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Wide Range of Compute-Intensive Applications
Video 

Compression
Robotics:

Autonomous Navigation
AI:

Deep Neural Networks

Input Layer

Output Layer

Hidden Layer

Weights Weights

• Rapidly growing volume of data to be processed
• Increasingly complex algorithms for higher quality of result
• Require high throughput/low latency and energy efficiency

Co-design across algorithms, architectures, circuits, and systems
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Compressing Pixels

PhD at MIT (2006-2010) 
Member of Technical Staff at Texas Instruments (2010-2013)

Goal: Make pixel compression ubiquitous on portable devices
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Video is the Biggest Big Data 

• Video accounts for over 70% of today’s Internet 
traffic. Increase in applications, content, fidelity, etc. 
à Need to compress well

• Ultra-HD 4K televisions and 360o for virtual reality.   
à Need to compress fast

• Video is a “must have” on portable devices. Battery 
capacity is not keeping up with processing demands. 
à Need to use less power to compress

Sources: Cisco Visual Networking Index
Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update

4



Vivienne Sze (    @eems_mit)

• H.264/AVC used to decode over 80% of video content online

• Voltage scaling and parallelism to reduce power consumption

Low Power Design for Video Compression

Delay

Energy per 
operation

Supply Voltage

3.
3 

m
m

3.3 mm

MEMORY CONTROLLER
DOMAIN

CORE
DOMAIN

SRAM

176 I/O PADS

[Sze, JSSC 2009]

Achieves high definition (720p @ 30fps) decoding at under 2mW 
Over 6x lower power than state-of-the-art

[Joint work with Anantha Chandrakasan, Daniel Finchelstein, Mahmut Sinangil]
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• Advanced algorithms more difficult to parallelize
– Limits throughput due to Amdahl’s law

Parallelism Limited By Algorithm

bits

De-Binarizer
(DB)

Arithmetic
Decoder (AD)

Context 
Memory

Context 
Selection

(CS)

syntax 
elements

Context Modeling (CM)

bins

probability

Context-Adaptive Binary Arithmetic Coding (CABAC) 

[Joint work with Anantha Chandrakasan]
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• Advanced algorithms more difficult to parallelize

• Co-design algorithms and hardware 

Parallelism Limited By Algorithm

Parallel entropy coding algorithm gives >10x higher throughput 
than state-of-the-art with minimal impact on coding efficiency
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Context-Adaptive Binary Arithmetic Coding (CABAC) 

Slice Engine 0
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[Sze, ISSCC 2011]

[Joint work with Anantha Chandrakasan]
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• H.265/HEVC is the successor to H.264/AVC 

• Achieves 2x higher compression than H.264/AVC
• High throughput (Ultra-HD 8K @ 120fps) & low power

High Efficiency Video Coding (HEVC)

Coding 
Efficiency

Efficient 
Implementation

Larger and Flexible Coding Block Size X

More Sophisticated Intra Prediction X

Larger Interpolation for Motion Comp. X

Larger Transform Size X

Parallel Deblocking Filter X

Sample Adaptive Offset X

High-Throughput CABAC X X

High Level Parallel Tools X

Size Energy

H.265/HEVC
(2013)

MPEG-2
(1994)

H.264/AVC
(2003)

4x

1.5x

2x

2x

Primetime Emmy

Co-design algorithm & hardware to address coding efficiency, throughput and power challenges
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Understanding Pixels
Faculty at MIT (2013 - present) 

Goal: Make understanding pixels as ubiquitous as compressing pixels 
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Deep Neural Networks

DNNs are >100x more complex than video compression

Deep Neural Networks (DNNs) delivers state-of-the-art accuracy, 
but require up to several hundred millions of operations and weights to compute!
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Input:
Image

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]

Low Level Features High Level Features
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Power Dominated by Data Movement

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

[Horowitz, ISSCC 2014] 

Relative Energy Cost

1 10 102 103 104

Memory access is orders 
of magnitude higher 
energy than compute
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Exploit Data Reuse at Low-Cost Memories

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Farther and larger
memories consume 

more power

0.5 – 1.0 kB

Control

Reg File
Specialized 

hardware with 
small (< 1kB) 

low cost memory 
near compute
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Flexible and Efficient DNN Processor

