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Abstract

Energy in the Fleischmann–Pons experiment is produced without commensurate energetic particles, and 4He is seen in amounts
proportional to the energy produced (with a ratio of energy to number near 24 MeV). Correspondingly we focus on the D2/ 4He
transition as a two-level system coupled to an oscillator, in order to make a connection with the lossy spin–boson model considered
in previous work. Because of the strong Coulomb repulsion between the deuterons, the associated coupling matrix element is very
small, and there is no possibility of converting the transition energy to oscillator quanta within a simple lossy spin–boson model. This
motivates us to generalize to more complicated model that includes a set of (donor) two-level systems for the D2/ 4He transition, and
a set of (receiver) two-level systems that are strongly coupled to the oscillator. We analyze the resulting model in the limit that the
receiver system is very strongly coupled. Within this formulation, the associated dynamics can be interpreted in terms of a transition
from D2 to 4He with direct conversion (and fractionation) of the large energy quantum to the oscillator, once the coupling with the
receiver system is sufficiently strong.
© 2011 ISCMNS. All rights reserved.

Keywords: Coherent Fusion, Donor–receiver Model, Excitation Transfer, Theory Excess Heat in the Fleischmann–Pons Experiment

1. Introduction

In the previous papers, we introduced the lossy spin–boson model, and we studied the ability of the model to describe
the fractionation of a large quantum [1–5]. Our goal in these studies has been to develop new models relevant to excess
heat production in the Fleischmann–Pons experiment [6], where a large amount of energy is made [7], 4He is observed

∗E-mail: plh@mit.edu

© 2011 ISCMNS. All rights reserved.



P.L. Hagelstein and I.U. Chaudhary / Journal of Condensed Matter Nuclear Science 5 (2011) 140–154 141

in amounts commensurate with the energy produced [8,9], and where no commensurate energetic particles are observed
[10].

The fundamental question that was the focus of our earlier work is whether a large nuclear-scale quanta can be
fractionated into a large number of much smaller quanta relevant to condensed matter degrees of freedom. Our approach
in this study was to focus on equivalent two-level systems and an oscillator, in an effort to simplify the problem as
much as possible (since the associated models and coherent dynamics are much more complicated than for incoherent
reactions). As a result, it was not important to specify precisely which levels were involved. Had our ultimate conclusion
been otherwise (that fractionating a large quantum was impossible), then there would have been no need to examine
specific cases.

1.1. General mathematical models versus specific physical models

Our results suggest that a large quantum can be fractionated, and we have explicit models which show the effect and
which we can analyze quantitatively. This now opens the door to trying to connect the general model to specific
examples of models of this type for evaluation. This new problem that we face now must be viewed as a significant
problem in its own right. One new task is to identify upper and lower levels of the two-level systems with specific
nuclear states, and another is to associate specific condensed matter oscillatory modes to the harmonic oscillator in the
model.

Ideally, we would like for experiment to provide an unambiguous positive identification for us the states that are
involved, and to make perfectly clear which oscillator is relevant. Unfortunately, in the experiments that have been done
so far, and we generally lack the experimental clarity that would result in unambiguous choices. Consequently, there is
not agreement within the community of scientist working on the problem as to what states should be focused on, and at
this point some discussion of the problem is worth while. In the remainder of this Introduction, we summarize briefly
some of the discussion that has occurred within our group over the years.

1.2. Lossy spin–boson model for the D2 to 4He transition

If we select molecular D2 (keeping in mind that there are a number of such states) for the upper state of the two-level
system, and 4He for the lower state, then the resulting model would predict a ratio of excess energy to the number of
4He atoms to be 23.85 MeV, which is consistent with the two experiments that measure the ratio under conditions where
an attempt was made to recover the helium retained in the cathode [11,12].

Unfortunately, the associated coupling matrix element is exceedingly small because of Coulomb repulsion. If we
model the system using a lossy spin–boson model, then we quickly conclude that it is impossible to fractionate the
large quantum with these states alone since the associated coupling matrix element is so small.

1.3. Generalization of the model and excitation transfer

Because of this, we decided (many years ago) to generalize the model in order to have a more complicated system in
which the D2/ 4He transition would supply the large energy quantum, and another transition would be involved in the
fractionation of the quantum.

