
J. Condensed Matter Nucl. Sci. 5 (2011) 116–139

Research Article

Coherent Energy Exchange in the Strong Coupling Limit of the
Lossy Spin-Boson Model

Peter L. Hagelstein ∗
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Irfan U. Chaudhary
Department of Computer Science and Engineering, University of Engineering and Technology. Lahore, Pakistan

Abstract

We focus on the lossy spin-boson model since it is capable of efficient energy exchange between two-level systems and an oscillator
under conditions where the characteristic energy of the oscillator is small compared to the transition energy of the two-level systems.
We are considering this model as the essential component for a theoretical understanding of the excess heat effect in the Fleischmann–
Pons experiment. We introduce an iterative algorithm that allows the numerical calculation of eigenfunctions and eigenvalues of the
coefficient eigenvalue equation that arises in the local approximation. From systematic calculations in the strong coupling limit we
establish scaling laws for the self-energy and for the indirect coupling matrix element in the local approximation. These results are
used to study the system dynamics for simple strong coupling models.
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1. Introduction

In this work we continue our studies of coherent energy exchange between a set of two-level systems and an oscillator,
under conditions where the transition energy of the two-level systems is much greater than the characteristic energy
of the oscillator. Our interest in this problem is motivated by a great many experiments in which positive results have
been reported on measurements of excess heat in the Fleischmann–Pons effect [1,2]. In these experiments a very large
amount of energy is sometimes produced, with no sign of chemical or material changes commensurate with the energy
produced. Fleischmann and Pons conjectured that the origin of the energy was nuclear; however, known exothermic
nuclear reactions that produce energy do so through energetic particles, and there are no commensurate energetic
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particles in the Fleischmann–Pons experiment. Helium has been observed correlated with the energy [3–5], and the
ratio of energy produced to helium observed is near 24 MeV [6]. This is significant since it is consistent with the mass
difference between two deuterons and a 4He nucleus.

Hence, experiment suggests that the energy is probably nuclear in origin, and that perhaps deuterons are somehow
reacting to make 4He. The big problem with such a statement is that there are no previous examples in nuclear
physics of nuclear reactions making energy without commensurate energetic particles [7]. So, whatever process that
is responsible for the effect is one that hasn’t been seen before. There are no previous relevant models in the nuclear
physics or condensed matter physics literature, and most scientists believe the literature that does exist rules out any
possibility of such an effect.

This situation would change radically if there were a known mechanism which could take a large nuclear scale MeV
quantum and convert it efficiently into a large number of optical phonons. Such a scenario would be consistent with
recent two-laser experiments [8,9], where two weak lasers incident on the cathode surface initiate an excess heat event
when the beat frequency is matched to zero-group velocity point of the optical phonons, and the excess heat persists
after the lasers are turned off. The excess heat effect initiated with a single laser does not persist. The picture which
has been proposed to account for this is one in which the two lasers provide an initial excitation of the optical phonon
modes which the new process requires; then, when the lasers are turned off, the new process channels energy into the
same modes which sustains the effect.

To make progress given such a picture, we need to understand the conditions under which a large nuclear energy
quantum can be converted into a large number of optical phonons. Once again, there is no precedent for this; however,
it does seem to be what is going on in these experiments, and this motivates us to explore theoretical models which
exhibit such an effect. Coherent energy exchange as a physical effect under conditions where are large quantum is
divided into many smaller quantum is known in NMR and in atomic physics; it is predicted in the spin-boson model.
However, the effect in the spin-boson model is weak, and we need a much stronger version of it to make progress with
the excess heat effect in the Fleischmann–Pons effect.

When we augment the spin-boson model with loss, we see that the coherent energy exchange process improves
dramatically [10]. In perturbation theory we see that this comes about through the removal of destructive interference,
which drastically hinders the effect in the basic spin-boson model. In a set of recent papers [10–13], we have been
discussing the model, and building up tools and results to try to understand coherent energy exchange when the coupling
is stronger and when more quanta are exchanged. In the preceding paper [13], we introduced the local approximation
for the lossy spin-boson model, which provides us with a powerful tool with which to address the strong coupling
regime.

In this work, we continue the analysis by first introducing a numerical algorithm which allows us to obtain eigen-
functions, self-energies, and indirect coupling matrix elements in the strong coupling regime. As will be discussed,
once we began assembling the results from systematic calculations we noticed that the system appeared to obey scaling
laws in the strong coupling regime. This is interesting because after establishing the scaling laws, we can use them
to predict the dynamics of the model under conditions of extremely strong coupling, which is where we need to go in
order to convert a nuclear-scale quantum into a very large number of atomic scale quanta. Our primary goal then in
what follows in this paper is to discuss the scaling laws for self-energy and for the indirect coupling matrix element in
the strong coupling regime.

