
Energy-Efficient	Deep	Learning:		
Challenges	and	Opportuni:es	

Contact	Info	
email:	sze@mit.edu	
website:	www.rle.mit.edu/eems	

Vivienne	Sze	
Massachuse@s	Ins:tute	of	Technology	

In	collabora*on	with		
Yu-Hsin	Chen,	Joel	Emer,	Tien-Ju	Yang	

2 Example	Applica:ons	of	Deep	Learning	
Computer Vision Speech Recognition

Game Play Medical

What	is	Deep	Learning?	3

Image
“Volvo
XC90”

Image Source: [Lee et al., Comm. ACM 2011]

Weighted	Sums	

Image Source: Stanford

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

Yj = activation Wij × Xi
i=1

3

∑
⎛

⎝
⎜

⎞

⎠
⎟

4

Why	is	Deep	Learning	Hot	Now?	5

350M images
uploaded per
day

2.5 Petabytes
of customer
data hourly

300 hours of
video uploaded
every minute

Big Data
Availability

GPU
Acceleration

New ML
Techniques

Deep	Convolu:onal	Neural	Networks	

Classes FC
Layers

Modern deep CNN: up to 1000 CONV layers

CONV
Layer

CONV
Layer

Low-level
Features

High-level
Features

6

Deep	Convolu:onal	Neural	Networks	

CONV
Layer

CONV
Layer

Low-level
Features

High-level
Features

Classes FC
Layers

1 – 3 layers

7

Deep	Convolu:onal	Neural	Networks	

Classes CONV
Layer

CONV
Layer

FC
Layers

Convolutions account for more
than 90% of overall computation,
dominating runtime and energy
consumption

8

High-Dimensional	CNN	Convolu:on	

R

R

H

Input Image (Feature Map)

Filter

H

9

R

Filter

High-Dimensional	CNN	Convolu:on	

Input Image (Feature Map)

R

Element-wise
Multiplication

H

H

10

R

Filter

R

High-Dimensional	CNN	Convolu:on	

E

E
Partial Sum (psum)

Accumulation

Input Image (Feature Map) Output Image

Element-wise
Multiplication

H

a pixel

H

11

H
R

Filter

R

High-Dimensional	CNN	Convolu:on	

E

Sliding Window Processing

Input Image (Feature Map)
a pixel

Output Image

H E

12

H

High-Dimensional	CNN	Convolu:on	

R

R

C

Input Image

Output Image
C Filter

Many Input Channels (C)

E

H E

AlexNet:	3	–	192	Channels	(C)		

13

High-Dimensional	CNN	Convolu:on	

E

Output Image Many
Filters (M)

Many
Output Channels (M)

M

…

R

R
1

R

R

C

M

H

Input Image
C

C

H E

AlexNet:	96	–	384	Filters	(M)		

14

High-Dimensional	CNN	Convolu:on	

…

M

…

Many
Input Images (N) Many

Output Images (N)
…

R

R

R

R

C

C

Filters

E

E

H

C

H

H

C

E
1 1

N N

H E

Image	batch	size:	1	–	256	(N)	

15

Large	Sizes	with	Varying	Shapes	

Layer	 Filter	Size	(R)	 #	Filters	(M)	 #	Channels	(C)	 Stride	
1	 11x11	 96	 3	 4	
2	 5x5	 256	 48	 1	
3	 3x3	 384	 256	 1	
4	 3x3	 384	 192	 1	
5	 3x3	 256	 192	 1	

AlexNet1	Convolu:onal	Layer	Configura:ons	

34k	Params	 307k	Params	 885k	Params	

Layer	1	 Layer	2	 Layer	3	

1.	[Krizhevsky,	NIPS	2012]	

105M	MACs	 224M	MACs	 150M	MACs	

16

•  LeNet	(1998)	
•  AlexNet	(2012)	
•  OverFeat	(2013)	
•  VGGNet	(2014)	
•  GoogleNet	(2014)	
•  ResNet	(2015)	

Popular	CNNs	

0

2

4

6

8

10

12

14

16

18

2012 2013 2014 2015 Human

A
cc

ur
ac

y
(T

op
 5

 e
rr

or
)

