC)

[O. Russakovsky et al., IJCV 2015]

Summary of Popular CNNs

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49
Filter Sizes	5	3, 5,11	3	1, 3 , 5, 7	1, 3, 7
# of Channels	1, 6	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	6, 16	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1	1, 4	1	1, 2	1, 2
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1M	2M
Total Weights	60k	61M	138M	7M	25.5M
Total MACs	341k	724M	15.5G	1.43G	3.9G

CONV Layers increasingly important!

18

¹⁹ Training vs. Inference

Processing at "Edge" instead of the "Cloud"

ystems technology laboratories

Challenges

Key Metrics

• Accuracy

22

 Evaluate hardware using the appropriate DNN model and dataset

Programmability

- Support multiple applications
- Different weights

• Energy/Power

- Energy per operation
- DRAM Bandwidth

Throughput/Latency

- GOPS, frame rate, delay

• Cost

Area (size of memory and # of cores)

[Sze et al., CICC 2017]

ImageNet

microsystems technology laboratorie: massachusetts institute of technolog

Opportunities in Architecture

|||iT

GPUs and CPUs Targeting Deep Learning

Intel Knights Landing (2016) Nvidia PASCAL GP100 (2016)

Knights Mill: next gen Xeon Phi "optimized for deep learning"

Use matrix multiplication libraries on CPUs and GPUs

Map DNN to a Matrix Multiplication

Goal: Reduced number of operations to increase throughput

25

²⁶ Reduce Operations in Matrix Multiplication

- Fast Fourier Transform [Mathieu, ICLR 2014]
 - **Pro:** Direct convolution $O(N_o^2 N_f^2)$ to $O(N_o^2 \log_2 N_o)$
 - Con: Increase storage requirements
- Strassen [Cong, ICANN 2014]
 - Pro: O(N³) to (N^{2.807})
 - Con: Numerical stability
- Winograd [Lavin, CVPR 2016]
 - Pro: 2.25x speed up for 3x3 filter
 - Con: Specialized processing depending on filter size

Analogy: Gauss's Multiplication Algorithm

$$(a+bi)(c+di) = (ac-bd) + (bc+ad)i.$$

4 multiplications + 3 additions

$$k_{1} = c \cdot (a + b)$$

$$k_{2} = a \cdot (d - c)$$

$$k_{3} = b \cdot (c + d)$$

Real part = $k_{1} - k_{3}$
Imaginary part = $k_{1} + k_{2}$.

3 multiplications + 5 additions

Reduce number of multiplications, but **increase** number of additions

Specialized Hardware (Accelerators)

14ii

²⁹ Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Memory Access is the Bottleneck

Worst Case: all memory R/W are **DRAM** accesses

Example: AlexNet [NIPS 2012] has 724M MACs
 → 2896M DRAM accesses required

Properties We Can Leverage

- Operations exhibit high parallelism
 → high throughput possible
- Input data reuse opportunities (up to 500x)

→ exploit **low-cost memory**

Images

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

Advantages of Spatial Architecture

Bow to Map the Dataflow?

Goal: Increase reuse of input data (weights and pixels) and local partial sums accumulation

Spatial Architecture (Dataflow Processing)

34

Energy-Efficient Dataflow

Yu-Hsin Chen, Joel Emer, Vivienne Sze, ISCA 2016

Maximize data reuse and accumulation at RF

35 Data Movement is Expensive

Processing Engine

Data Movement Energy Cost

Maximize data reuse at lower levels of hierarchy

Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Examples:

[Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014] [Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Output Stationary (OS)

- Minimize partial sum R/W energy consumption
 - maximize local accumulation
- Examples:

[Gupta, *ICML* 2015] [ShiDianNao, *ISCA* 2015] [Peemen, *ICCD* 2013]

No Local Reuse (NLR)

- Use a large global buffer as shared storage
 - Reduce **DRAM** access energy consumption
- Examples:

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014] [Zhang, FPGA 2015]

Row Stationary: Energy-efficient Dataflow

- Maximize row convolutional reuse in RF
 - Keep a filter row and image sliding window in RF
- Maximize row psum accumulation in RF

45 Row Stationary Dataflow

Evaluate Reuse in Different Dataflows

Weight Stationary

- Minimize movement of filter weights

Output Stationary

- Minimize movement of partial sums

No Local Reuse

- Don't use any local PE storage. Maximize global buffer size.

