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Abstract

In the Fleischmann–Pons experiment, energy is produced without commensurate energetic reaction products. To account for this
we have proposed new models in which coherent energy exchange occurs between two-level systems with a large energy quantum,
and an oscillator with a much smaller characteristic energy. In earlier work we demonstrated using perturbation theory that the
lossy spin-boson model is capable of efficient coherent energy exchange when many oscillator quanta are exchanged for a two-level
system quanta on resonance. Here we introduce a formulation that isolates nearly degenerate states in the lossy spin-boson model,
and allows the computation of the self-energy and indirect coupling matrix elements. From calculations of simple lossy spin boson
models we establish a scaling law and define the dimensionless coupling constant g for the system. Direct calculations using this
approach is not possible for large models in which a great many oscillator quanta are exchanged, but the formulation provides a
foundation for understanding this kind of model, and will allow us to develop more powerful approximate methods.
© 2011 ISCMNS. All rights reserved.
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1. Introduction

We have been interested over the past decade or more in developing models [1–4] to account for excess heat in the
Fleischmann–Pons experiment [5–8]. From our perspective, the key feature of these experiments which makes the
development of a model difficult is the absence of energetic particles commensurate with the energy observed.

The only product which has been identified so far to be commensurate with the energy produced is 4He, which is
seen in the off-gas from the cathode [9–11]. We have used the results from experiment in which excess power is seen
under conditions where an attempt was made to measure neutron emission in order to obtain an upper limit on the
energy of the 4He. We found that energetic alpha particles can collide with deuterons, resulting in secondary neutrons
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from subsequent deuteron–deuteron fusion reactions. The upper limit on the alpha energy estimated in this way is
below 20 keV [12]. The experimental reaction energy per 4He observed is close to 24 MeV [13].

These constraints tell us that no matter what process is responsible, it does not work in the same way as a Rutherford-
type of reaction familiar in nuclear physics. Local conservation of energy and momentum in such reactions requires
that the reaction energy must be expressed primarily as kinetic energy of the products. If two deuterons react to produce
4He with most of the energy carried away by a gamma or electron, the resulting alpha particle would have an energy
near 75 keV, which by itself is inconsistent with experiment (and there are no commensurate fast electrons or gammas
observed).

This has motivated us to pursue new models in which the nuclear energy is transferred directly to low energy
condensed matter degrees of freedom, such as vibrational modes [1–4]. There is no precedence for this in nuclear
physics or condensed matter physics. Coherent many quantum exchange between an oscillator and two-level systems
is known in NMR and in problems involving atomic states and an electromagnetic field [14–16]. However, in these
models, the number of quanta exchanged is less than 102, where on the order of 108 would be required to account for
the Fleischmann–Pons experiment.

Some years ago, we found new models which are much more efficient at exchanging a large number of quanta [1].
In two recent papers, we began a program of laying out the new models systematically. In the first, we introduced
the lossy spin-boson model more properly than in earlier work, we reviewed the sector formalism that underlies loss
in a second-order Hamiltonian, and we showed that coherent energy exchange is enhanced dramatically using lowest-
order perturbation theory [17]. In the second, we considered the dynamics of a set of nearly degenerate states that
have nearest neighbor coupling, and developed reasonably general evolution formula for the dynamics of number and
velocity expectation values [18].

Here, we extend the discussion to a second-order formulation which isolates the nearly degenerate states. In previous
work on the (lossless) spin-boson model, we studied a rotation which isolated the nearly degenerate states, and allowed
us to model the indirect coupling between them simply [19,20]. We have not found an analogous rotation for the lossy
version of the problem, but the second-order formulation accomplishes a similar function.

Perhaps the biggest advantage of this formulation is that it allows us to reduce a complicated problem (the lossy
spin-boson model) into a much simpler one (a set of nearly degenerate states where the nearest neighbor coupling is
dominant). We can use this formulation to compute the self-energies of the nearly degenerate states (which can remove
the approximate degeneracy when the coupling is strong), and also the indirect coupling matrix elements. In the latter
case, we can compare with perturbation theory in order to verify that the approach is correct in the weak coupling limit.
We are able to use this approach to begin to understand how scaling works in the lossy spin-boson model, and to define
a relevant dimensionless coupling coefficient.

A disadvantage of the approach is that the matrix calculations that result do not scale well as the number of states
increase. So, if we focus on models that involve the exchange of only a few quanta (three, five, or seven), then we can
perform calculations effectively even when the coupling is beginning to be strong. However, if we attempt computations
for models with tens or hundreds of quanta exchanged, this approach is too slow to give us results in a reasonable time.