[O. Russakovsky et al., IJCV 2015]

AlexNet	

OverFeat	

GoogLeNet	

ResNet	

Cl
ar
ifa

i	

VGGNet	

ImageNet: Large Scale Visual
Recognition Challenge (ILSVRC)

17

Metrics LeNet-5 AlexNet VGG-16 GoogLeNet
(v1)

ResNet-50

Top-5 error n/a 16.4 7.4 6.7 5.3

Input Size 28x28 227x227 224x224 224x224 224x224
of CONV Layers 2 5 16 21 (depth) 49
Filter Sizes 5 3, 5,11 3 1, 3 , 5, 7 1, 3, 7
of Channels 1, 6 3 - 256 3 - 512 3 - 1024 3 - 2048
of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048
Stride 1 1, 4 1 1, 2 1, 2
of Weights 2.6k 2.3M 14.7M 6.0M 23.5M
of MACs 283k 666M 15.3G 1.43G 3.86G
of FC layers 2 3 3 1 1
of Weights 58k 58.6M 124M 1M 2M
of MACs 58k 58.6M 124M 1M 2M
Total Weights 60k 61M 138M 7M 25.5M
Total MACs 341k 724M 15.5G 1.43G 3.9G

Summary	of	Popular	CNNs	

CONV Layers increasingly important!

18

Training	vs.	Inference	

Training
(determine weights)

Weights
Large Datasets

Inference
(use weights)

19

Processing	at	“Edge”	instead	of	the	“Cloud”	20

Privacy

Latency

Actuator
Image source: ericsson.com

Sensor

Cloud

Communication

Image source:
www.theregister.co.uk

Challenges

21

• Accuracy	
–  Evaluate	hardware	using	the	
appropriate	DNN	model	and	dataset	

•  Programmability	
–  Support	mulXple	applicaXons		
–  Different	weights	

•  Energy/Power	
–  Energy	per	operaXon	
–  DRAM	Bandwidth	

•  Throughput/Latency		
–  GOPS,	frame	rate,	delay	

•  Cost		
–  Area	(size	of	memory	and	#	of	cores)	

Key	Metrics	

DRAM

Chip	

Computer		
Vision	

Speech		
Recogni:on	

22

[Sze et al., CICC 2017]

ImageNet	MNIST	

Opportunities in
Architecture

23

GPUs	and	CPUs	Targe:ng	Deep	Learning	

Knights Mill: next gen Xeon
Phi “optimized for deep

learning”

Intel Knights Landing (2016) Nvidia PASCAL GP100 (2016)

24

Use matrix multiplication libraries on CPUs and GPUs

Map	DNN	to	a	Matrix	Mul:plica:on		25

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =

Toeplitz Matrix
(w/ redundant data)

Convolution:

Matrix Mult:

Data is repeated
Goal: Reduced number of operations to increase throughput

•  Fast	Fourier	Transform	[Mathieu,	ICLR	2014]	

– Pro:	Direct	convoluXon	O(No
2Nf

2)	to	O(No
2log2No)	

– Con:	Increase	storage	requirements	

•  Strassen	[Cong,	ICANN	2014]		
– Pro:	O(N3)	to	(N2.807)	
– Con:	Numerical	stability	

• Winograd	[Lavin,	CVPR	2016]		
– Pro:	2.25x	speed	up	for	3x3	filter	
– Con:	Specialized	processing	depending	on	filter	size	

Reduce	Opera:ons	in	Matrix	Mul:plica:on	26

Analogy:	Gauss’s	Mul:plica:on	Algorithm	

4 multiplications + 3 additions

3 multiplications + 5 additions

27

Reduce number of multiplications,
but increase number of additions

28

Specialized Hardware
(Accelerators)

Proper:es	We	Can	Leverage	

•  OperaXons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Memory	Access	is	the	Bocleneck	

29

ALU

Memory Read Memory Write MAC*

DRAM DRAM

•  Example: AlexNet [NIPS 2012] has 724M MACs
 à 2896M DRAM accesses required

Worst Case: all memory R/W are DRAM accesses

filter weight
image pixel
partial sum updated

partial sum

200x 1x

Proper:es	We	Can	Leverage	

•  OperaXons	exhibit	high	parallelism	
	à	high	throughput	possible	

•  Input	data	reuse	opportuniXes	(up	to	500x)	
	 	à	exploit	low-cost	memory	

Convolu:onal	
Reuse		

(pixels,	weights)	