Row Stationary

Evaluate Reuse in Different Dataflows

Weight Stationary

- Minimize movement of filter weights

Output Stationary

- Minimize movement of partial sums

No Local Reuse

- Don't use any local PE storage. Maximize global buffer size.

Row Stationary

Evaluation Setup

- Same Total Area
- AlexNet
- 256 PEs
- Batch size = 16

Dataflow Comparison: CONV Layers 48

tems technology laboratories

Plii

Dataflow Comparison: CONV Layers

50 Eyeriss Deep CNN Accelerator

Eyeriss Chip Spec & Measurement Results

Technology	TSMC 65nm LP 1P9M		4000 um	
On-Chip Buffer	108 KB	<		► ■ ▲
# of PEs	168			
Scratch Pad / PE	0.5 KB	Global	Spatial Array	of internet dates
Core Frequency	100 – 250 MHz	Buffer	(168 PEs)	
Peak Performance	33.6 – 84.0 GOPS			40
Word Bit-width	16-bit Fixed-Point			
Natively Supported CNN Shapes	Filter Width: 1 – 32 Filter Height: 1 – 12 Num. Filters: 1 – 1024 Num. Channels: 1 – 1024 Horz. Stride: 1–12 Vert. Stride: 1, 2, 4			µm

AlexNet: For 2.66 GMACs [8 billion 16-bit inputs (**16GB**) and 2.7 billion outputs (**5.4GB**)], only requires **208.5MB** (buffer) and **15.4MB** (DRAM)

⁵² Comparison with GPU

	Eyeriss	NVIDIA TK1 (Jetson Kit)
Technology	65nm	28nm
Clock Rate	200MHz	852MHz
# Multipliers	168	192
On-Chip Storage	Buffer: 108KB Spad: 75.3KB	Shared Mem: 64KB Reg File: 256KB
Word Bit-Width	16b Fixed	32b Float
Throughput ¹	34.7 fps	68 fps
Measured Power	278 mW	Idle/Active ² : 3.7W/10.2W
DRAM Bandwidth	127 MB/s	1120 MB/s ³

- 1. AlexNet Convolutional Layers Only
- 2. Board Power
- 3. Modeled from [Tan, SC11]

http://eyeriss.mit.edu

Machine Learning Pipeline (Inference)

53

Energy-Efficient Object Detection

Features: Energy vs. Accuracy

2.

55

[Suleiman et al., ISCAS 2017]

Opportunities in Joint Algorithm Hardware Design

56

57 Approaches

<u>Reduce size</u> of operands for storage/compute

- Floating point \rightarrow Fixed point
- Bit-width reduction
- Non-linear quantization

• <u>Reduce number</u> of operations for storage/compute

- Exploit Activation Statistics (Compression)
- Network Pruning
- Compact Network Architectures

Commercial Products using 8-bit Integer

Nvidia's Pascal (2016)

Google's TPU (2016)

Reduced Precision in Research

Reduce number of bits

- Binary Nets [Courbariaux, NIPS 2015]

Reduce number of unique weights

- Ternary Weight Nets [Li, arXiv 2016]
- XNOR-Net [Rategari, ECCV 2016]

Non-Linear Quantization

- LogNet [Lee, ICASSP 2017]

Log Domain Quantization

Binary Filters

Phir

Reduced Precision Hardware

Stripes

[Judd et al., MICRO 2016]

Bit-serial processing for speed

KU Leuven

[Moons et al., VLSI 2016]

Voltage scaling for energy savings

⁶¹ Binary/Ternary Net Hardware

- Examples
 - YodaNN (binary weights)
 - BRein (binary weights and activations)
 - TrueNorth (ternary weights and binary activations)

OF ELECTRONICS AT MIT

s technology laboratories

These designs tend not to support state-of-the-art DNN models (except YodaNN)

⁶² Sparsity in Feature Maps

Many zeros in output fmaps after ReLU

OF ELECTRONICS AT MIT

Exploit Sparsity

Method 1: Skip memory access and computation

Method 2: Compress data to reduce storage and data movement

Pruning – Make Weights Sparse

Optimal Brain Damage

[Lecun et al., NIPS 1989]

Prune DNN based on *magnitude* of weights [Han et al., NIPS 2015]