Even though the second-order formulation is not capable of handling the problems that we are ultimately interested
in, it does provide us with a foundation that we can use for the development of approximation schemes which greatly
extend our ability to analyze these models. A discussion of these approximation schemes is deferred to a following
paper.
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2. Coupling Between Nearly Degenerate States

We begin with the lossy spin-boson model, which is described by the Hamiltonian [17]

Ĥ = �E
Ŝz

h̄
+ h̄ω0â

†â + V (â† + â)
2Ŝx
h̄

− i
h̄�̂(E)

2
. (1)

Here �E is the transition energy between the two-level systems, h̄ω0 is the characteristic energy of the oscillator, and
V describes the strength of the interaction. We have used many-spin operators Ŝz and Ŝx to describe the two-level
systems. The model assumes identical two-level systems with identical linear interactions with the oscillator.

Loss is included using a Brillouin–Wigner formulation as we have reviewed previously [17]. In the case of a general
loss model, the model that results is very complicated, and it becomes difficult to analyze. In this paper we will make
an assumption about the loss in order to simplify things. In the infinite loss version of the model, we would assume
that the loss is infinitely fast (resulting in zero occupation of the lossy states) when the basis state energy is less than E.
Although this drastically reduces the complexity of the model, we find that even this simplified version of the model
has technical issues associated with it due to the self-energy when the coupling is not weak. Instead, our focus will be
on the closely related fixed basis version of the model, where we exclude all basis states with an energy less than the
basis state energy of the nearly degenerate set initially selected.

2.1. Nearly degenerate states

We expand in terms of two sets of basis states

� =
∑
j

cj�
a
j +

∑
k

dk�
b
k, (2)

where the �aj states are of the form

|S,m〉|n〉, |S,m− 1〉|n+�n〉, . . . ,
which are nearly degenerate at the energy E of interest. Here�n is the number of oscillator quanta exchanged per unit
change in the excitation of the two-level systems. The�bk states include all of the other basis states with higher energy.

2.2. Isolation of the nearly degenerate states

Our goal is the development of a formulation that allows us to describe the slow evolution of the system between the
nearly degenerate states. To accomplish this, we would like to focus on the cj expansion coefficients of the degenerate
basis states, and eliminate the other coefficients. To proceed, we start with the algebraic eigenvalue coefficients for the
two sets of expansion coefficients (which we write in vector and matrix form)

Ec = Ha · c + Vab · d,

Ed = Hb · d + Vba · c. (3)

Since the b states are not degenerate at energy E, we can write the d vector in terms of the c vector as
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d = (E − Hb)
−1 · (Vba · c). (4)

This allows us to obtain a reduced implicit eigenvalue problem

Ec = Ha · c + Vab · (E − Hb)
−1 · Vba · c. (5)

2.3. Hamiltonian matrix for the nearly degenerate states

The associated second-order Hamiltonian matrix can be written as

H(E) = Ha + Vab · (E − Hb)
−1 · Vba. (6)

This new second-order matrix H(E) is much smaller than the total matrix made up of Ha , Hb, Vab, and Vba , and we
can use it for computations specifically on the cj coefficients. Since the energy eigenvalue appears explicitly in the
denominator, this Hamiltonian matrix is more complicated to work with than more standard Hamiltonians. Nevertheless,
we can use iterative numerical methods to achieve self-consistency between a specific eigenvalue and the eigenvalue
in the denominator.

3. Three-phonon Exchange and Scaling

One of our goals is the demonstration of a scaling law for the lossy spin-boson model. It seem reasonable to make use of
the formulation outlined in the previous section to explore scaling for a specific example. The simplest example which
shows enhanced coupling between nearly degenerate states is a problem in which a single two-level system quantum is
matched to three oscillator quanta

�E = 3h̄ω0. (7)

Since the numerical computations outlined increase rapidly when there are a very large number of states involved,
we can minimize the number of states for a set of computations by reducing the number of oscillator quanta that are
exchanged.

The notion of scaling is familiar to those working on various physics models, such as the spin-boson problem.
If we were writing for those working on the this problem, probably a single line and scaling formula would suffice.
However, the intended audience for this paper includes researchers who may not be familiar with the idea in the context
of this kind of model. As a result, we are interested in clarifying the issue through the examination of a set of specific
calculations.