Filter	 Image	

Image	
Reuse	
(pixels)	

	

2

1

Filters	

Image	

Filter	
Reuse	

(weights)	
	

Filter	

Images	

2

1

30

Highly-Parallel	Compute	Paradigms	31

Temporal Architecture
(SIMD/SIMT)

Register File

Memory Hierarchy

Spatial Architecture
(Dataflow Processing)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Advantages	of	Spa:al	Architecture	32

Temporal Architecture
(SIMD/SIMT)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Spatial Architecture
(Dataflow Processing)

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica:on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control

Reg File 0.5 – 1.0 kB

How	to	Map	the	Dataflow?	

Spatial Architecture
(Dataflow Processing)

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

CNN	Convolu:on	

?

33

pixels
weights

partial
sums

Goal:	Increase	reuse	of	input	data	
(weights	and	pixels)	and	local	
par:al	sums	accumulaXon	

34

Energy-Efficient Dataflow
Yu-Hsin	Chen,	Joel	Emer,	Vivienne	Sze,	ISCA	2016	

Maximize	data	reuse	and	accumula:on	at	RF	

Data	Movement	is	Expensive	35

DRAM ALU

Buffer ALU

PE ALU

RF ALU

ALU

Data Movement Energy Cost

200×

6×

2×

1×

1× (Reference)

Off-Chip
DRAM ALU = PE

Processing Engine

Accelerator

Global
Buffer

PE

PE PE

ALU

Maximize	data	reuse	at	lower	levels	of	hierarchy	

Weight	Sta:onary	(WS)	

•  Minimize weight read energy consumption
−  maximize convolutional and filter reuse of weights

•  Examples:
 [Chakradhar, ISCA 2010] [nn-X (NeuFlow), CVPRW 2014]

[Park, ISSCC 2015] [Origami, GLSVLSI 2015]

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Pixel

PE
Weight

36

•  Minimize partial sum R/W energy consumption
−  maximize local accumulation

•  Examples:

Output	Sta:onary	(OS)	

[Gupta, ICML 2015] [ShiDianNao, ISCA 2015]
[Peemen, ICCD 2013]

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Pixel Weight

PE
Psum

37

•  Use a large global buffer as shared storage
−  Reduce DRAM access energy consumption

•  Examples:

No	Local	Reuse	(NLR)	

[DianNao, ASPLOS 2014] [DaDianNao, MICRO 2014]
[Zhang, FPGA 2015]

PE
 Pixel

Psum

Global Buffer
Weight

38

Row	Sta:onary:	Energy-efficient	Dataflow	

* =
Filter Output Image

Input Image

39

[Chen, ISCA 2016]

1D	Row	Convolu:on	in	PE	

* =
Filter Partial Sums
a b c a b c

a b c d e

PE Reg File

b a c

d c e a b

Input Image

40

1D	Row	Convolu:on	in	PE	

* =
Filter
a b c a b c

a b c d e

e d

PE
b a c

Reg File

b a c

a

Partial Sums
Input Image

41

1D	Row	Convolu:on	in	PE	

* =
a b c

a b c d e Partial Sums
Input Image

PE
b a c

Reg File

c b d

b

 e
a

Filter
a b c

42

1D	Row	Convolu:on	in	PE	

* =
a b c

a b c d e Partial Sums
Input Image

PE
b a c

Reg File

d c e

c

b a

Filter
a b c

43

1D	Row	Convolu:on	in	PE	

PE
b a c

Reg File

d c e

c

b a

•  Maximize row convolutional reuse in RF
−  Keep a filter row and image sliding window in RF

•  Maximize row psum accumulation in RF

44

Row	Sta:onary	Dataflow	

PE 1

Row 1 Row 1

PE 2

Row 2 Row 2

PE 3

Row 3 Row 3

Row 1

= *

PE 4

Row 1 Row 2

PE 5

Row 2 Row 3

PE 6

Row 3 Row 4

Row 2

= *

PE 7

Row 1 Row 3

PE 8

Row 2 Row 4

PE 9

Row 3 Row 5

Row 3

= *

* * *

* * *

* * *

45

OpXmize	for	overall	energy	efficiency	instead	
for	only	a	certain	data	type	

• Weight	Sta:onary	
–  Minimize	movement	of	filter	weights	

• Output	Sta:onary	
–  Minimize	movement	of	parXal	sums	

• No	Local	Reuse	
–  Don’t	use	any	local	PE	storage.	Maximize	global	buffer	size.	