2. Eigenvalue Equation for the Coefficients

We are interested in coherent energy exchange in the lossy spin-boson model under conditions where the coupling is
strong, and where a great many oscillator quanta are exchanged for each two-level system transition. In our earlier
discussions of the problem, we have introduced a number of models and approximations which allow us to make
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progress on what would otherwise be a difficult theoretical problem. For example, if we assume that the loss is infinite
for states below a certain energy and adopt a restricted basis approximation, then we obtain a reduced version of the
problem that has fewer states and leads to a real Hamiltonian and real solutions. In the local approximation, we assume
that the matrix elements change little when the number of excited two-level systems is increased or decreased. When
the resonance conditions is met, then the Hamiltonian becomes invariant under translation, and by Bloch’s theorem
the solutions are periodic in one dimension. This further simplifies things, and allows us here to analyze the system in
regimes closer to those of interest for understanding excess heat in the Fleischmann–Pons effect.

2.1. Local approximation eigenvalue equation

We begin with the eigenvalue equation for the expansion coefficients that was developed previously [13] for the local
approximation

E(φ)vn =
[
nh̄ω0 − i

h̄

2
�̂(E)

]
vn

+ g�E

[
eiφ(vn+�n+1 + vn+�n−1)+ e−iφ(vn−�n+1 + vn−�n−1)

]
. (1)

In this equation, �E is the transition energy of the two-level systems, h̄ω0 is the characteristic oscillator energy, g is
the dimensionless coupling constant, and φ is the phase associated with the Bloch solutions of the periodic problem
that results when the resonance condition

�E

h̄ω0
= �n (2)

is satisfied for odd integer �n. Loss is included in general in this model through the second-order loss operator
ih̄�̂(E)/2. In this paper our focus will be on the infinite loss model (in a restricted basis approximation), so that we
will take v0 to be to lowest expansion coefficient that is finite. As in our previous work, we assume that the oscillator
is very highly excited, so that the oscillator index n is incremental. The number of oscillator quanta to be associated
with v0 is n0, which we assume is very large; the total number of oscillator quanta in general associated with vn is then
n0 + n.

2.2. Focus on the φ = 0 and φ = π problems

We are interested in the self-energy and in the indirect coupling matrix element. As discussed in [13] it is easier to
compute the level splitting, from which we can estimate the nearest neighbor indirect coupling matrix element. For
this, we need two eigenvalues E(0) and E(π). The corresponding eigenvalue equations can be written as

ε0vn = n

�n
vn + g

[
(vn+�n+1 + vn+�n−1)+ (vn−�n+1 + vn−�n−1)

]
, (3)

επvn = n

�n
vn − g

[
(vn+�n+1 + vn+�n−1)+ (vn−�n+1 + vn−�n−1)

]
, (4)

where
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ε0 = E(0)

�E
, επ = E(π)

�E
. (5)

3. Solutions for Moderately Large �n

To extend our results significantly beyond what was done in our earlier papers we require new numerical and analytical
tools. In this section we present an iterative numerical approach which allows us to develop solutions to the eigenvalue
equations under conditions where a direct solution is impractical. This allows us study coherent energy exchange when
a two-level system quantum is split into a moderately large number of oscillator quanta. The results of such calculations
are interesting since we find that the indirect coupling matrix element appears to obey a useful scaling law.

3.1. Matrix eigenvalue problem

When the resonance condition is satisfied in the local approximation, we obtain an eigenvalue equation for the expansion
coefficients of the form

ε0vn = n

�n
vn + g

[
(vn+�n+1 + vn+�n−1)+ (vn−�n+1 + vn−�n−1)

]
. (6)

In the restricted basis approximation of the lossy spin-boson model with infinite loss, we assume that the expansion
coefficients with n negative are zero due to loss effects. Here �n is an odd integer, which is the number of quanta
exchanged on resonance, and g is the dimensionless coupling constant.

This eigenvalue equation for the expansion coefficients can be thought of as a matrix eigenvalue equation of the
form

εv = H · v. (7)

3.2. Iterative numerical scheme

When the vector v has more than 1000 elements, the matrix eigenvalue problem that results becomes computationally
expensive for a direct calculation. As a result, we seek an iterative numerical scheme that is faster, which will allow us
to extend our computations to examples with larger �n and strong coupling.