3.1. Energy levels and scaling

The simplest way to understand what a scaling law does is by considering solutions for different examples which satisfy
the scaling law. We consider two solutions with different numbers of two-level systems, under conditions where the
maximum off-diagonal coupling matrix element for the original lossy spin-boson model are the same.

The largest matrix element has a magnitude of approximately

max{〈S,m, n|Ĥ |S,m± 1, n± 1〉} = V
√
nS. (8)
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Figure 1. Reduced basis energies for 69 (red) and 79 (blue) two-level systems.

In Fig. 1, we show results for the diagonal matrix elements for H(E) in the case of 69 (S = 34) and 79 (S = 39)
two-level systems. The product V

√
nS is the same (9.75 × 10−3 �E) in both calculations. We have taken n = 1012,

and used different values for V to match the largest matrix element. We see that the diagonal energies line up together
when plotted this way.

3.2. Dimensionless coupling strength

It is customary to define a dimensionless coupling strength g for this kind of problem. In this case, we would take the
ratio of the magnitude of the coupling matrix element to the two-level transition energy, so that the maximum coupling
strength is

max{g} = V
√
nS

�E
. (9)

The intuition that we seek to develop in what follows is that the local dimensionless coupling strength g determines the
important parameters of the model, such as the self-energy and the indirect coupling matrix element between nearest
neighbors.

3.3. Indirect coupling matrix elements

The indirect coupling matrix elements between nearest nearly degenerate neighbors are shown in Fig. 2 for the same
calculations as for Fig. 1. We can make use of perturbation theory to compute the effective coupling matrix element
for a transition from |n, S,m〉 to |n− 3, S,m+ 1〉, which leads to
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Figure 2. Indirect matrix element between nearly degenerate states for 69 (red) and 79 (blue) two-level systems.

Veff = 9

8

V 3

�E2 (S
2 + S −m2 − 3m− 2)

√
S2 + S −m2 −m

√
n(n− 1)(n− 2). (10)

This perturbation theory result is indicated as a solid black line in Fig. 2. The two different problems that we have
examined give very similar results for the indirect coupling matrix elements, and these results are in good agreement
with the results from perturbation theory.

3.4. Decoupling of one basis state

One of the nearly degenerate states is decoupled from the others in this model. Consider the basis state

� = |S, S, n0〉. (11)

in which all of the two-level systems are excited, and in which there are no excess oscillator quanta. This state has
non-vanishing coupling matrix elements only to

|S, S − 1, n0 ± 1〉. (12)

The energy of these states is below the cut-off energy in this model. Such states are presumed to be very lossy, and
hence have a zero occupation probability in the infinite loss model. If so, then |S, S, n0〉 becomes decoupled from the
other states.

In Fig. 3, we show the lowest loss path in this case in a perturbation theory scheme. Two of the intermediate states
have basis energies that are lower than that of the initial state, and which can decay. For comparison, we show the
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Figure 3. Levels and transitions for lowest loss pathway in perturbation theory starting from |S, S, n〉 = |S, n〉, in the case of �E = 5h̄ω0.

lowest loss path in the general case in Fig. 4. In this case, none of the intermediate states have basis energies below
that of the initial state, so that decay processes are minimized.

Coupling from this state in finite loss models would by necessity involve coupling through a lossy intermediate
state. This is the first time in the present discussion that we come across this issue. When we consider more complicated
models in papers that follow, we will find that this effect occurs generally in models of interest to us. We will eventually
connect this effect with the low-level emission of energetic particles that is seen in some Fleischmann–Pons experiments.

3.5. Discussion

The specific problem that we selected to focus on in this section appears now to be very simple to understand. The
second-order Hamiltonian leads to basis state energies that are very close to parabolic in m under conditions where
perturbation theory is valid. The coupling between neighboring nearly degenerate states is dominant, and closely
matches the result from perturbation theory.

In order for the associated system to exchange energy between the two degrees of freedom efficiently, all that we need
is for the coupling matrix element between neighboring states to be as large as the splitting between neighboring states or
greater. In this model, it seems clear how to do it. The more two-level systems that we have, the smaller the interaction
we choose (in the scaling outlined above), so the smaller the difference between neighboring states. The coupling
between neighboring states is strongest when about half of the two-level systems are excited, and is approximately
constant with the number of two-level systems when scaled as above. Hence, as there are more two-level systems, we
are able to maintain coherence over a larger fraction of the Dicke states.
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Figure 4. Levels and transitions for lowest loss pathway in perturbation theory starting from |S,m, n〉 = |m, n〉, in the case of �E = 5h̄ω0.