• Row	Sta:onary	
	

Evaluate	Reuse	in	Different	Dataflows	46

• Weight	Sta:onary	
–  Minimize	movement	of	filter	weights	

• Output	Sta:onary	
–  Minimize	movement	of	parXal	sums	

• No	Local	Reuse	
–  Don’t	use	any	local	PE	storage.	Maximize	global	buffer	size.	

• Row	Sta:onary	
	

Evaluate	Reuse	in	Different	Dataflows	47

Evalua:on	Setup	
•  Same	Total	Area	
•  AlexNet	
•  256	PEs	
•  Batch	size	=	16	

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×
6×

PE ALU 2×
1×
1× (Reference)

DRAM ALU

Dataflow	Comparison:	CONV	Layers	

RS uses 1.4× – 2.5× lower energy than other dataflows

Normalized
Energy/MAC

ALU

RF

NoC

buffer

DRAM

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

CNN Dataflows

48

[Chen, ISCA 2016]

Dataflow	Comparison:	CONV	Layers	

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

psums

weights

pixels

RS optimizes for the best overall energy efficiency

CNN Dataflows

49

[Chen, ISCA 2016]

Eyeriss	Deep	CNN	Accelerator	50

Off-Chip DRAM

…

…

…

…
…

…

Decomp

Comp ReLU

Input Image

Output Image

Filter Filt

Img

Psum

Psum

Global
Buffer
SRAM

108KB

64 bits

DCNN Accelerator

14×12 PE Array

Link Clock Core Clock

[Chen	et	al.,	ISSCC	2016]	

Eyeriss	Chip	Spec	&	Measurement	Results	51

Technology TSMC 65nm LP 1P9M
On-Chip Buffer 108 KB

of PEs 168
Scratch Pad / PE 0.5 KB
Core Frequency 100 – 250 MHz

Peak Performance 33.6 – 84.0 GOPS
Word Bit-width 16-bit Fixed-Point

Natively Supported
CNN Shapes

Filter Width: 1 – 32
Filter Height: 1 – 12
Num. Filters: 1 – 1024
Num. Channels: 1 – 1024
Horz. Stride: 1–12
Vert. Stride: 1, 2, 4

4000 µm

4000 µm

Global
Buffer

Spatial Array
(168 PEs)

AlexNet:	For	2.66	GMACs	[8	billion	16-bit	inputs	(16GB)	and	2.7	billion	
outputs	(5.4GB)],	only	requires	208.5MB	(buffer)	and	15.4MB	(DRAM)			

[Chen	et	al.,	ISSCC	2016]	

Comparison	with	GPU	52

Eyeriss NVIDIA TK1 (Jetson Kit)
Technology 65nm 28nm
Clock Rate 200MHz 852MHz

Multipliers 168 192

On-Chip Storage Buffer: 108KB
Spad: 75.3KB

Shared Mem: 64KB
Reg File: 256KB

Word Bit-Width 16b Fixed 32b Float
Throughput1 34.7 fps 68 fps

Measured Power 278 mW Idle/Active2: 3.7W/10.2W

DRAM Bandwidth 127 MB/s 1120 MB/s 3

1.  AlexNet Convolutional Layers Only
2.  Board Power
3.  Modeled from [Tan, SC11] http://eyeriss.mit.edu

Machine	Learning	Pipeline	(Inference)	

Score = Σn xi wi

Feature
Extraction

Classification
(wTx)

Handcrafted Features
(e.g. HOG)

Learned Features
(e.g. DNN)

pixels Features (x)

Trained weights (w)
Image

Scores

Scores per class
(select class based

on max or threshold)