We have found that the computations can be improved considerable with the use of Newton’s method with an
inequivalent Jacobian. Although the method in general was developed to handle nonlinear problems, it is possible to
use it on a linear problem. We begin by assuming that the exact solution can be obtained by adding a small correction
to a current guess, such that

vexact = v + δv. (8)

If so, then we can develop an exact equation for the correction δv of the form

(H − ε) · δv = − (H − ε) · v. (9)

The term on the RHS we recognize as a residual for this problem, which we define as
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r = (ε − H) · v. (10)

This vector keeps track of how far away from the exact solution the current guess is. We see that the residual goes to
zero when we have an exact solution for ε and v. The correction δv then satisfies

(H − ε) · δv = r. (11)

Unfortunately, the amount of work required to evaluate the correction δv is considerable as written. However, we can
gain an advantage if we can find an approximate version of H that we can solve more efficiently. Suppose that this
approximate matrix is defined to be A, and that

A ≈ H (12)

in some computationally useful sense. Then the correction δv will no longer be exact, but it may still improve v anyway.
This leads to the following iterative scheme

[A − ε(m)] · δv(m) = r(m), (13)

v(m+1) = v(m) + βδv(m), (14)

ε(m+1) = (v · H · v)(m+1)

(v · v)(m+1)
, (15)

where β is an under-relaxation parameter.
We have found that corrections can be made with an approximate Hamiltonian that corresponds to

εδvn = n

�n
δvn − αg(δvn+2 + δvn−2)− rn. (16)

We have used the parameter values

α = 0.5, β = 0.5. (17)

3.3. Selected results

We have computed results for two examples with�n = 91 and with�n = 151. These examples are instructive in that
the number of oscillator quanta exchanged now is significantly larger than what we have presented previously, and the
results already appear to show the presence of nontrivial scaling laws. We show the self-energy in Fig. 1. The two
curves are very close to each other, and are roughly linear in g. For large g the curves approach

E(g)

�E
→ − 4g. (18)

We recall that when the indirect coupling is weak that the indirect matrix element Veff is related to the level splitting
through
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Figure 1. Self-energy as a function of the dimensionless coupling strength g for �n = 91 (blue) and �n = 151 (red).

Veff → E(0)− E(π)

4
. (19)

We have computed the level splitting for the two examples for different values of g, and we have found that the results
approximately line up if we plot �n2Veff/4g�E (which is a scaled version of Veff) as a function of g/�n2 (which
is a scaled version of g). The results are shown in Fig 2. This is our first indication so far that the solutions obey an
important scaling law in this regime.

The expansion coefficients vn are shown in Fig. 3 for models with different values of g, for the case where φ = 0.
We see peaks with an alternating sign that appear every �n = 91 in n, with amplitudes that decrease at large n. The
coupling present in the Hamiltonian results in phase coherence that extends over a large range of n. When the coupling
is stronger we see that more expansion coefficients contribute to the solution. Expansion coefficients for φ = π are
shown in Fig. 4 for the same set of g values. We see very similar results except that the peaks all have the same phase.

4. Continuum Model

Our ability to calculate solutions to the eigenvalue is limited, even with the iterative algorithm discussed above, since
we require even more expansion coefficients when g and �n are large. From the results of the previous section, we
see that the solutions do not change suddenly between different values of n, which suggests that we might be able to
develop a continuum model. If so, then we would be able to extend the range over which we could obtain results even
further.
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Figure 2. Scaled indirect coupling matrix element (derived from the level splitting) as a function of the g/�n2 for�n = 91 (blue) and�n = 151
(red).

4.1. Eigenvalue equation

To proceed, we define a continuous version of the index n according to

z = n

�n
. (20)

The expansion coefficients vn in the continuum approximation is then related to a continuous function v(z) through

vn = v
( n

�n

)
. (21)

The eigenvalue equation for φ = 0 becomes

ε0v(z) = zv(z)+ g

[
v

(
z+ 1 + 1

�n

)
+ v

(
z+ 1 − 1

�n

)

+ v

(
z− 1 + 1

�n

)
+ v

(
z− 1 − 1

�n

)]
. (22)

4.2. Approximate differential eigenvalue equation

Since the expansion coefficients vary slowly with n, we would expect reasonable results from assuming that v(z) is
locally continuous. For example, we can use a Taylor series expansion to write
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Figure 3. Results for the φ = 0 expansion coefficients vn for 10 values of g logarithmically spaced between g = 10 and g = 100. Results for
g = 10 have the biggest magnitude for small n and the smallest magnitude for large n.

