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Introduction 
The work of this group is concerned with the electrodynamics of waves in plasmas, with phenomena 
relevant to controlled fusion energy generation in high-temperature plasmas that are confined 
magnetically or inertially, and with phenomena in space plasmas.  We report on five studies of the past 
year. 
 
On the electrodynamics of waves in plasmas, Section 1 reports on a multi-fluid hydrodynamic description 
of linear waves in a collisionless plasma confined in an external magnetic field 0B

ρ
 – a general description 

which is correct to first-order in finite-Larmor-radius (FLR) effects and for arbitrary frequency regimes.  
Section 2 shows how this is applied to understand the dispersion relation transformation of a cold-plasma 
extraordinary (X) wave to a kinetic electron-Bernstein wave (EBW) as the wavelength (perpendicular to 

0B
ρ

) decreases in the regime of the upper-hybrid resonance frequency.  This regime is of importance to 

coupling external power to EBWs in high- β , spherical tokamaks for current drive in such plasmas. 
 
Sections 3 and 4 describe our accomplishments in studies of plasma heating and current drive in 
magnetically confined fusion plasmas.  Section 3, in particular, describes the analysis and computational 
results on new means for generation of plasma current with EBWs that are driven by external RF (mm-
wave) power sources.  Section 4 describes the achievement and implementation of a general purpose 
computer code (DKE) for calculating plasma heating and current drive in tokamak confined plasmas.  
This code was used to obtain the results described in Section 3. 
 
Section 5 describes the development of a one-dimensional, collisionless kinetic code (ELVIS) for studying 
the nonlinear evolution of intense laser-plasma interactions of interest to inertial fusion. 
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1.  Hydrodynamics of Collisionless Waves in a Magnetic Field 
 
Sponsors 
Department of Energy (DoE) Contract DE-FG02-91ER-54109 
 
Project Staff 
Professor A. Bers 
 
A multi-fluid hydrodynamic description of linear dynamics in a cold-plasma model1,2 (i.e., when thermal 
effects are ignored) exhibits singularities in the natural waves propagating across an externally applied 
magnetic field 0B

ρ
.  At these singularities – so-called resonances in propagation – their wavelengths 

)/2( ⊥⊥ = kπλ  vanish, thus violating the fundamental, local requirement of a hydrodynamic description – 

namely, that the wavelength perpendicular to 0B
ρ

 be large compared to the average (thermal) particle’s 

cyclotron radius )/( cTT ωυρ = ; i.e., that so-called finite-Larmor-radius (FLR) effects )( Tk ρ⊥  be 
negligible.  One way to remedy this situation (without going to a much more complex, kinetic plasma 
description) is to construct a hydrodynamic description in which FLR effects are accounted for to lowest 
order (in 122 <⊥ Tk ρ ). 
 
Attempts to construct such a hydrodynamic description for a plasma go back to the early days of modern 
(high-temperature) plasma physics development, when interest was focused on the description of 
collisional transport phenomena in plasmas confined by a strong, external magnetic field, and on the 
single-fluid magneto-hydrodynamic (MHD) description of low-frequency dynamics.3,4  For a plasma in a 
strong magnetic field, so-called gyro-viscous terms, that are independent of collisions, were discovered 
and their use became a common feature in collisionless MHD. Here we report on a different formulation 
of collisionless hydrodynamics for a plasma in a magnetic field, relevant to high frequency wave 
propagation in plasmas.  In this regime, the simplest approach of including thermal effects is by adding an 
isotropic thermal pressure force to the cold-plasma momentum equation for each species of charged 
particles in the plasma, and (for closure of the equations) relating the isotropic thermal pressure to the 
plasma density through an ad-hoc equation of state.1  Satisfactory results are sometimes obtained from 
this simple model by appropriately choosing (a posteriori) the free parameter in the equation of state.  
However, fundamentally, this approach suffers from the constraint that perturbations in pressure are 
isotropic, which is particularly restrictive, and generally unjustified, for dynamics in a magnetic field.  
Instead, in addition to the collisionless continuity and momentum equations, we use the collisionless 
dynamic equation for the anisotropic pressure, and close this set of hydrodynamic equations by assuming 
that, in the space-time scales of interest, heat flow can be neglected.  This set of collisionless 
hydrodynamic equations, when solved to first-order in 2)( Tk ρ⊥ , is shown to lead to the identical linear 
plasma susceptibility tensor as derived from the Vlasov equation when the Vlasov susceptibility tensor is 
expanded to first-order in 2)( Tk ρ⊥  and )/1( 2

nζ  = 2
|| )]/([ cT nk ωωυ − , retaining only terms with 

1,0 ±=n , and 2± , and ignoring (exponentially small) Landau and Doppler-shifted cyclotron dissipation 
terms.1  
 