On
-c

hip
 B
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Spatial 
PE Array

4mm

4m
m

Overall >10x energy reduction compared to a mobile GPU

[Chen, ISSCC 2016],[Chen, ISCA 2016] Micro Top Picks 

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM

Eyeriss

[Joint work with Joel Emer]

Eyeriss Project Website: http://eyeriss.mit.edu
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• Provide a systematic way to
– Evaluate and compare wide range of DNN 

processor designs
– Rapidly explore design space

DNN Processor Evaluation Tools

[Wu, ICCAD 2019], [Wu, ISPASS 2020] 

Accelergy
(Energy Estimator Tool)

Architecture
description

Action 
countsAction 
counts

Compound 
component
description

… Energy 
estimation

Energy
estimation 
plug-in 0

Energy 
estimation 
plug-in 1

Timeloop, 
[Parashar, ISPASS 2019]

(DNN Mapping Tool & 
Performance Simulator)

Use tool set to bridge architectures, circuits, 
and devices (e.g., in-memory processing)

[Joint work with Joel Emer]

Tutorial this Friday, May 29 @ 10 AM ET 
http://accelergy.mit.edu/isca20_tutorial.html
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Open-source code available at: 
http://accelergy.mit.edu

http://accelergy.mit.edu/isca20_tutorial.html
http://accelergy.mit.edu/
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Energy-Efficient Processing of DNNs

V. Sze, Y.-H. Chen,  
T-J. Yang, J. Emer, 

“Efficient Processing of Deep 
Neural Networks: A Tutorial 
and Survey,” Proceedings of 

the IEEE, Dec. 2017

A significant amount of algorithm and hardware research 
on energy-efficient processing of DNNs

We identified various limitations to existing approaches

http://eyeriss.mit.edu/tutorial.html
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Popular efficient DNN algorithm approaches 

Design of Efficient DNN Algorithms

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning

C
1

1
S

R

1

R

S
C

Efficient Network Architectures

Examples: SqueezeNet, MobileNet

... also reduced precision

• Focus on reducing number of MACs and weights
• Does it translate to energy savings and reduced latency?

[Chen*, Yang*, SysML 2018] 
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Number of MACs and Weights are Not Good Proxies

# of operations (MACs) does not approximate 
latency well

Source: Google 
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang, CVPR 2017]

# of weights alone is not a good metric for energy 
(All data types should be considered) 

Energy breakdown of 
GoogLeNet

https://energyestimation.mit.edu/

17

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html
https://energyestimation.mit.edu/


Vivienne Sze (    @eems_mit)

Designing Energy-Efficient DNN Models
Directly integrate hardware metrics into algorithm design

NetAdapt Measure 

… 

Network	Proposals	

Empirical	Measurements	
Metric Proposal A … Proposal Z 

Latency 15.6 … 14.3 

Energy 41 … 46 

…
 

…
 

…
 

Pretrained	
Network	 Metric Budget 

Latency 3.8 

Energy 10.5 

Budget	

Adapted	
Network	

…
 

…
 

Pla8orm	

A	 B	 C	 D	 Z	

NetAdapt: Platform-Aware DNN

[Yang, ECCV 2018] 
Code available at http://netadapt.mit.edu

In collaboration with Google’s Mobile Vision Team

CNN Shape Configuration 
(# of channels, # of filters, etc.) 

CNN Weights and Input Data 

  

[0.3, 0, -0.4, 0.7, 0, 0, 0.1, …] 

CNN Energy Consumption  
L1 L2 L3 

Energy 

… 

Memory 
Accesses 

Optimization 

# of MACs 
Calculation 

  

  

  
  

…
 

# acc. at mem. level 1 
# acc. at mem. level 2 

# acc. at mem. level n 

# of MACs 

Hardware Energy Costs of each 
MAC and Memory Access 

Ecomp 

Edata 

Energy-Aware Pruning

[Yang, CVPR 2017] 
Pruned models available at 

http://eyeriss.mit.edu/energy.html
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FastDepth: Fast Monocular Depth Estimation

[Joint work with Sertac Karaman]

Depth estimation from a single RGB image 
desirable, due to the relatively low cost 

and size of monocular cameras.