v

(
z+ 1

�n

)
= v(z)+ 1

�n

dv

dz
+ 1

2�n2

d2v

dz2 , (23)

v

(
z− 1

�n

)
= v(z)− 1

�n

dv

dz
+ 1

2�n2

d2v

dz2 . (24)

We can use these approximations to obtain an approximate difference-differential eigenvalue equation

ε0v(z) = zv(z)+ 2g[v(z+ 1)+ v(z− 1)] + g

�n2

d2v

dz2

∣∣∣∣
z+1

+ g

�n2

d2v

dz2

∣∣∣∣
z−1
. (25)

4.3. Discretization

To make progress, we would like to discretize the equation in order to obtain numerical solutions. Simple 3-point
discretization results in

ε0vj = zj vj + 2g[vj+N + vj−N ] + g

�n2

vj+N+1 − 2vj+N + vj+N−1

�z2

+ g

�n2

vj−N+1 − 2vj−N + vj−N−1

�z2 . (26)
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Figure 4. Results for the φ = π expansion coefficients vn for 10 values of g logarithmically spaced between g = 10 and g = 100. Results for
g = 10 have the biggest magnitude for small n and the smallest magnitude for large n.

The number of points used within a cycle N must satisfy

N ≤ �n (27)

in order to obtain numerical solutions that correspond to the solutions of the original Hamiltonian.

4.4. Iterative solution

We have had some success using an iterative algorithm very similar to that discussed above to solve it. The correction
equation that we used is

εδvj = (zj − 4α1g)δvj − α2
2g

�n2

(
δvj+1 − 2δvj + δvj−1

�z2

)
− rj (28)

with

rj = (zj − ε0)vj + 2g[vj+N + vj−N ] + g

�n2

vj+N+1 − 2vj+N + vj+N−1

�z2

+ g

�n2

vj−N+1 − 2vj−N + vj−N−1

�z2 , (29)
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Figure 5. Results for the φ = 0 expansion coefficients vn computed for g = 10 using the periodic local model (black circles), and using the
continuum approximation (blue line).

α1 = 1

2
, α2 = 1 (30)

and

v
(m+1)
j = v

(m)
j + βδv

(m)
j (31)

with

β = 0.45. (32)

The convergence rate is not great, but we are able to obtain solutions using this approach.

4.5. Numerical example

Of primary interest here is whether the solutions to the continuum model give a reasonable approximation to the
solutions of the original problem. The issue here is that even though we now have more powerful tools to analyze the
models, the number of coefficients involved in the solution grows in proportion to the product of g and �n, so that we
will end up needing to rely on a combination of analytic and numerical tools when �n becomes large.
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Figure 6. Scaled level splitting for �n = 91 expressed as a scaled indirect matrix element from the periodic local model (blue line), and from the
continuum approximation (red line).

In Fig. 5, we show the result from the continuum model (blue line) compared with the exact numerical coefficients
from the periodic local model (black circles). The agreement is good, although there is a small offset associated with
the continuum solution. The self-energy for the “exact” local periodic solution is

E(0) = − 34.4370 �E. (33)

The result from 3-pt differencing of the continuum approximation with 91 points is

E(0) = − 34.4312 �E (3 − pt discretization). (34)

We can correct this self-energy by including the contribution of the lowest-order discretization error to obtain

E(0) = − 34.4316 �E (corrected 3 − pt discretization). (35)

We conclude that the continuum model itself as an approximation is responsible for most of the energy difference.
The level splitting from the continuum model is shown in red in Fig. 6, compared with the periodic model result

in blue. We see that the continuum model result is very close to the periodic model result. We conclude from these
calculations that we should be able to make use of the continuum model for self-energy and for level splitting calculations
and get good results.
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5. Strong-coupling Limit

Direct numerical computations with the models described above becomes increasingly slow for larger values of g. This
is because the solutions that make up the expansion coefficients include a large number of peaks, which involves a
large number of points. An additional difficulty is that the iterative algorithm discussed converges more slowly as more
points are used. It is possible to make use of the models outlined above to obtain systematic results for large g, by
taking advantage of the presence of a large number of peaks. Since the peaks have nearly the same shape from one
cycle to the next it becomes possible to develop strong coupling approximations.