                                                           
1 W. P. Allis, S. J. Buchsbaum, and A. Bers, Waves in Anisotropic Plasmas (Cambridge, Massachusetts:  
M.I.T. Press), 1963; also (Tokyo, Japan:  University of Tokyo Press, International Edition), 1964.  (An 
errata for this book is available from A. Bers, upon request.) 
2 T. H. Stix, Waves in Plasmas, (New York:  American Institute of Physics), 1992. 
3 W. B. Thompson, “The Dynamics of High Temperature Plasmas,” Reports on Progress in Physics 24(1): 
363–424 (1961). 
4 S. I. Braginskii, “Transport Processes in a Plasma,” in Reviews of Plasma Physics, Vol. 1, ed. M. A. 
Leontovich (New York:  Consultants Bureau), 1965, pp. 205–311. 
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Starting with the non-relativistic, collisionless Boltzmann equation, also known as the non-relativistic 
Vlasov equation, for the one-particle distribution function ),,( trwf ρρ

 of any charged particle species in the 

plasma, and taking the first three moments [ ow , wm ρ
, and uum ρρ

, where υρρρ −= wu  and ),( tr
ρρρρ υυ ≡  is 

the average velocity over f ] of the Vlasov equation, one obtains5 
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where )(t  stands for the transpose of the preceding term inside the brackets.  In these hydrodynamic 
equations, n  is the average particle density, 

),(3 trnwfd ρ=∫ ,         (4) 
υρ  is the average particle velocity, 

),(
1 3 trwfdw
n

w ρρρρ υ≡∫= ,         (5) 

P  is the thermal pressure tensor, 

Pwfduumuunm ≡∫= 3ρρρρ
,         (6) 

and Q  is the heat flow tensor, 

wfduuumuuunmQ 3ρρρρρρ
∫== .          (7) 

 
 

As stated above, for our purposes, we close this set of hydrodynamic equations by setting 0=⋅∇ Q . 
 
Next, we consider a drift-free )0( 00 E

ρρ
==υ , spatially homogeneous, and time-independent equilibrium, 

in an externally applied magnetic field 00 BbB
∧

=
ρ

, for which one can readily show from (Error! Reference 
source not found.–(3) that the equilibrium pressure must be of the form 

∧∧

⊥⊥ −+= bbPPIPP )( 0||000          (8) 
 
with ||0P  and ⊥0P  the equilibrium pressures, respectively, parallel and perpendicular to 0B

ρ
.  For a thermal 

equilibrium, which we assume henceforth, ⊥= 0||0 PP  and 

ITnP κ00 =           (9) 

where I  is the unit-diagonal, second-rank tensor. 
 

                                                           
5 J.-L. Delcroix and A. Bers, Physique des Plasmas, Vol. 2 (Paris, France:  InterÉditions/CNRS Éditions), 
1994, Chapter 9 and references therein.  (An errata for both volumes is available from A. Bers, upon 
request.) 
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Linearizing the closed set of hydrodynamic equations [(Error! Reference source not found.–(3) with 

0=⋅∇ Q ] about the general equilibrium (8), we obtain 
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where the subscript 1 denotes the small-amplitude fields.  Using Faraday’s equation to replace 1B
ρ

 by 1E
ρ

, 

and using Fourier-Laplace transforms we can solve for 1P  from the transform of (12) and substitute it into 

the transform of (11) to find the first-order current density 111 υρ
ρ

qnJ =  (for the particular particle species) 

as a function of 1E
ρ

, and thus 

1011 )( EiEJ
ρρρ

⋅−≡ χεω           (13) 
 

which defines the linear susceptibility tensor ),( ωχχ k
ρ

≡ .  When summed over species, (13) gives the 
total linear current density, which enters into the transformed Maxwell equations for the self-consistent 
fields.  In the absence of external excitations, the latter equations then lead to the dispersion relation for 
the natural wave-modes of the plasma.  We shall not give here this long and algebraically tedious 
calculation, but only summarize the result for the linear susceptibility of a thermal equilibrium (9) plasma, 
evaluated to first order in small parameters 

2
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as is required for the validity of a collisionless hydrodynamic description.  One thus finds 
 