53

Energy-Efficient	Object	Detec:on	

0

0.5

1

1.5

2
Energy	

HOG	Object	
Detec:on	

DPM	Object	
Detec:on	

54

H.264/AVC	
Decoder	

H.264/AVC	
Encoder	

H.265/HEVC	
Decoder	

H.265/HEVC	
Encoder	

Enable	object	detec:on	to	be	as	energy-efficient	as	
video	compression	at	<	1nJ/pixel	

[Suleiman	et	al.,	
VLSI	2016]	

4mm	

4m
m
	

Features:	Energy	vs.	Accuracy		55

0.1

1

10

100

1000

10000

0 20 40 60 80

Accuracy	(Average	Precision)	

Energy/	
Pixel	(nJ)	

VGG162	

AlexNet2	

HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extracAon.	Does	
not	include	data,	augmentaAon,	
ensemble	and	classificaAon	
energy,	etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

ExponenAal	

Linear	

Video		
Compression	

[Suleiman et al., ISCAS 2017]

Opportunities in Joint
Algorithm Hardware Design

56

• Reduce	size	of	operands	for	storage/compute	
–  FloaXng	point	à	Fixed	point	
– Bit-width	reducXon	
– Non-linear	quanXzaXon	
	

• Reduce	number	of	opera:ons	for	storage/compute	
– Exploit	AcXvaXon	StaXsXcs	(Compression)	
– Network	Pruning	
– Compact	Network	Architectures	

Approaches	57

Commercial	Products	using	8-bit	Integer	

Nvidia’s Pascal (2016) Google’s TPU (2016)

58

•  Reduce	number	of	bits		
–  Binary	Nets	[Courbariaux,	NIPS	2015]		

•  Reduce	number	of	unique	weights	
–  Ternary	Weight	Nets	[Li,	arXiv	2016]	
–  XNOR-Net	[Rategari,	ECCV	2016]	

•  Non-Linear	Quan:za:on	
–  LogNet	[Lee,	ICASSP	2017]	

Reduced	Precision	in	Research	59

Binary Filters

Log Domain Quantization

Reduced	Precision	Hardware	60

Stripes
[Judd et al., MICRO 2016]

Bit-serial processing for speed

KU Leuven

[Moons et al., VLSI 2016]

Voltage scaling for energy savings

•  Examples	
– YodaNN	(binary	weights)	
– BRein	(binary	weights	and	
acXvaXons)	

– TrueNorth	(ternary	weights	
and	binary	acXvaXons)	

Binary/Ternary	Net	Hardware	

[BRein, VLSI 2017]

These designs tend not to support
state-of-the-art DNN models

(except YodaNN)

61

Sparsity	in	Feature	Maps	

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU 9 0 0

1 0 5
0 6 0

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
CONV Layer

of activations # of non-zero activations

(Normalized)

62

Exploit	Sparsity	63

[Chen	et	al.,	ISSCC	2016]	

Method	2:	Compress	data	to	reduce	storage	and	data	movement	

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	Ac
ce
ss	

(M
B)	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM
Access
(MB)

0

2

4

6
1.2×

1.4×
1.7×

1.8×
1.9×

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

== 0 Zero
Buff

 Scratch Pad

Enable

Zero Data Skipping

Register	File	

No	R/W	 No	Switching	

Method	1:	Skip	memory	access	and	computa*on	

45%	energy	savings	

Op:mal	Brain	Damage	

Pruning	–	Make	Weights	Sparse	

[Lecun et al., NIPS 1989]

retraining

64

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Prune	DNN	based	on	
magnitude	of	weights	

[Han et al., NIPS 2015]

Example: AlexNet
Weight Reduction:

CONV layers 2.7x, FC layers 9.9x
Overall Reduction:

Weights 9x, MACs 3x

•  Number	of	weights	alone	is	not	a	good	metric	for	energy	

•  All	data	types	should	be	considered		
	

Key	Observa:ons	65

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang et al., CVPR 2017]

Energy-Evalua:on	Methodology	66

CNN Shape Configuration
(# of channels, # of filters, etc.)