RESEARCH LABORATORY OF ELECTRONICS AT MIT

64

65 Key Observations

- Number of weights *alone* is not a good metric for energy
- All data types should be considered

I Energy-Evaluation Methodology

66

Hardware Energy Costs of each MAC and Memory Access

T MIT

Illi Energy estimation tool available at http://eyeriss.mit.edu

Energy Consumption of Existing DNNs

Deeper CNNs with fewer weights do not necessarily consume less energy than shallower CNNs with more weights

[Yang et al., CVPR 2017]

I Magnitude-based Weight Pruning

Reduce number of weights by **removing small magnitude weights**

Phir

Energy-Aware Pruning

l'liiT

69

[Yang et al., CVPR 2017]

⁷⁰ NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNN to a mobile platform to reach a target latency or energy budget
- Use **empirical measurements** to guide optimization (avoid modeling of tool chain or platform architecture)

III In collaboration with Google's Mobile Vision Team

Improved Latency vs. Accuracy Tradeoff

 NetAdapt boosts the real inference speed of MobileNet by up to 1.7x with higher accuracy

Reference:

MobileNet: Howard et al, "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv 2017 **MorphNet:** Gordon et al., "Morphnet: Fast & simple resource-constrained structure learning of deep networks", CVPR 2018

RESEARCH LABORATORY OF ELECTRONICS AT MIT
73 Network Architecture Design

Build Network with series of Small Filters

GoogleNet/Inception v3

Apply sequentially

VGG-16

Apply sequentially

⁷⁴ 1x1 Bottleneck in Popular DNN models

stems technology laboratories

I Tutorial Material on Efficient DNNs

Proceedings of EEE

Efficient Processing of Deep Neural Networks: A Tutorial and Survey

System Scaling With Nanostructured Power and RF Components Nonorthogonal Multiple Access for 5G and Beyond

Point of View: Beyond Smart Grid—A Cyber–Physical–Social System in Energy Future Scanning Our Past: Materials Science, Instrument Knowledge, and the Power Source Renaissance

Tutorial on Hardware Architectures for Deep Neural Networks

MICRO-49 (Full Day: October 16, 2016)

Joel Emer Vivienne Sze Yu-Hsin Chen MIT, NVIDIA MIT MIT

Email: eyeriss at mit dot edu

Updates

▶ Follow @eems_mit or subscribe to our mailing list for updates on the Tutorial (e.g. notification of when slides will be posted)

Overview

Deep neural networks (DNNs) are currently widely used for many AI applications including computer vision, speech recognition, robotics, etc. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, designing efficient hardware architectures for deep neural networks is an important step towards enabling the wide deployment of DNNs in AI systems.

http://eyeriss.mit.edu/tutorial.html

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "*Efficient Processing of Deep Neural Networks: A Tutorial and Survey,*" Proceedings of the IEEE, 2017

Need More Comprehensive Benchmarks

Processors should support a **diverse set of DNNs** that utilize different techniques

Example:

- Sparse and Dense
- Large and Compact network architectures
- Different Layers (e.g., CONV and FC)
- Variable Bit-width

01100110

Network Pruning

Compact Network Architecture 32-bit float

8-bit fixed Binary

11117

Reduce Precision

[Chen et al., SysML 2018]

Eyexam: Understanding Sources of Inefficiencies in DNN Accelerators

A systematic way to evaluate how each architectural decision affects performance (throughput) for a given DNN workload

Tightens the roofline model

[Chen et al., In Submission]

Opportunities in Memories and Devices

I Advanced Memory Technologies

Many new memories and devices explored to reduce data movement

Non-Volatile Stacked DRAM **Resistive Memories** Global dataline Ir/Cn V₁ Bank Row Bank Bank WS **TSVs** Col dec Col de dataflow $I_1 = V_1 \times G_1$ **Global SA** Inter-bank data bus ٧, G_2 To local Global DRAM Die vault Eyeriss Logic Die Buffei To remote design $I_2 = V_2 \times G_2$ vault Vault (Channel) Engine [Gao et al., Tetris, ASPLOS 2017] $| = |_1 + |_2$ [Kim et al., NeuroCube, ISCA 2016] $= V_1 \times G_1 + V_2 \times G_2$

eDRAM [Chen et al., DaDianNao, MICRO 2014]

[Shafiee et al., ISCA 2016]

[Chi et al., PRIME, ISCA 2016]

Binary Weight Classifier in SRAM

Weak because:

- 1. Weights restricted to be +/-1
- 2. Bit-cell discharge subject to variation, nonlinearity

[Zhang et al., VLSI 2016]

More Compute In Memory

82

Benchmarking Metrics for DNN Hardware

How can we compare designs?