For this to work, we require a new fundamental mechanism that takes the energy associated with a transition at one
site, and transfers it to another site. There is precedence for such a physical effect in biophysics, in which an excited
molecule is observed to transfer its excitation (through a Coulomb interaction) to another molecule. In this case, the
effect is termed “resonance energy transfer”, or “Förster effect” (in honor of the physicist who first gave a quantitative
model for the effect [13,14]). There is no reason to believe that a nuclear version of the Förster effect should not be
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able to exist for nuclei, but from calculation we know that a version of the effect that depends on Coulomb interactions
alone cannot do what we require (because the Coulomb dipole–dipole interaction is of short range).

For us, the solution to this problem was to focus on phonon exchange instead of Coulomb exchange, since we found
that a much longer range for the effect could work in the case of phonon exchange with a highly excited phonon mode.
This is very closely connected with the kinds of models we discussed earlier. For example, one can establish the effect
using perturbation theory in a model with two different two-level systems each coupled linearly to an oscillator. As
a result, this new excitation transfer mechanism comes into the problem in a natural way in the generalization of our
model from one set of two-level systems to two sets of two-level systems, both coupled to a common oscillator.

1.4. But what transition would fractionate the large quantum?

From the beginning of our research on this generalization, we have faced the issue of specifying a second set of two-level
systems which would fractionate the large quantum, and convert the energy to a condensed matter mode. Models with
different choices have been studied, and from these studies we have begun to understand what the relevant issues are.

In the early days of our work, we thought that the most important issue in the selection of the second set of two-level
systems was the degree of resonance with the D2/ 4He transition energy. As a result, it seemed natural to consider
transitions between 4He as the ground state, and whatever two-deuteron states were available near the initial transition
energy (23.85 MeV), since we would come closest to obtaining a resonance.

Once we began to understand phonon exchange in association with nuclear transitions better, and when we also
understood the coherent models better, it became clear that the Pd isotopes should be considered as candidates. Arguing
for this approach is that Pd is the primary constituent of the host lattice, so that we might expect it to be numerically
dominant.

We focused at one point on transitions to excited states, composed of a neutral plus daughter, that seemed to be
favored in exchanging phonons; one such example was the 110Pd/106Pd+4n transition. This transition is probably not
such a close match in energy to the D2/ 4He transition, so the issue of energy exchange in connection with excitation
transfer becomes important.

Recently, we undertook a systematic effort to see whether we could identify candidate transitions that would be able
to serve as receivers in the donor-receiver model under discussion in this work. The general approach that we used was
to derive constraints directly from our model, and we examined several hundred nuclear and atomic transitions to see
how closely the constraints could be satisfied. It quickly came clear from this analysis that no physical transition can
stand in for the receiver-side of this model, since we ask for too much. Perhaps the biggest issue in this study is that
we require a large coupling matrix from the ground state, and also a long lifetime so that coherence can be preserved;
yet generally a large coupling matrix element implies a short radiative lifetime.

Because of this, we have adopted a revised point of view concerning this simple donor-receiver model, with two
sets of two-level systems coupled to an oscillator, and augmented with loss. Certainly it is the simplest model that
demonstrates the basic physical effects we require: the ability to exhange energy coherently under conditions where
a large quantum is fractionated, and the ability to transfer excitation from one two-level system to another. But since
the receiver system doesn’t correspond to a simple physical transition, we view it as a likely idealization of a more
complicated receiver system that involves three or more levels. But the two-level systems of the donor side of the model
appears relevant to the D2/ 4He transition, allowing us to study the donor dynamics in the presence of an idealized
receiver system.

1.5. But what about the oscillator?

The oscillator in the general two-level system and oscillator models can in principle represent any condensed matter
oscillatory mode, and the question at issue is what modes are involved. The candidates in principle include acoustic
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phonon modes, optical phonon modes (with compressional modes at the�-point and L-point apparently preferred in the
two-laser experiment), and plasmon modes (which we expect to be mixed with optical phonon modes, and which are
implicated in single laser experiments). There is no reason to exclude any of these modes in the basic Fleischmann–Pons
experiment, based on measurements done so far. In the single laser experiment, probably a plasmon mode is involved.
In the two-laser experiment [15,16] specific optical phonon modes are involved. In what follows our focus will be on
optical phonon modes, primarily since the resulting model seems “cleanest” to us (optical phonon modes couple well
with the D2/ 4He transition).