RGB Prediction

19

[Wofk*, Ma*, ICRA 2019]Configuration: Batch size of one (32-bit float)

Models available at 
http://fastdepth.mit.edu

> 10x

~40fps on 
an iPhone

http://fastdepth.mit.edu/


Vivienne Sze (    @eems_mit)

Understanding Accuracy à
Application

20

Faculty at MIT (2013 - present) 
Goal: Understand what is an acceptable accuracy tradeoff, which is application dependent
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Robot Localization
Determine location/orientation of robot from images and IMU (also used for AR/VR)

21

Navion

E U R OC D A T A S E T

4m
m

5mm

Navion Project Website

http://navion.mit.edu

Consumes 684× and 1582×
less energy than mobile and 

desktop CPUs, respectively

[Joint work with Sertac Karaman]

[Zhang, RSS 2017], [Suleiman, VLSI-C 2018]



Vivienne Sze (    @eems_mit)

Key Methods to Reduce Data Size

Backend Control

Data & Control Bus
Build 
Graph

Linear 
Solver

Linearize

Marginal

Retract

Graph
Linear 
Solver

Horizon 
States

Shared 
Memory

Floating 
Point 

Arithmetic

Matrix 
Operations

Cholesky

Back 
Substitute

Rodrigues 
Operations

Feature 
Tracking 

(FT)

Previous 
FrameLine Buffers

Feature 
Detection 

(FD)

Undistort 
& Rectify 

(UR)

Undistort 
& Rectify 

(UR)

Data & Control Bus

Sparse Stereo (SS)

Vision Frontend Control

RANSAC Fixed Point 
Arithmetic Point Cloud Pre-IntegrationFloating Point 

Arithmetic

IMU 
memory

Current 
Frame

Left 
Frame

Right 
Frame

Vision Frontend (VFE)

IMU Frontend (IFE)

Backend (BE)

Register 
File

Apply Low 
Cost 

Frame
Compression

Use compression and exploit sparsity to reduce memory down to 854kB

Exploit 
Sparsity in 
Graph and 

Linear Solver

Navion: Fully integrated system – no off-chip processing or storage 

[Suleiman, VLSI-C 2018]  Best Student Paper Award
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Robot Exploration
Decide where to go by computing Shannon Mutual Information (MI)

Occupancy map with 
planned path

MI surface

[Zhang, ICRA 2019], [Henderson, ICRA 2020]
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Compute the mutual information 
for an entire map of 20m x 20m 

at 0.1m resolution in under a 
second à a 100x speed up versus 

CPU for 1/10th of the power.

[Li, RSS 2019]
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[Joint work with Sertac Karaman]
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Monitoring Neurodegenerative Disorders

• Neuropsychological assessments are time consuming and require a 
trained specialist

• Repeat medical assessments are sparse, mostly qualitative, and suffer 
from high retest variability

Mini-Mental 
State Examination (MMSE)

Q1. What is the year? Season? Date?
Q2. Where are you now? State? Floor?
Q3. Could you count backward from 

100 by sevens? (93, 86, …)

Clock-drawing test

Agrell et al. 
Age and Ageing, 1998.

[Joint work with Thomas Heldt and Charlie Sodini]

Dementia affects 50 million people worldwide today 
(75 million in 10 years) [World Alzheimer’s Report]
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Use Eye Movements for Quantitative Evaluation

[Saavedra Peña, EMBC 2018] [Lai, ICIP 2018]

Co
un

t

Eye movement feature

Eye movements Smartphone

Eye movements can be used to quantitatively evaluate severity, progression 
or regression of neurodegenerative diseases

We are investigating how to perform eye movement tests 
on a smart phone in order to enable low-cost, in-home measurements 
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Consider the Entire System

26

Faculty at MIT (2013 - present) 
Goal: Optimized energy efficiency of the entire system



Vivienne Sze (    @eems_mit)

• Pulsed Time of Flight: Measure distance using round trip time of laser light for each 

image pixel

– Illumination + Imager Power: 2.5 – 20 W for range from 1 - 8 m 

• Use computer vision techniques and passive images to estimate changes in depth 

without turning on laser

– CMOS Imaging Sensor Power: < 350 mW

Low Power 3D Time of Flight Imaging

Estimated Depth Maps

Real-time Performance on 
Embedded Processor

VGA @ 30 fps on Cortex-A7  

(< 0.5W active power)