CNN Weights and Input Data

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …]

CNN Energy Consumption
L1 L2 L3

Energy

…

Memory
Accesses

Optimization

of MACs
Calculation

…

acc. at mem. level 1
acc. at mem. level 2

acc. at mem. level n

of MACs

Hardware Energy Costs of each
MAC and Memory Access

Ecomp

Edata

Energy estimation tool available at http://eyeriss.mit.edu

[Yang et al., CVPR 2017]

[Yang et al., CVPR 2017]

67

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump:on	

Original	DNN	

Deeper	CNNs	with	fewer	weights	do	not	necessarily	consume	
less	energy	than	shallower	CNNs	with	more	weights	

Energy	Consump:on	of	Exis:ng	DNNs	

68

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump:on	

Original	DNN	 Magnitude-based	Pruning	[6]	[Han	et	al.,	NIPS	2015]	

Reduce	number	of	weights	by	removing	small	magnitude	weights	

Magnitude-based	Weight	Pruning	

[Yang et al., CVPR 2017]

69

AlexNet	 SqueezeNet	

GoogLeNet	

ResNet-50	
VGG-16	

AlexNet	

SqueezeNet	

AlexNet	 SqueezeNet	

GoogLeNet	

77%	

79%	

81%	

83%	

85%	

87%	

89%	

91%	

93%	

5E+08	 5E+09	 5E+10	

To
p-
5	
Ac

cu
ra
cy
	

Normalized	Energy	Consump:on	

Original	DNN	 Magnitude-based	Pruning	[6]	 Energy-aware	Pruning	(This	Work)	

Remove	weights	from	layers	in	order	of	highest	to	lowest	energy	
3.7x	reduc:on	in	AlexNet	/	1.6x	reduc:on	in	GoogLeNet	

Energy-Aware	Pruning	

1.74x

NetAdapt:	Platorm-Aware	DNN	Adapta:on	70

•  Automa:cally	adapt	DNN	to	a	mobile	plaporm	to	reach	a	
target	latency	or	energy	budget	

•  Use	empirical	measurements	to	guide	opXmizaXon	(avoid	
modeling	of	tool	chain	or	plaporm	architecture)		

[Yang et al., arXiv 2018]

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network	Proposals	

Empirical	Measurements	
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…

…

…

Pretrained	
Network	 Metric Budget

Latency 3.8

Energy 10.5

Budget	

Adapted	
Network	

…

…

Plaporm	

A	 B	 C	 D	 Z	

•  NetAdapt	boosts	the	real	inference	speed	of	MobileNet	
by	up	to	1.7x	with	higher	accuracy	

Improved	Latency	vs.	Accuracy	Tradeoff	71

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks”, CVPR 2018

*Tested on the ImageNet dataset and a Google Pixel 1 CPU

Sparse	Hardware	72

EIE

=

x

a

b

d

e

f

c
y

z

xa *

ya *

za *

xb *

yb *

zb *

…

Scatter

network

Accumulate MULs

PE frontend PE backend

Densely Packed

Storage of Weights

and Activations

All-to all

Multiplication of

Weights and Activations

Mechanism to Add to

Scattered Partial Sums

~a
�

0 a1 0 a3
�

⇥ ~b
PE0

PE1

PE2

PE3

0

BBBBBBBBBBBBB@

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

b0
b1

�b2
b3

�b4
b5
b6

�b7

1

CCCCCCCCCCCCCA

ReLU)

0

BBBBBBBBBBBBB@

b0
b1
0

b3
0

b5
b6
0

1

CCCCCCCCCCCCCA

1

Input	

	
	
Weights	
	
	

Output	

[Han et al., ISCA 2016]

SCNN
[Parashar et al.,

ISCA 2017]

Supports Convolutional
Layers Only

Supports Fully
Connected Layers Only

Network	Architecture	Design	

5x5 filter Two 3x3 filters

decompose

Apply sequentially

decompose

5x5 filter 5x1 filter

1x5 filter

Apply sequentially
GoogleNet/Inception v3

VGG-16

Build Network with series of Small Filters

separable
filters

73

1x1	Bo@leneck	in	Popular	DNN	models	

ResNet

GoogleNet

compress

expand

compress

74

SqueezeNet

Tutorial	Material	on	Efficient	DNNs	75

http://eyeriss.mit.edu/tutorial.html

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, “Efficient Processing of Deep
Neural Networks: A Tutorial and Survey,” Proceedings of the IEEE, 2017