2. Generalization of the Lossy Spin–Boson Model

Based on the above discussion, we generalize the lossy spin–boson model to include two different sets of two-level
systems

Ĥ = �E1
Ŝ
(1)
z

h̄
+�E2

Ŝ
(2)
z

h̄
+ h̄ω0â

†â + V1e−G(â† + â)
2Ŝ(1)x
h̄

+ V2(â
† + â)

2Ŝ(2)x
h̄

− i
h̄

2
�̂(E). (1)

The first set of two-level systems will have transition energy �E1, and will be considered to be the “donor” system
within the model (in the sense that excitation is transferred from this system); the second set of two-level systems (the
“receiver” system) in general has a different transition energy�E2. The oscillator has a characteristic energy h̄ω0. We
include linear coupling terms between the oscillator and each of the two sets of two-level systems, with the coupling
constant V1e−G for coupling from the first set of two-level systems (where e−G accounts for transitions from the first
set of two-level systems being hindered by the tunneling factor associated with tunneling through the Coulomb barrier),
and V2 for coupling with the second set of two-level systems. Loss is included through a Brillouin–Wigner type of loss
operator as we have discussed previously.

3. Local Approximation for the Generalized Lossy Spin–Boson Model

We are interested ultimately in a regime in which the coupling between the receiver system and the oscillator is very
strong. In our previous work on coherent energy exchange, we found that the system could be understood by taking
advantage of the local approximation, since direct calculations when the coupling is very strong are computationally
expensive. For the generalized lossy spin–boson model we would like to make use of the local approximation for our
analysis.

3.1. Eigenvalue equation for the expansion coefficients

To proceed, we begin with a finite basis expansion for this more complicated system in the form

� =
∑
m1

∑
m2

∑
n

cm1,m2,n|S1,m1〉|S2,m2〉|n〉. (2)

For the wave function � to satisfy the time-independent Schrödinger equation, the expansion coefficients cm1,m2,n

satisfy
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3.2. Limit of many oscillator quanta and two-level systems

Previously we used large n and large S approximations to develop a local approximation. Here we need to do the same.
We assume that n is large to write

√
n+ 1 ≈ √

n. (4)

For the different two-level systems, we make the approximation

√
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√
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j , (5)

√
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√
S2
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j . (6)

If each Sj is very large, and if each mj is not close to ±Sj , then these approximations should be good ones.

3.3. Local approximation

The coupling coefficients become the same to different states when we make this approximation, which leads directly
to a local approximation for this model
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It is convenient to define two dimensionless coupling constants according to
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We can rewrite the eigenvalue equation for the expansion coefficients as
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This is consistent with a local configuration space Hamiltonian of the form

Ĥ = �E1m1 +�E2m2 + h̄ω0n− i
h̄
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4. Periodic Donor and Receiver Models

In the strong coupling limit direct calculations of eigenfunctions, eigenvalues, and indirect coupling matrix elements
becomes increasingly difficult the stronger the coupling. In the periodic model the problem simplifies, allowing us to
make use of numerical and analytic approaches. We use this approach here to analyze donor–receiver models under
conditions where the coupling between the oscillator and the receiver two-level systems is very strong.

4.1. Periodic approximation and resonance condition

One of the most important tools that we have for analyzing coherent energy exchange in the strong coupling regime is
the periodic approximation. Since we would like to understand the generalized lossy spin–boson model when �n is
very large for the receiver system, it seems reasonable to once again make use of the period version of the problem.
Since there are two sets of two-level systems, we are going to require two distinct resonance conditions. For coherent
energy exchange between the receiver system and oscillator, we require

�E2 = �n2h̄ω0. (12)

For excitation transfer transitions, we require

�E1 = �E2 +�n12h̄ω0. (13)
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Even though we do not expect direct coherent energy exchange between the donor two-level systems and the oscillator,
it is useful to define �n1 to satisfy

�E1 = �n1h̄ω0. (14)

4.2. Periodic solution

When the above resonance condition is satisfied, we can construct a locally periodic solution of the form

� =
∑
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∑
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∑
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dm1,m2un+m1�n1+m2�n2 |S1,m1〉|S2,m2〉|n+m1�n1 +m2�n2〉. (15)

It is possible to develop eigenfunction solutions for the local Hamiltonian using

dm1,m2 = ei(m1φ1+m2φ2). (16)

4.3. Eigenvalue equation

We assume that the wavefunction satisfies the time-independent Schrödinger equation, and then we use orthogonality
to obtain an eigenvalue equation for the expansion coefficients
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If we make use of Eq. (16), then this can be simplified to

E(φ1, φ2)un =
[
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h̄
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]
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+ g2�E2[eiφ2(un+1+�n2 + un−1+�n2)+ e−iφ2(un+1−�n2 + un−1−�n2)], (18)

where we have focused as before on the special case of m1 and m2 equal to zero.