5.1. Large g approximation for the periodic model

We see in Fig. 5 that the φ = 0 solutions are made up of peaks that alternate in sign, and that for large g we might
expect that the peak amplitudes will become uniform. In this case we would write

vn+�n = − vn (φ = 0). (36)

The eigenvalue equation for the expansion coefficients in this limit reduces to

ε0vn = n

�n
vn − 2g(vn+1 + vn−1). (37)

In the case of φ = π , the different peaks have the same sign, so that we would expect

vn+�n = vn (φ = π). (38)

The corresponding eigenvalue equation in this large g limit is essentially the same

επvn = n

�n
vn − 2g(vn+1 + vn−1). (39)

We show the result of computations for �n = 91 for the level splitting as a function of g in Fig. 7 for this strong
coupling approximation (red) compared with exact numerical results from the periodic model (blue). We see that the
strong coupling approximation approaches the exact solution at large g, and that it deviates some at low g. This is
consistent with our expectations, since when g is small only a few peaks make up the solution, in which case the
assumption that the peaks are uniform (or linear) becomes poor.

5.2. Large g version of the continuum approximation

We can make a similar approximation in the case of the continuum approximation in the large g limit where there are
many peaks, and where the shapes and amplitudes are similar in the different peaks. The resulting large g approximation
is

εv(z) = zv(z)− 4gv(z)− 2g

�n2

d2v

dz2 (40)

for both φ = 0 and φ = π .
This strong coupling continuum approximation is interesting because it predicts that the level splitting depends on

the ratio g/�n2, but not on g independently. We can see this be recasting the eigenvalue equation as
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Figure 7. Scaled level splitting for �n = 91 expressed as a scaled indirect matrix element from the periodic local model (blue line), and from the
strong coupling approximation (red line).

ε′v(z) = zv(z)− 2g

�n2

d2v

dz2 , (41)

where

ε′ = ε + 4g. (42)

We noticed in our calculations that the discrete strong coupling approximation above gave very nearly the same level
splittings as a function of g/�n2 for different large values of �n. We see now that such behavior is expected, since
when g is very large, it is only g/�n2 that matters in determining the level splitting.

The calculated level splitting in this model is very close to the large g approximation result in Fig. 7.

5.3. Scaling law for indirect coupling matrix element

From the strong coupling results, we see that the indirect coupling matrix element obeys a scaling law of the form

Veff

�E
= 4

g

�n2

( g

�n2

)
. (43)

For ease of use, we have fit the function 
(x) according to
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(x) = exp
{
a + b ln x + c(ln x)2 + d(ln x)3 + e(ln x)4

}
(44)

using data in the range

0.00020 < x < 0.12. (45)

The fitting parameters that result are

a = − 1.11722, b = − 1.61939, c = − 0.780116, d = − 0.171302, e = − 0.0159906. (46)

5.4. Analytic model for the large g continuum model

We can solve the differential equation for the strong coupling continuum model using a solution of the form

v(z) = Ai

[(
�n2

2g

)1/3

(z− z0)

]
, (47)

ε = − 4g + z0, (48)

where Ai is an Airy function. A scaled version of this analytic result is shown in Fig. 8 compared with results from
exact numerical calculations with the local periodic model. We see that the agreement over most of the cycle is very
good. Deviations between the analytic solution and the exact solution on the small n side are due to the fact that the
coefficients at n−�n are zero in the exact model (the analytic model here does not know about the cut-off at n = 0).

5.5. Peak amplitudes

If we assume that the different peaks have approximately the same shape, then it is possible to develop a model for the
peak amplitudes. To proceed, we assume that the expansion coefficients for the φ = 0 case can be approximated by

vn =
∑
m

(−1)mamun−m�n, (49)

where am is the amplitude, and where un describes a single peak. For φ = 0, the eigenvalue equation is

ε0vn = n

�n
vn + g

[
(vn+�n+1 + vn+�n−1)+ (vn−�n+1 + vn−�n−1)

]
, (50)

we can develop an equation for the amplitudes of the form

ε0〈un|un〉am = 〈un| n
�n

|un〉 − g〈un|un+1〉am+1 − g〈un|un−1〉am+1

−g〈un|un+1〉am−1 − g〈un|un−1〉am−1, (51)
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Figure 8. Expansion coefficients for g = 30 and �n = 151; φ = 0 (blue triangles); φ = π (red circles); and Airy function analytic model (black
line).