[Noraky, ICIP 2017], [Noraky, TCSVT 2020] 
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Results of Low Power Depth ToF Imaging

RGB Image Depth Map
Ground Truth

Depth Map
Estimated

Mean Relative Error: 0.7%
Duty Cycle (on-time of laser): 11%

28

[Noraky, ICIP 2017], [Noraky, TCSVT 2020] 
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Balancing Actuation and Computing Energy

Motion Planning
Find a feasible (obstacle-free) path
[typically optimize for shortest path]

Energy to move 1 more meter (Pa/v [W/(m/s)])

Energy to compute 1 more second (Pc [W])

Low-power Robotics 
Actuation and computing energy 
are similar order of magnitude 

Robobee
Cheerwing
Mini RC 

Slocum Ocean 
GliderViper Dash 2 WD Robot 

Chassis
2 WD Robot 
Chassis

ASIC      FPGA Cortex-A15 Nvidia Jetson TX2 
GPUEmbedded CPUs

Cortex-A7 

[Sudhakar, ICRA 2020]

29



Vivienne Sze (    @eems_mit)

Balancing Actuation and Computing Energy

Compute Energy Included Motion Planning (CEIMP) 
A framework to balance the energy spent on computing a path and
the energy spent on moving along that path (Don’t think too hard!)

30

[Sudhakar, ICRA 2020]

Baseline 
(compute 20,000 samples) CEIMP
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• Look beyond traditional boundaries
– Opportunities lie at the intersection of different areas of research: build bridges
– Co-design approach applied across different applications

• How to identify research opportunities
– Is this an important problem?
– What are the main challenges or bottlenecks?
– What is the skill set needed to address the challenges or bottlenecks?
– Do I have or can I learn that skill set?

• Always be learning
• Collaborate 

Key Takeaways31
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Book on Efficient Processing of DNNs

Part I Understanding Deep Neural Networks 
Introduction 

Overview of Deep Neural Networks 

Part II Design of Hardware for Processing DNNs 
Key Metrics and Design Objectives 

Kernel Computation 
Designing DNN Accelerators 

Operation Mapping on Specialized Hardware 

Part III Co-Design of DNN Hardware and Algorithms 
Reducing Precision 
Exploiting Sparsity 

Designing Efficient DNN Models 
Advanced Technologies 

https://tinyurl.com/EfficientDNNBook
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Additional Resources

MIT Professional Education Course on 

“Designing Efficient Deep Learning Systems” 
http://shortprograms.mit.edu/dls

Next Offering: July 20-21, 2020 (Live Virtual)
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Additional Resources
Talks and Tutorial Available Online

https://www.rle.mit.edu/eems/publications/tutorials/

YouTube Channel
EEMS Group – PI: Vivienne Sze
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• Video Compression
– V. Sze, A. P. Chandrakasan, “A Highly Parallel and Scalable CABAC Decoder for Next-Generation Video Coding,” IEEE Journal 

of Solid-State Circuits (JSSC), ISSCC Special Issue, Vol. 47, No. 1, pp. 8-22, January 2012.
– V. Sze, M. Budagavi, “High Throughput CABAC Entropy Coding in HEVC,” IEEE Transactions on Circuits and Systems for 

Video Technology (TCSVT), Vol. 22, No. 12, pp. 1778-1791, December 2012.
– V. Sze, A. P. Chandrakasan, “Joint Algorithm-Architecture Optimization of CABAC to Increase Speed and Reduce Area Cost,” 

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1577–1580, May 2011.
– V. Sze, A. P. Chandrakasan, “A High Throughput CABAC Algorithm Using Syntax Element Partitioning,” IEEE International 

Conference on Image Processing (ICIP), pp. 773-776, November 2009.
– V. Sze, M. Budagavi, A. P. Chandrakasan, M. Zhou, “Parallel CABAC for Low Power Video Coding,” IEEE International 

Conference on Image Processing (ICIP), pp. 2096-2099, October 2008.
– V. Sze, D. F. Finchelstein, M. E. Sinangil, A. P. Chandrakasan, “A 0.7-V 1.8-mW H.264/AVC 720p Video Decoder,” IEEE 

Journal of Solid State Circuits (JSSC), A-SSCC Special Issue, Vol. 44, No. 11, pp. 2943-2956, November 2009.
– V. Sze, M. Budagavi, G. J. Sullivan (Editors), High Efficiency Video Coding (HEVC): Algorithms and Architectures, Springer, 

2014.