4.4. Solution for the second set of two-level systems

In this problem, the first set of two-level systems is weakly coupled to the oscillator, while the second set of two-level
systems is strongly coupled. As a result, we would expect that the strong coupling associated with the second set of
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two-level systems would dominate the problem. We have considered such a problem previously. It is possible to adapt
it here by first taking

g1e−G → 0 (19)

and writing

E2(φ2)vn(φ2) =
[
nh̄ω0 − i

h̄

2
�̂(E)

]
vn(φ2)
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+ e−iφ2(vn+1−�n2(φ2)+ vn−1−�n2(φ2))], (20)

where the vn(φ2) are the same coefficients that we studied previously in Ref. [5], and where E2(φ2) is the associated
energy eigenvalue. We found previously that this energy eigenvalue in the strong coupling regime with large �n2 is
approximately

E2(φ2) → �2(g2)+ 2V eff
2 cosφ2, (21)

where �2 is the self-energy which we found previously in the strong coupling limit to be

�2(g2) → − 4g2 (22)

and where V eff
2 is [5]

V eff
2 → 4g2

�n2
2

�E2�

(
g2

�n2
2

)
. (23)

4.5. Perturbation theory estimate for the energy eigenvalue

We can use this as a starting point to estimate the energy eigenvalue. We can use perturbation theory to write

E(φ1, φ2) ≈ E2(φ2)+
〈
vn(φ2)

∣∣∣∣g1e−G�E1

[
eiφ1

[
vn+1+�n1(φ2)+ vn−1+�n1(φ2)

]

+e−iφ1
[
vn+1−�n1(φ2)+ vn−1−�n1(φ2)

]]〉
. (24)

We saw from earlier work that the expansion coefficients are slowly varying in the strong coupling limit, so that

vn+1−�n1(φ2) ≈ vn−�n1(φ2). (25)

Hence, we may write

E(φ1, φ2) ≈ E2(φ2)

+ 2g1e−G�E1[eiφ1〈vn(φ2)|vn+�n1(φ2)〉 + e−iφ1〈vn(φ2)|vn−�n1(φ2)〉]. (26)
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The bra and kets here denote summations over the different n, and we may write

〈vn(φ2)|vn+�n1(φ2)〉 = 〈vn(φ2)|vn−�n1(φ2)〉∗. (27)

Hence

E(φ1, φ2) ≈ E2(φ2)+ 4g1 e−G�E1Re{eiφ1〈vn(φ2)|vn+�n1(φ2)〉}. (28)

5. Dynamics of the Donor System

Our attention is first drawn to the dynamics of the donor system. Instead of dealing with the more complicated problem
associated with both the donor and receiver systems, we wish to first study the donor dynamics independently. Aside
from the fact that it greatly simplifies the problem, this study will emphasize a key feature of how this coupled system
works. We will see that under some conditions it becomes possible for the transition energy of the donor system to be
converted directly to the oscillator, as a result of the oscillator being strongly coupled with the other two-level system.

5.1. Dynamical equations for the expansion coefficients

We begin with a wave function definition of the form

� =
∑
m1

∑
m2

∑
n

dm1(t)e
im2φ2un+m1�n1+m2�n2 |S1,m1〉|S2,m2〉|n+m1�n1 +m2�n2〉. (29)

The associated evolution equation becomes
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d
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=
[
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h̄

2
�̂(E)

]
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im2φ2(un+1+(m1−1)�n1+m2�n2 + un−1+(m1−1)�n1+m2�n2)]

+ g2�E2[dm1(t)e
i(m2+1)φ2(un+1+m1�n1+(m2+1)�n2 + un−1+m1�n1+(m2+1)�n2)
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i(m2−1)φ2(un+1+m1�n1+(m2−1)�n2 + un−1+m1�n1+(m2−1)�n2)]. (30)

We first simplify the phases to write
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ih̄
d
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+ e−iφ2(un+1+m1�n1+(m2−1)�n2 + un−1+m1�n1+(m2−1)�n2)]dm1(t). (31)

We then approximate

un → vn(φ2) (32)

and obtain

ih̄
d

dt
dm1(t) ≈ E2(φ2)dm1(t)