When g is large we may approximate

〈un|un+1〉
〈un|un〉 → 1. (52)

We require an estimate the expectation value 〈n/�n〉. Since each successive peak occurs at a position �n units
past the previous one, we would expect that the expectation value would be equal to m plus an offset that depends on
the width (which depends on g/�n2). From the results of numerical calculations, the following approximation seems
reasonable

〈 n
�n

〉
= m+ δn

( g

�n2

)
. (53)

We can then reduce the amplitude equation to

[
ε0 − δn

( g

�n2

)]
am = mam − 2g(am−1 + am+1). (54)

This equation can be solved analytically using a solution of the form

am = Jm+m0(4g), (55)
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Figure 9. Expansion coefficients for g = 30, �n = 151, and φ = π (blue); and results from the peak amplitude model (red).

where m0 is chosen so that the first zero of the Bessel function is matched to the boundary condition near n = 0. We
illustrate in Fig. 9 an example where we have chosen the φ = π version of the problem (in which the peaks all have
the same sign, so that it is easier to compare). In this case, we have used �n = 151 and g = 30, and we have scaled
the amplitudes to approximately match the peak amplitude. We see that this model for the amplitudes is in reasonable
agreement with the exact numerical calculation.

5.6. Continuum approximation for the peak amplitudes

When g becomes large there occur a great many peaks. In this case, we can adopt a continuum approximation

am → a(m) (56)

with

am+1 → a(m)+ da

dm
+ 1

2

d2a

dm2 (57)

am−1 → a(m)− da

dm
+ 1

2

d2a

dm2 . (58)

The eigenvalue equation becomes
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[
ε0 + 4g − δn

( g

�n2

)]
a(m) = ma(m)− 2g

d2a

dm2 . (59)

This is solved using

a(m) = Ai

[(
1

2g

)1/3

(m− δm)

]
. (60)

Here δm is chosen to match the boundary condition.

6. Dynamics for Strong Coupling

Since the indirect coupling matrix element obeys a scaling law in the strong coupling limit, it is possible to examine
coherent energy exchange under conditions where a large number of oscillator quanta are converted. From previous
work the dynamics is governed by

d2

dt2
m = 2

h̄2

d

dm
V 2(m). (61)

We assume in writing this that there are enough two-level systems present so that the nearly-degenerate set of indirectly
coupled states can be treated as degenerate. To proceed, we recall that

g = V
√
n
√
S2 −m2

�E
. (62)

In what follows we will simplify things by assuming that n does contribute to the dynamics. This would be the case if
a large n were imposed such that the energy exchange gives rise to only a small change in oscillator excitation. This
limit might also be of interest if conventional oscillator loss limited the maximum excitation of the oscillator.

6.1. Scaled Dicke number

In what follows, it will be convenient to work with a scaled version of m; hence, we define y according to

y = m

S
. (63)

The equation of motion can then be written as

d2

dt2
y(t) = 2

h̄2S2

d

dy

[
4�E

g

�n2

( g

�n2

)]2
. (64)

We can simplify the subsequent algebra if we introduce gmax which we define as

gmax = V
√
nS

�E
. (65)
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This allows us to write

d2

dt2
y(t) = 32

S2

(
�E

h̄

)2 d

dy

[(gmax

�n2

)2
(1 − y2)
2

(
gmax

�n2

√
1 − y2

)]
. (66)

6.2. Characteristic frequency

The scaling law here involves y appearing in the same way in the different terms. We can extract the physical parameters
by introducing the scaled variable

ξ = gmax

�n2

√
1 − y2. (67)

This allows us to write

d2

dt2
y(t) = 32

S2

(
�E

h̄

)2 d

dy

[
ξ2
2 (ξ)

]
= 32

S2

(
�E

h̄

)2 dξ

dy

d

dξ

[
ξ2
2 (ξ)

]
. (68)

We can evaluate the derivative in y to obtain

dξ

dy
= − gmax

�n2

y√
1 − y2

. (69)

This leads to

d2

dt2
y(t) = − 32

S2

(
�E

h̄

)2 (gmax

�n2

)2
y

(
1

ξ

d

dξ

[
ξ2
2 (ξ)

])
. (70)

We can define a characteristic frequency �0 for this model to satisfy

�2
0 = 1

S2

(
�E

h̄

)2 (gmax

�n2

)2
. (71)

This can be recast as

�2
0 = 1

�n4

(
V

√
n

h̄

)2

. (72)

The characteristic frequency �0 can then be written in the two equivalent forms

�0 = 1

S

(
�E

h̄

)(gmax

�n2

)
= 1

�n2

(
V

√
n

h̄

)
. (73)
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Figure 10. Function F(ξ) discussed in the text plotted as a function of ξ .