References36
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• Efficient Processing for Deep Neural Networks
– Project website: http://eyeriss.mit.edu
– Y.-H. Chen, T.-J Yang, J. Emer, V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices,” 

IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), Vol. 9, No. 2, pp. 292-308, June 2019.
– Y.-H. Chen, T. Krishna, J. Emer, V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural 

Networks,” IEEE Journal of Solid State Circuits (JSSC), ISSCC Special Issue, Vol. 52, No. 1, pp. 127-138, January 2017.
– Y.-H. Chen, J. Emer, V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks,” 

International Symposium on Computer Architecture (ISCA), pp. 367-379, June 2016. 
– Y.-H. Chen*, T.-J. Yang*, J. Emer, V. Sze, “Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep 

Neural Networks,” SysML Conference, February 2018.
– V. Sze, Y.-H. Chen, T.-J. Yang, J. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,” Proceedings of the 

IEEE, vol. 105, no. 12, pp. 2295-2329, December 2017.
– Y. N. Wu, J. S. Emer, V. Sze, “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs,” 

International Conference on Computer Aided Design (ICCAD), November 2019. http://accelergy.mit.edu/
– Y. N. Wu, V. Sze, J. S. Emer, “An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs,” to

appear in IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2020.
– A. Suleiman*, Y.-H. Chen*, J. Emer, V. Sze, “Towards Closing the Energy Gap Between HOG and CNN Features for Embedded 

Vision,” IEEE International Symposium of Circuits and Systems (ISCAS), Invited Paper, May 2017.

– Hardware Architecture for Deep Neural Networks: http://eyeriss.mit.edu/tutorial.html

References37
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• Co-Design of Algorithms and Hardware for Deep Neural Networks
– T.-J. Yang, Y.-H. Chen, V. Sze, “Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning,” IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 

– Energy estimation tool: http://eyeriss.mit.edu/energy.html

– T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, V. Sze, H. Adam, “NetAdapt: Platform-Aware Neural Network Adaptation 
for Mobile Applications,” European Conference on Computer Vision (ECCV), 2018. http://netadapt.mit.edu

– D. Wofk*, F. Ma*, T.-J. Yang, S. Karaman, V. Sze, “FastDepth: Fast Monocular Depth Estimation on Embedded Systems,” 
IEEE International Conference on Robotics and Automation (ICRA), May 2019. http://fastdepth.mit.edu/

• Energy-Efficient Visual Inertial Localization  
– Project website: http://navion.mit.edu

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A Fully Integrated Energy-Efficient Visual-Inertial Odometry 
Accelerator for Autonomous Navigation of Nano Drones,” IEEE Symposium on VLSI Circuits (VLSI-Circuits), June 2018. 

– Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze, S. Karaman, “Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-
design Approach,” Robotics: Science and Systems (RSS), July 2017. 

– A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, V. Sze, “Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry 
Accelerator for Autonomous Navigation of Nano Drones,” IEEE Journal of Solid State Circuits (JSSC), VLSI Symposia Special 
Issue, Vol. 54, No. 4, pp. 1106-1119, April 2019.
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• Fast Shannon Mutual Information for Robot Exploration
– Project website: http://lean.mit.edu
– Z. Zhang, T. Henderson, V. Sze, S. Karaman, “FSMI: Fast computation of Shannon Mutual Information for information-

theoretic mapping,” IEEE International Conference on Robotics and Automation (ICRA), May 2019.
– P. Li*, Z. Zhang*, S. Karaman, V. Sze, “High-throughput Computation of Shannon Mutual Information on Chip,” Robotics: 

Science and Systems (RSS), June 2019

– Z. Zhang, T. Henderson, S. Karaman, V. Sze, “FSMI: Fast computation of Shannon Mutual Information for information-
theoretic mapping,” to appear in International Journal of Robotics Research (IJRR). http://arxiv.org/abs/1905.02238

– T. Henderson, V. Sze, S. Karaman, “An Efficient and Continuous Approach to Information-Theoretic Exploration,” IEEE 
International Conference on Robotics and Automation (ICRA), May 2020.

• Monitoring Neurodegenerative Disorders Using a Phone 
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