4. Practical Issues

The isolation of a set of nearly degenerate states as outlined above is a very useful way to think about the problem, and
provides a way to compute the important parameters of the model. However, as we start to go further in this direction,
new issues arise. There is a practical computational issue concerning how to determine the energy eigenvalue self-
consistently, since it appears in the second-order Hamiltonian. The self-energy shift tends to split the nearly degenerate
states, so that we would like to understand under what conditions energy exchange can occur. The self-energy shift in
addition impacts our selection of basis states, which motivates us to consider a restricted basis approximation.

4.1. Solving the second-order eigenvalue problem

If the dimensionless coupling strength is small, then the self-energy is also small, which means that one can obtain
solutions to the second-order eigenvalue equation

Ec = Ha · c + Vab · (E − Hb)
−1 · Vba · c (13)

by using the unperturbed basis state energy on the right hand side. When the self-energy begins to become significant,
then the accuracy of the energy eigenvalues computed this way is degraded. We can obtain accurate results by solving
for the energy eigenvalue self-consistently, as discussed in Appendix B.

Unfortunately, it quickly becomes inconvenient to obtain numerical solutions using this approach as the number
of quanta exchanged becomes larger, and when the dimensionless coupling strength is near or above unity. This will
motivate us to pursue an approximate solution to the problem, which we will consider below.
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4.2. Constraint for maintaining coherence

From the results in the previous section, we have seen that models with the same maximum dimensionless coupling
coefficient g are very similar in terms of their self-energy and indirect coupling matrix elements. We can think of
a family of models where the maximum dimensionless coupling constant is held fixed, and the number of two-level
systems is varied (assuming that n is kept constant and large). For this family of models, the self-energy and indirect
coupling matrix elements as a function of M/S are nearly the same. However, if the states were initially degenerate,
then the splitting of the states is reduced when we have more two-level systems.

When we considered the dynamics resulting from the coupling between nearly degenerate states, we found that the
problem was simplest in the case of degenerate basis states. If there is a splitting between the states, then this can alter
the dynamics. In order for energy exchange to proceed at rates close to that for the degenerate version of the problem,
we require that the splitting be less that the indirect coupling

|Em+1 − Em| < |Vm+ 1
2
| (14)

in the notation of the previous paper. If the basis states are initially degenerate, then the splitting of interest for this
constraint will be due to the self-energy shift. In this case, as we increase the number of two-level systems, the splitting
will decrease, and more of the nearly degenerate states will be able to participate in the dynamics.

4.3. Constraint for three-quantum exchange

We can develop an approximate version of the constraint in the special case of three quantum exchange that we discussed
above. The self-energy shift for small g is approximately

Em = − 0.0237 (max{g})2
[

1 −
(m
S

)2
]
�E (15)

so that

|Em+1 − Em| = 0.0237 (max{g})2
(

2|m|
S2

)
�E. (16)

The matrix element for indirect coupling from perturbation theory is approximately

Veff = 9

8
(max{g})3

[
1 −

(m
S

)2
]3/2

�E (17)

in the limit that S and n are large. We can combine these estimates to obtain

∣∣∣m
S

∣∣∣
[

1 −
(m
S

)2
]3/2 < 23.7 max{g}S. (18)

This constraint is illustrated in Fig. 5.
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Figure 5. Evaluation of the constraint (18) in the case of three quantum exchange. The region in gray is where the level splitting is less than the
indirect coupling matrix element.

4.4. Self-energy as potential energy of the coupled system

When the self-energy becomes large, there can be a significant shift of the energy levels. For example, when the
coupling is near unity, the self-energy can be on the order of �E. Since this self-energy seems to be large, we need to
think some about what it means, and what the implications are for our approximation.

The self-energy comes about due to the interactions in the model that produces the coupling between the states.
Perhaps it is best to think of it as a binding energy or equivalently, a potential energy, for the coupled systems. If so,
then it may be best to think of it on a per two-level system basis, especially if n is very large. For large g the self-energy
becomes linear in g, so that this point of view will be helpful much later on when we consider models which seek
to describe the Fleischmann–Pons excess power effect. Under the conditions that we have encountered so far, this
self-energy per two-level system is small compared to the transition energy �E. It can be substantial compared to the
oscillator energy, especially when a large number of oscillator quanta are exchanged.