Example:	
–  Sparse	and	Dense	
–  Large	and	Compact	network	architectures		
–  Different	Layers	(e.g.,	CONV	and	FC)	
–  Variable	Bit-width	

	

Need	More	Comprehensive	Benchmarks	76

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Network	Pruning	

C	
1	

1	
S	

R	

1	

R	

S	
C	

Compact	Network	Architecture	

Processors	should	support	a	diverse	set	of	DNNs		
that	uXlize	different	techniques	

1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0

0 1 1 0 0 1 1 0

Reduce	Precision	

32-bit	float	

8-bit	fixed	

Binary	 0

[Chen et al., SysML 2018]

(MAC/cycle)

(MAC/data)

Step 1: maximum workload parallelism
Step 2: maximum dataflow parallelism

Step 3: # of act. PEs under a finite PE array size
Number of PEs

Step 4: # of act. PEs under fixed PE array dims.

peak
perf.

Step 5: # of act. PEs under fixed storage cap.

workload operational intensity

Step 6: lower act. PE utilization due to insuff. avg. BW
Step 7: lower act. PE utilization due to insuff. inst. BW

Slope = BW to only act. PE

Eyexam:	Understanding	Sources	of	
Inefficiencies	in	DNN	Accelerators	

77

A	systemaXc	way	to	evaluate	how	each	architectural	decision	
affects	performance	(throughput)	for	a	given	DNN	workload	

Tightens the roofline model

(Theoretical Peak Performance)

[Chen et al., In Submission]

Opportunities in Memories
and Devices

78

Advanced	Memory	Technologies	
Many new memories and devices explored to reduce data movement

V1
G1

I1 = V1×G1
V2

G2

I2 = V2×G2

I = I1 + I2
= V1×G1 + V2×G2

Stacked DRAM

eDRAM
[Chen et al., DaDianNao, MICRO 2014]

[Kim et al., NeuroCube, ISCA 2016]
[Gao et al., Tetris, ASPLOS 2017]

Non-Volatile
Resistive Memories

[Shafiee et al., ISCA 2016]
[Chi et al., PRIME, ISCA 2016]

WS
dataflow

Eyeriss
design

79

Binary	Weight	Classifier	in	SRAM	

Weak because:
1. Weights restricted to be +/-1
2. Bit-cell discharge subject to variation, nonlinearity

WLn

VDD_SRAMBL BLB
WL0

IBC,0

IBC,1

1 0

10

-1

+1

VDD_SRAM

[Zhang et al., VLSI 2016]

80

More	Compute	In	Memory		81

[S. Gonugondla,
ISSCC 2018]

Pulse width modulation on

WL (activation)

[A. Biswas,
Conv-RAM,

ISSCC 2018]

Apply Va (activation)
to BL rather than WL

Benchmarking Metrics
for DNN Hardware

82

How can we compare designs?

V.	Sze,	Y.-H.	Chen,	T-J.	Yang,	J.	Emer,		
“Efficient	Processing	of	Deep	Neural	Networks:		A	Tutorial	and	Survey,”		

Proceedings	of	the	IEEE,	Dec.	2017	

•  Accuracy	
–  Quality	of	result	for	a	given	task	

•  Throughput	
–  AnalyXcs	on	high	volume	data	
–  Real-Xme	performance	(e.g.,	video	at	30	fps)	

•  Latency	
–  For	interacXve	applicaXons	(e.g.,	autonomous	navigaXon)	

•  Energy	and	Power	
–  Edge	and	embedded	devices	have	limited	bacery	capacity	
–  Data	centers	have	stringent	power	ceilings	due	to	cooling	costs	

•  Hardware	Cost		
–  $$$	

Metrics	for	DNN	Hardware	83

•  Accuracy	
–  Difficulty	of	dataset	and/or	task	should	be	considered	

•  Throughput	
–  Number	of	cores	(include	uXlizaXon	along	with	peak	performance)	
–  RunXme	for	running	specific	DNN	models	