6.3. Nonlinearity

Ultimately we end up with the dynamics of a nonlinear oscillator which can be expressed as

d2

dt2
y(t) = −�2

0y

(
32

ξ

d

dξ

[
ξ2
2 (ξ)

])
. (74)

To compute the dynamics of this system, it is convenient to define

F(ξ) = 32

ξ

d

dξ

[
ξ2
2 (ξ)

]
. (75)

We have evaluated this function (see Fig. 10 ), and fit it to the form

F(ξ) = exp

{
a + b ln ξ + c(ln ξ)2 + d(ln ξ)3 + e(ln ξ)4

}
(76)

with

a = 2.46013, b = − 3.22909, c = − 1.60184, d = − 0.362187, e = − 0.0332753. (77)
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Figure 11. Non-periodic solutions for y(t) as a function of scaled time for gmax/�n
2 values of 0.0003 (green), 0.001, 0.003, 0.01 (red). The time

scaling uses τ−1 = |y′(0)|.

6.4. Solutions

Using this function we may write for the evolution equation

d2

dt2
y(t) = −�2

0yF

(
gmax

�n2

√
1 − y2

)
. (78)

In Fig. 11, we show non-periodic solutions that we computed for different values of gmax/�n
2. We scaled the time

axis of the different solutions by the maximum rate for the different cases in order to compare them. To do this, we
start with the maximum reaction velocity

∣∣∣∣
dm

dt

∣∣∣∣
max

= 2

h̄
max{Veff} = 8

(
�E

h̄

)(gmax

�n2

)


(gmax

�n2

)
. (79)

The maximum rate for the normalized version of m can be written as

�0 = 1

S

∣∣∣∣
dm

dt

∣∣∣∣
max

= 8

S

(
�E

h̄

)(gmax

�n2

)


(gmax

�n2

)
= √

2�0

(gmax

�n2

)
. (80)
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6.5. Connection between the maximum rate and the coupling

One of the key questions that relates to these models concerns determining how large the coupling matrix element must
be in order for coherent energy exchange to occur at a given rate. In the large �n scaling that we have considered in
this section, we can determine the maximum reaction rate from the coupling matrix element by expressing�0 in terms
of V in the expression above to obtain

�0 = √
2

1

(�n)2

V
√
n

h̄



(
gmax

(�n)2

)
. (81)

The coupling matrix element in this model is V
√
n, so it is natural to expect V

√
n/h̄ as providing the underlying

rate scale. The maximum rate is then smaller by a factor of (�n)2, which is essentially the penalty in this model for
fractionating the large two-level system quantum �E into a large number of oscillator quanta with energy h̄ω0. The
function
 is shown in Fig. 7, and we might regard this factor as an additional penalty factor required for insufficiently
strong coupling. Finally, we need to arrange for gmax/(�n)

2 to be sufficiently large so that our penalty
 is not too great,
which we can interpret as a constraint on the number of two-level systems required to fractionate the large quantum.

7. Discussion and Conclusions

The lossy spin-boson model is interesting in that it exhibits a strong coherent energy exchange effect between a set
of two-level systems and an oscillator under conditions where the large energy quantum of the two-level systems is
divided into a large number of oscillator quanta. In previous papers, we have examined this using perturbation theory
[10], and using a second-order formulation [12]. Our interest in the problem stems from seeking models for the excess
heat effect in the Fleischmann–Pons experiment, where we interpret the experimental results as splitting a large nuclear
quantum of energy into a very large number of atomic scale quanta associated with phonon modes of the lattice. We
are interested in this paper in the question of whether the lossy spin-boson model is capable coherent energy exchange
under such conditions.

In a previous paper we introduced the periodic local approximation [13], which is a powerful tool which allows us
to reduce a large and difficult two-dimensional (m and n) problem into a much smaller and easier one-dimensional (n)
problem when a resonance condition is satisfied. In this paper we have exploited the local approximation to compute
eigenfunctions, self-energies, and indirect coupling matrix elements for examples when the dimensionless coupling
constant is reasonably large and when many oscillator quanta are exchanged. After a number of such calculations, we
have found that the system appears to obey a scaling law for the self-energy, and a scaling law for the indirect coupling
matrix element. The is interesting in its own right, since we had no reason a priori to expect such behavior. Also
interesting is that the self-energy and indirect matrix elements show convergence to the strong coupling limit result in
a regime where we can perform calculations directly, enabling us to verify the behavior of the system independently.