4.5. Fixed basis state model

In the lossy spin-boson model with infinite loss, we proposed that all states with an energy less than E were to be
assumed to have infinite loss. If the self-energy is small, then the basis state energy will not be so different from the
diagonal energy in the second-order H(E) matrix. Hence, in this limit the choice of which states to keep and which to
omit is clear.

However, if we include the self-energy, then things become more complicated. If we omit all states with an energy
less than some energy E, and then calculate the diagonal energies for the H(E) matrix, we will find that many of the
resulting states have an energy less than the energy E which we selected as a cut-off due to the contribution of the
self-energy. If the dimensionless coupling constant g is close to unity, this contribution can be very large.

One approach to this problem is to go back and revise the list of included and omitted states so as to be self consistent
with a cut-off energy. Another approach to the problem is to fix the basis initially, and keep it throughout the calculation.
This latter approach is much more convenient for numerical calculations. In the limit that there are many oscillator
quanta exchanged for each two-level transition, then this kind of model will lead to minor errors locally in the list of
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Figure 6. Largest normalized effective indirect coupling matrix element Veff/�E as a function of g computed using S = 19 (blue); perturbation
theory result (black). The number of oscillator quanta used in this calculation is 1012.

states that are retained (it will keep too many). We would not expect this to lead to significant changes in the model
parameters or dynamics, but we have not pursued this issue in our work.

In Fig. 6, we show results from such a computation for the largest indirect coupling matrix element as a function
of g. In most of the calculations that will follow in this and in following papers, we will work with this kind of model.

5. Discussion and Conclusions

In a previous paper of this set [17], we introduced the lossy spin-boson model and showed that it was capable of greatly
enhanced coherent energy exchange (as compared to the lossless spin-boson model) when many oscillator quanta are
exchanged for a two-level system quantum. In this we are pleased that the new model is capable of such efficient
coherent energy exchange, since it is the basic effect that in our view is needed to account for excess heat in the
Fleischmann–Pons experiment.

However, it is clear that we are going to need much stronger analytical tools to obtain results in a relevant regime.
Perturbation theory is helpful when the coupling is weak, but we are going to need the model to work in a very strong
coupling limit in order to convert a single two-level system quantum into 108 oscillator quanta. As a result, we need to
develop models and approximations which are useful in the strong coupling limit.

The second-order formulation that we introduced above allows us to extend our modeling well beyond the weak
coupling limit. We can use it directly to analyze the lossy spin-boson model when a relatively small number of
oscillator quanta are exchanged. This is useful since it allows us to discuss scaling for this model, and also to introduce
the dimensionless coupling constant g.

We cannot use the second-order formulation presented here for direct calculations of models in which millions of
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quanta are exchanged for each two-level system transition, since the approach does not scale well as a computational
problem. What is important here is the notion that we can isolate the nearly degenerate states, and that the self-energy
and the matrix elements for indirect coupling between nearest neighbors obey scaling laws. For example, even though
we are not able to perform a computation with 1010 two-level systems, we would have no trouble developing accurate
estimates for the self-energy and indirect coupling between nearest neighbors for weak and moderately strong coupling
in the case of 3 or 5 quantum exchange because of the scaling law. We still need to develop a scaling law that governs the
self-energy and indirect coupling matrix element in the limit where a large number of oscillator quanta are exchanged.

In a paper that follows, we will present an approximation scheme which is based on the formulation presented here
that will allow us to perform calculations for models where a much larger number of oscillator quanta are exchanged.
Based on these results we will be able to deduce a scaling law that is useful generally when the number of oscillator
quanta exchanged is large.

Appendix A. Numerical issues

The algebraic problem as outlined in Section 2 seems completely straightforward, but there are significant issues that
remain. Some of these concern numerical issues which we must face when implementing the approximation. We will
provide a brief discussion of a simple numerical approach in the subsections that follow.

Appendix A.1. Selection of basis states

We first consider the selection of basis states. We have the parity selection rule that states with positive parity (−1)n+m
do not couple with states with negative (−1)n+m. So, we have chosen to work with positive parity states here.

Next, we note that the number of Dicke states associated with the two-level systems alone is 2S + 1, since all of
the two-level systems can be in the ground state (m = −S) and all of them can be in the excited state (m = S). The
line for equal energy is defined according to

E = �Em+ h̄ω0n. (A.1)

It seems reasonable to keep states up to some fixed energy above the threshold energy, which we define here has being

E0 = �ES + h̄ω0n0. (A.2)

At this energy, all of the two-level systems are excited, and the oscillator has nominal excitation n0.