+ 2g1e−G�E1[dm1+1(t)〈vn+m1�n1+m2�n2 |vn+(m1+1)�n1+m2�n2〉
+ dm−1(t)〈vn+m1�n1+m2�n2 |vn+(m1−1)�n1+m2�n2〉], (33)

where we have used a reference energy offset based on m1 = 0 and m2 = 0. This can be denoted more simply as

ih̄
d

dt
dm1(t) ≈ E2(φ2)dm1(t)

+ 2g1e−G�E1[dm1+1(t)〈vn(φ2)|vn+�n1(φ2)〉 + dm−1(t)〈vn(φ2)|vn−�n1(φ2)〉]. (34)

5.2. Interpretation

In the solution � that we adopted, the basis states are presumed degenerate as an ansatz of the model. As a result,
we expected to obtain evolution equations with indirect coupling between distant expansion coefficient of degenerate
states (distant in n, but nearest neighbors in m1), and this corresponds to our result of Eq. (34). However, this result
deserves some consideration in its own right in terms of the associated physical mechanism that has come out of the
model we proposed. In previous work we considered models in which the donor system would transfer excitation to
the receiver system, and then the receiver system would convert it to oscillator energy.

However, what we have found using this formulation in the strong coupling limit is qualitatively different, and much
simpler. In essence, once there is sufficient coupling between the oscillator and receiver system, then the oscillator states
become spread, allowing the donor transition energy to be accepted directly by the oscillator. This differs qualitative
from our earlier proposals and models.

The overlap integral 〈vn(φ2)|vn+�n1(φ2)〉 is a function of the dimensionless coupling of the receiver system g2, even
though we have not denoted this dependence explicitly. When the coupling between the receiver system and oscillator
is too weak, then the overlap integral becomes vanishingly small. When the coupling is strong, and the donor transition
energy is approximately matched to a multiple of the receiver system transition energy, then the overlap approaches
unity.
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5.3. Evolution equations for expectation values

We may write for the evolution equation for the expansion coefficients an equivalent dynamical equation of the form

ih̄
d

dt
dm1 = Vm1+ 1

2
dm1+1 + Vm1− 1

2
dm1−1, (35)

where we have discarded the unimportant constant energy offset. In the event that φ2 is 0 or π , then the coupling
coefficients are real; otherwise they can be complex. In such cases we may write

Vm1+ 1
2

= |Vm1+ 1
2
|eiθ , (36)

Vm1− 1
2

= |Vm1− 1
2
|e−iθ . (37)

If we define scaled expansion coefficients according to

em1 = dm1 eim1θ (38)

then the associated evolution equation is

ih̄
d

dt
em1 = |Vm1+ 1

2
|em1+1 + |Vm1− 1

2
|em1−1. (39)

We define the expectation value of the Dicke number m1 as

〈m1〉 =
∑
m1

m1|em1 |2. (40)

The associated evolution equations are

d

dt
〈m1〉 = 〈v̂1〉, (41)

d

dt
〈v̂1〉 = 2

h̄2

∑
m1

|em1 |2
(|Vm1+ 1

2
|2 − |Vm1− 1

2
|2). (42)

5.4. Classical limit

In the classical limit we may write

d2

dt2
m1(t) = 2

h̄2

d

dm1
[V eff

1 ]2 (43)

using
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V eff
1 = 2g1e−G�E1|〈vn(φ2)|vn+�n1(φ2)〉|. (44)

Most of the factors that make up the indirect coupling coefficient for the donor system V eff
1 do not depend on m1; the

overlap matrix element depends on parameters associated with the receiver system, but not the donor system. As a
result, we may write

d2

dt2
m1(t) = 2

h̄2 4e−2G(�E1)
2|〈vn(φ2)|vn+�n1(φ2)〉|2 d

dm1
g2

1

= 2

h̄2 4e−2GV 2
1 n|〈vn(φ2)|vn+�n1(φ2)〉|2 d

dm1
(S2

1 −m2
1)

= −
[

16V 2
1 n

h̄2 e−2G|〈vn(φ2)|vn+�n1(φ2)〉|2
]
m1(t). (45)

It may be most useful to write this as

d2

dt2
m1(t) = − [�1(g2, φ2)]2m1(t) (46)

with

�1(g2, φ2) = 4

(
V1

√
n

h̄
e−G

)
|〈vn(φ2)|vn+�n1(φ2)〉|. (47)

The characteristic frequency associated with the donor system is seen to be four times the coupling matrix element
(including the Gamow factor) divided by h̄, times a hindrance factor (magnitude of the overlap matrix element) that
depends on the receiver system.