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "*Efficient Processing of Deep Neural Networks: A Tutorial and Survey*," Proceedings of the IEEE, Dec. 2017

⁸³ Metrics for DNN Hardware

Accuracy

- Quality of result for a given task

• Throughput

- Analytics on high volume data
- Real-time performance (e.g., video at 30 fps)

• Latency

- For interactive applications (e.g., autonomous navigation)

• Energy and Power

- Edge and embedded devices have limited battery capacity
- Data centers have stringent power ceilings due to cooling costs

• Hardware Cost

- \$\$\$

Specifications to Evaluate Metrics

• Accuracy

84

- Difficulty of dataset and/or task should be considered

• Throughput

- Number of cores (include utilization along with peak performance)
- Runtime for running specific DNN models

• Latency

Include batch size used in evaluation

• Energy and Power

- Power consumption for running specific DNN models
- Include external memory access

Hardware Cost

On-chip storage, number of cores, chip area + process technology

Example: Metrics of Eyeriss Chip

ASIC Specs	Input			
Process Technology	65nm LP TSMC (1.0V)	Metric	Units	Input
		Name of CNN Model	Text	AlexNet
Total Core Area (mm ²)	12.25	Top-5 error classification on ImageNet	#	19.8
Total On-Chip Memory (kB)	192	Supported Layers		All CONV
		Bits per weight	#	16
Number of Multipliers	168	Bits per input activation	#	16
Clock Frequency (MHz)	200	Batch Size	#	4
		Runtime	ms	115.3
Core area (mm ²) / multiplier	0.073	Power	mW	278
		Off-chip Access per	MBytes	3 85
On-Chip memory (kB) / multiplier	1.14	Image Inference		0.00
		Number of Images	#	100
Measured or	Measured	Tested		
Simulated	weasured	Iested		

Comprehensive Coverage

- All metrics should be reported for fair evaluation of design tradeoffs
- Examples of what can happen if certain metric is omitted:
 - Without the accuracy given for a specific dataset and task, one could run a simple DNN and claim low power, high throughput, and low cost – however, the processor might not be usable for a meaningful task
 - Without reporting the off-chip bandwidth, one could build a processor with only multipliers and claim low cost, high throughput, high accuracy, and low chip power – however, when evaluating system power, the offchip memory access would be substantial
- Are results measured or simulated? On what test data?

⁸⁷ Evaluation Process

The evaluation process for whether a DNN system is a viable solution for a given application might go as follows:

- **1.** Accuracy determines if it can perform the given task
- **2. Latency and throughput** determine if it can run fast enough and in real-time
- **3. Energy and power consumption** will primarily dictate the form factor of the device where the processing can operate
- **4. Cost**, which is primarily dictated by the chip area, determines how much one would pay for this solution

Summary

- Deep Learning is an important area of research
 Wide range of applications
- Challenge is to balance the key metrics
 - Accuracy, Energy, Throughput, Cost, etc.
- Opportunities at various levels of hardware design
 - Architecture, Joint Algorithm-Hardware, Mixed-Signal Circuits/Memories, Advanced Technologies
 - Important to consider interactions between levels to maximize impact

For updates on Eyerissv2, Eyexam, NetAdapt, etc.

Follow @eems_mit

or join EEMS news mailing list

Overview Paper

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, *"Efficient Processing of Deep Neural Networks: A Tutorial and Survey,"* **Proceedings of the IEEE**, December 2017

More info about **Eyeriss** and **Tutorial on DNN Architectures** <u>http://eyeriss.mit.edu</u>

MIT Professional Education Course on **"Designing Efficient Deep Learning Systems"** July 23 – 24, 2018 on MIT Campus <u>http://professional-education.mit.edu/deeplearning</u>

For updates **Second Second** Follow @eems_mit

http://mailman.mit.edu/mailman/listinfo/eems-news

Acknowledgements

Research conducted in the **MIT Energy-Efficient Multimedia Systems Group** would not be possible without the support of the following organizations:

ns technology laboratories