With the aid of the scaling law for the indirect coupling matrix element, we are able to carry out computations of
the resulting system dynamics in the strong coupling regime where coherent energy exchange occurs with a very large
number of oscillator quanta. In the end, we see that this lossy spin-boson model is able to exchange energy efficiently
even when the two-level system transition energy is very much less than the characteristic energy of the oscillator. For
this to work, the system must be in a very strong coupling regime, which can be done by simply increasing the number
of two-level systems. The price to be paid for such a large mismatch is a reduction in the coherent energy transfer
rate. In the large n model, the rate �0 scales as (�n)−2 when �n is increased and gmax/�n

2 is held fixed. Such
scaling is relatively gentle, which encourages us in exploring it for application to excess heat in the Fleischmann–Pons
experiment. The coherent energy transfer rate in the finite n model discussed in the Appendix is much faster.
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In looking forward, much work remains to develop a usable theory for the Fleischmann–Pons experiment. We will
need to generalize the model to describe donor and receiver two-level (as well as n-level) systems. Our computations in
this paper were carried out in an infinite loss approximation, and we will need to develop models with finite oscillator
loss at �E in order to connect with experiment. In our computations in the strong coupling limit in this work, a
characteristic feature of the solutions is that a very large number of different oscillator n-states are occupied when g is
large. In the physical system the oscillator sees loss at ω0, so that one would expect the results to depend on this loss.
We would like to examine models which shed light on this. We will also need to connect this simple two-level system
and oscillator models to the physical system, which will require a derivation of the model as well as an evaluation of
the coupling matrix elements.

Appendix A. A Finite n Model

We chose the simple model discussed in the previous subsections in part because it was simple and informative.
However, the restriction that the number of oscillator quanta is not changed by the dynamics is a strong one, and we
are interested here in the generalization to the case where the change in the number of oscillator quanta is significant.

Appendix A.1. Energy conservation

In this case, the number of oscillator quanta n would depend explicitly onm. If we assume that the oscillator loss at ω0
can be neglected, then we may use energy conservation to write

n0 = n+�n(S +m). (A.1)

In this model the number of oscillator quanta decreases when the number of excited two-level systems increases.

Appendix A.2. Evolution equation

The relation between the local g and m is modified to read

g = V
√
n0 −�n(S +m)

√
S2 −m2

�E
. (A.2)

We use this to generalized the definition of ξ to

ξ = g

�n2 = V S
√
n0 −�nS(1 + y)

√
1 − y2

�E�n2 . (A.3)

We then compute

dξ

dy
= − g

�n2

[
y

1 − y2 + S�n

2n

]
, (A.4)

where we note that g and n both depend on y.
The evolution equation in general can be written as

d2

dt2
y(t) = 32

S2

(
�E

h̄

)2 dξ

dy

d

dξ

[
ξ2
2 (ξ)

]
. (A.5)
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Using the expression above for the derivative dξ/dy, we obtain

d2

dt2
y(t) = − V 2n

h̄2�n4

[
y + S�n

2n
(1 − y2)

]
F(ξ). (A.6)

Note that n and ξ depend explicitly on y in this evolution equation.

Appendix A.3. Steady-state condition

If all of the two-level systems are initialized in the ground state, and if the oscillator is initialized in an excited state,
we would expect that some of the two-level systems would become excited. We can determine how many are excited
in the steady state by solving

y + S�n

2n
(1 − y2) = 0. (A.7)

We use

n = n0 −�nS(1 + y) (A.8)

to obtain the constraint

3y2 + 2
(

1 − n0

�nS

)
− 1 = 0. (A.9)

We assume that the amount of excitation is small, and obtain the approximate result

y = − 1 + n0

2�nS
. (A.10)

The number of excited two-level systems in this case is

m+ S = 1

2

n0

�n
= n

�n
. (A.11)

This is the condition at which the contributions that increase the indirect matrix elements are the same for the two-level
systems as for the oscillator.

Appendix A.4. Discussion

In the large n model described in Section 6, if the oscillator is initially excited and the two-level systems are in the
ground state, then the model predicts that in time all of the two-level systems would be excited. One of the reasons for
going to a finite n model is that now the matrix elements increase when the number of oscillator quanta increases, so
that the two-level systems in such a model want to give up their energy to the oscillator. In this new model, the rate at
which the two-level systems give up their energy is increased by roughly S�n/n over that of the large n limit, a factor
which can be very large.

If the two-level systems are initially in the ground state, then we would expect that they can be excited if the
oscillator is highly excited. The evolution equation for this model gives this result. The large n model and this energy
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conserving finite n model exhibit two different limits for coherent energy exchange. Unfortunately, there are issues
with both models in connection with modeling excess heat in the Fleischmann—Pons experiment. If we are interested
in coupling energy to optical phonon modes, it can never be the case that the system can reach a large n limit, because
the associated thermal power would be so high as to be physically unreasonable (since the thermalization time of these
phonon modes is so short). Since optical phonon modes are so lossy, a model which enforces energy conservation
without optical phonon loss also seems not so realistic. To do better, we will need to include phonon loss.
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