5.5. Analytic solution when the receiver system is static

In the event that we impose (mathematically) a condition of steady state on the receiver system, the associated dynamics
of the donor system will be oscillatory. As an example, if all of the two-level systems of the donor system are initially
excited, then the relevant classical solution is

m1(t) = S1 cos(�1t). (48)

We see that the dynamics are determined by the characteristic frequency.

6. Discussion and Conclusions

Since the coupling is so weak in the case of the D2/ 4He transition, we have generalized the lossy spin–boson model to
the present donor-receiver model that includes two sets of two-level systems coupled to an oscillator. We recognize this
model as an simplification of a more complicated model, as the two-level system of the receiver side is an idealization
of a system involving more levels.
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Figure 1. Expansion coefficients for g = 30, �n = 151, and φ = π (blue); and results from the peak amplitude model (red).

We have made use of the tools and analysis that we presented earlier in our discussions of the lossy spin–boson
model to analyze the donor-receiver model in the local and periodic approximation, under conditions where the coupling
between the receiver two-level systems and the oscillator is strong. We find that in this limit the dynamics of the donor
system in our formalism appears to execute simple sinusoidal dynamics, including coherent energy exchange with the
lattice where the large donor quantum is fractionated by the receiver system. We anticipate that in a more sophisticated
version of the model, the addition of loss at ω0 in the oscillator model with prevent reverse reactions (in which energy
from the oscillator results in splitting of 4He to D2).

We note that the dynamics in this model are coherent, so that the rate at which D2 make transitions to 4He states
is linear in the matrix element. The Gamow factor due to tunneling through the Coulomb barrier which hinders the
matrix element then appears as e−G in the rate, in contrast to the incoherent case which is typical in hot fusion where
the reaction rate is proportional to e−2G.

Because the donor dynamics are determined by the donor-side coupling matrix element in the limit that the receiver
system is strongly coupled (and also resonant), this donor-receiver model seems already to have some applicability for
comparing experimental results with candidate models for D2 inventory, screening energy, and reaction rate.

There is more to be gleaned from this donor-receiver model from an examination of the overlap matrix element
〈vn(φ2)|vn+�n1(φ2)〉. For simplicity, we show expansion coefficients vn(π) for a model with �n2 = 151 and g = 30
in Fig. 1 along with the associated overlap matrix element (Fig. 2). In the event that the donor and receiver transitions
are assumed resonant, then we would look at Fig. 2 to see how big the overlap is when �n1 = 151. In this case,
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Figure 2. Overlap integral for g2 = 30, �n2 = 151, and φ=π as a function of �n1.

the overlap integral is close to unity, in which case the donor dynamics would be determined nearly completely by the
strength of the donor coupling matrix element.

However, there are other peaks present in Fig. 2 which attract our attention. Suppose that the transition energy of
the donor system were twice as large as the transition energy of the receiver system, then we would look to see how big
the overlap matrix element is near �n1 = 302. We see that a peak occurs there, and that the overlap matrix element is
near 0.9. In this case, the resonance appears because the donor energy is twice the receiver energy, and we can think
of the system responding as if we first converted the donor excitation into the excitation of two receiver systems, and
then subsequently fractionated.

This is interesting because we know from our earlier studies of the lossy spin–boson model that the larger the
quantum is, the harder it is to fractionate. If we can break up the donor quantum into many smaller receiver quanta,
then it is much easier to fractionate the smaller receiver quanta. The overlap integral in this example is showing us
qualitatively how this subdivision works. We also see that the subdivision resonance need not be perfect, because the
receiver system is able to make up a mismatch in the resonance.

So, even though the simple donor-receiver model is idealized in the sense that our two-level receiver does not
correspond directly to a physical transition, we are able to get some guidance as to how to make a better model. To
maintain coherence, we probably want to make use of long-lived metastable states which have a transition energy
that is close to an integer subdivision of the donor transition energy. But such a long-lived metastable state will have
essentially no coupling with the ground state (since it is metastable). This tells us that we need to include in a more
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realistic receiver model the intermediate strong transitions that take us from the ground state to the metastable state.
We are at present exploring such models as candidates to account for the excess heat effect in the Fleischmann–Pons
experiment.
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