Appendix A.2. Banded Cholesky decomposition

In the algebraic equation above, we need to compute the inverse of a matrix. While this seems straightforward, not all
numerical algorithms will result in a symmetric inverse. Consequently, we need to pay some attention to how this is
carried out.

To proceed, we define

A = A(E) = Hb − E. (A.3)

Since A is symmetric, LU decomposition can be carried out using
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A = L · LT, (A.4)

where L is lower triangular.
We can use Cholesky decomposition in order to decompose A. This algorithm seems to work pretty well for this

problem. We are aided by the fact that A is banded, which speeds the computation of L, and leads to a banded matrix
L. Even for a very large problem, we are able to compute L by Cholesky decomposition conveniently.

Appendix A.3. Matrix inverse of the lower triangular matrix

For the solution linear systems, Cholesky decomposition is the time-consuming part of the algorithm in the case of
symmetric matrices. Determination of the solution is done by back substitution. We have tried various algorithms
based on back substitution, however, it seemed useful along the way to carry out an explicit construction of the inverse,
and we subsequently kept it.

The construction of the inverse of a lower triangular matrix can be done reasonably efficiently in the case of a banded
matrix. The algorithm that we have used works as follows. We assume that the inverse is also a lower triangular matrix
B, so that

B · L = I. (A.5)

To understand the associated algorithm for determining B, it is useful to write this equation out explicitly in the case of
3 × 3 matrices. We may write

⎛
⎝
B11 0 0
B21 B22 0
B31 B32 B33

⎞
⎠ ·

⎛
⎝
L11 0 0
L21 L22 0
L31 L32 L33

⎞
⎠ =

⎛
⎝

B11L11 0 0
B21L11 + B22L21 B22L22 0

B31L11 + B32L21 + B33L31 B32L22 + B33L32 B33L33

⎞
⎠ . (A.6)

It seems clear that we can solve for diagonal terms directly using

Bii = 1

Lii
. (A.7)

If we go off of the diagonal by one, we end up with equations of the form

Bi,i−1Li−1,i−1 + BiiLi,i−1 = 0. (A.8)

We can solve this using

Bi,i−1 = − BiiLi,i−1

Li−1,i−1
. (A.9)

It is possible to continue the algorithm to determine the different Bij values based on a knowledge of known L and
previously determined B matrix elements.
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Appendix A.4. Construction of the second-order matrix

The second-order matrix can be written as

H(E) = Ha − Vab · A−1(E) · Vba. (A.10)

This can be written in terms of L as

H(E) = Ha − Vab · (L · LT)−1 · Vba = Ha − Vab · (LT)−1 · L−1 · Vba. (A.11)

We can recast this as

H(E) = Ha − (L−1 · Vba)T · (L−1 · Vba). (A.12)

In this form, the resulting second-order matrix is explicitly real and symmetric, which was one of the goals of our
construction.

Appendix B. Self-consistent computation of the energy

The Schrödinger equation in the case of the second-order Hamiltonian can be written as

Ec = Ha · c + Vab · (E − Hb)
−1 · Vba · c. (B.1)

We see that the energy eigenvalue appears both on the right-hand side (RHS) and on the left-hand side (LHS) of this
equation. If the self-energy shift is small, then we can approximate the energy on the RHS with the basis state energy
and obtain good results. If the self-energy shift is large, then a self-consistent calculation is needed.

Appendix B.1. Simple iteration

Iterative schemes can be used to obtain a self-consistent solution. The simplest iterative scheme can be written as

E(k+1)c = Ha · c + Vab · (E(k)j − Hb)
−1 · Vba · c. (B.2)

On the LHS, we have the energy eigenvalue in generalE(k+1) for the k+1 iteration; on the RHS we have one particular
basis state energy Ekj determined on the previous iteration. If the scheme converges, then it can be stopped when the
change in the energy eigenvalue of the state of interest doesn’t change any more

|E(k+1)
j − E

(k)
j | < ε. (B.3)

The iterations can be started by taking the initial energy equal to the initial basis state energy.
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Appendix B.2. Iterations with relaxation

We have found that the iterations described above do not converge when the dimensionless coupling coefficient ap-
proaches unity. In this case, we have been able to converge using a modification of the scheme with relaxation based
on

E(k+1)c = Ha · c + Vab · (F (k)j − Hb)
−1 · Vba · c, (B.4)

where

F
(k)
j = aE

(k)
j + (1 − a)E

(k−1)
j (B.5)

with a taken to be near 0.2.
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