•  Latency	
–  Include	batch	size	used	in	evaluaXon	

•  Energy	and	Power	
–  Power	consumpXon	for	running	specific	DNN	models	
–  Include	external	memory	access	

•  Hardware	Cost		
–  On-chip	storage,	number	of	cores,	chip	area	+	process	technology	

Specifica:ons	to	Evaluate	Metrics	84

Example:	Metrics	of	Eyeriss	Chip	85

Metric Units Input
Name of CNN Model Text AlexNet
Top-5 error classification
on ImageNet

19.8

Supported Layers All CONV
Bits per weight # 16
Bits per input activation # 16
Batch Size # 4
Runtime ms 115.3
Power mW 278
Off-chip Access per
Image Inference

MBytes 3.85

Number of Images
Tested

100

ASIC Specs Input
Process Technology 65nm LP

TSMC (1.0V)
Total Core Area
(mm2)

12.25

Total On-Chip
Memory (kB)

192

Number of Multipliers 168

Clock Frequency
(MHz)

200

Core area (mm2) /
multiplier

0.073

On-Chip memory
(kB) / multiplier

1.14

Measured or
Simulated

Measured

•  All	metrics	should	be	reported	for	fair	evaluaXon	of	design	
tradeoffs	

•  Examples	of	what	can	happen	if	certain	metric	is	omiced:	
–  Without	the	accuracy	given	for	a	specific	dataset	and	task,	one	could	
run	a	simple	DNN	and	claim	low	power,	high	throughput,	and	low	cost	–	
however,	the	processor	might	not	be	usable	for	a	meaningful	task	

–  Without	repor:ng	the	off-chip	bandwidth,	one	could	build	a	processor	
with	only	mulXpliers	and	claim	low	cost,	high	throughput,	high	accuracy,	
and	low	chip	power	–	however,	when	evaluaXng	system	power,	the	off-
chip	memory	access	would	be	substanXal	

•  Are	results	measured	or	simulated?	On	what	test	data?	

Comprehensive	Coverage	86

The	evaluaXon	process	for	whether	a	DNN	system	is	a	viable	
soluXon	for	a	given	applicaXon	might	go	as	follows:		

1.   Accuracy	determines	if	it	can	perform	the	given	task		

2.   Latency	and	throughput	determine	if	it	can	run	fast	enough	
and	in	real-Xme	

3.   Energy	and	power	consump:on	will	primarily	dictate	the	
form	factor	of	the	device	where	the	processing	can	operate		

4.   Cost,	which	is	primarily	dictated	by	the	chip	area,	determines	
how	much	one	would	pay	for	this	soluXon	

Evalua:on	Process	87

• Deep	Learning	is	an	important	area	of	research	
– Wide	range	of	applicaXons	

•  Challenge	is	to	balance	the	key	metrics	
– Accuracy,	Energy,	Throughput,	Cost,	etc.	

• Opportuni:es	at	various	levels	of	hardware	design	
– Architecture,	Joint	Algorithm-Hardware,	Mixed-Signal	
Circuits/Memories,	Advanced	Technologies	

–  Important	to	consider	interacXons	between	levels	to	
maximize	impact	

Summary	88

For updates on Eyerissv2, Eyexam, NetAdapt, etc.

or join EEMS news mailing list

References	

More	info	about	Eyeriss	and	Tutorial	on	DNN	Architectures	
hcp://eyeriss.mit.edu		

For	updates	
http://mailman.mit.edu/mailman/listinfo/eems-news

Overview	Paper	
V.	Sze,	Y.-H.	Chen,	T-J.	Yang,	J.	Emer,	“Efficient	Processing	of	
Deep	Neural	Networks:	A	Tutorial	and	Survey,”	Proceedings	of	
the	IEEE,	December	2017	

89

MIT	Professional	EducaXon	Course	on		
“Designing	Efficient	Deep	Learning	Systems”		
July	23	–	24,	2018	on	MIT	Campus	
hcp://professional-educaXon.mit.edu/deeplearning		

Acknowledgements	90

Research	conducted	in	the	MIT	Energy-Efficient	Mul:media	Systems	Group	would	not	
be	possible	without	the	support	of	the	following	organizaXons:		