TC χδχχ 2+≈      (15) 

where 22 )/( cTυδ = , and, for simplicity, writing out χ  for electrons only: Cχ  is the cold plasma linear 
susceptibility 
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and the elements of Tχ  are: 
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The results in (15)–(25) are found to be identical to those found from a low-temperature (or strong 
magnetic field) expansion of the linear susceptibility of a Maxwellian plasma derived from the Vlasov 
equation,1 i.e., expanded to lowest order in the small parameters 2)( Tk ρ⊥  and )/1( 2

nζ , and retaining 

only terms 1,0 ±=n , and 2± .6  [See equations under (6.16) on page 90 of reference 1, and note a 

minor misprint/omission:  the xyK  term should have a +1  inserted inside, at the beginning of the large 

parenthesis.]  Note, of course, that the hydrodynamic results for non-zero 1)/1( 2 <<nζ  will not show the 

exponentially small Landau and Doppler-shifted cyclotron dissipation terms that exist in Tχ  derived from 
the Vlasov expansion. 
 
Finally, the linear natural modes in this collisionless hydrodynamic description are obtained by using the 
derived linear susceptibility (15) in the dispersion relation, 
 

0)],(det[),( == ωω kDkD
ρρ

     (26) 
 

where 

),(),( 2 ωω kKInnnkD
ρρρρ

+−=      (27) 
 
 

with )/( ωkcn
ρρ=  and χ+= IK .  A particular application of these results is given in the next section.  

 

                                                           
6 A. G. Sitenko and K. N. Stepanov, “On the Oscillations of an Electron Plasma in a Magnetic Field,” 
Soviet Physics–JETP 4(4): 512–520 (1957). 
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2.  Transformation of the Electromagnetic SX Mode to an Electrostatic Electron Bernstein Wave 
(EBW)  
 
Sponsors 
Department of Energy (DoE) /National Spherical Tokamak Experiment (NSTX) Contract DE-FG02-99ER-
54521 
 
Project Staff 
Professor A. Bers and J. Decker 
 
We have applied the analysis presented in Section 1 to obtain further understanding of mode conversion 
excitation of EBWs for heating and current drive in ST-type plasmas, e.g., the National Spherical 
Tokamak Experiment (NSTX) at the Princeton Plasma Physics Laboratory in New Jersey and the Mega-
Amp Spherical Tokamak (MAST) at the Culham Science Centre in the U.K.  As we have shown in the 
past,7,8,9 in either mode-conversion scenario of X-B or O-X-B, the dispersion characteristics of the natural 
modes, in the vicinity of the upper-hybrid frequency ])([ 2/122

cepUH ωωω += , undergo a transformation 

from an electromagnetic cold-plasma SX mode (at small ⊥k ) to an electrostatic, kinetic EBW (at large 

⊥k ).  To properly describe this transformation, when UHω  is in the vicinity of ceω  or ceω2 , it requires that 

thermal effects be properly accounted for to order 2)( Tk ρ⊥ .  In the absence of thermal effects (i.e., in a 

cold plasma) the SX-mode dispersion near UHω  becomes singular )( ∞→⊥k  – a nonphysical result of 
the cold plasma model.  Accounting for thermal effects by a hydrodynamic description in which the 
pressure perturbations are isotropic leads to (incorrect) results that show the transformation to a kinetic 
mode occurs at 1)( >>⊥ Tk ρ , which in itself violates the hydrodynamic model assumptions.  Allowing for 
the perturbations in pressure to be anisotropic, as in Section 1, shows that the transformation occurs for 

1)( 2 <⊥ Tk ρ , consistent with the validity of hydrodynamics presented in Section 1.  Here, for simplicity, 

we illustrate this for propagation perpendicular to 0B
ρ

, i.e., we take 0|| =k . 
 
From the analytical results of Section 1, the hydrodynamic description allowing for arbitrary anisotropic 
thermal pressure perturbations leads to the dispersion relation correct to order 2)( Tk ρ⊥  which is of the 
form: 

0)()()( 2224262 =++++++ ⊥⊥⊥⊥⊥⊥ ThThThxx CCnBBnAAnb δδδδ    (28) 

For 0)/( 22 == cTυδ , one readily recovers from (28) the well-known cold-plasma dispersion relation. 1,2  

In general, the thermal correction coefficients multiplied by 2δ  in this equation for 22 )/( ω⊥⊥ = ckn  

depend upon 2
||

2
|| )/( ωckn = .  For the simple case of |||| 0 nk == , 0=ThC  (showing that the cutoffs, 

i.e., 0=⊥n , are the same as in a cold plasma) and the other thermal correction coefficients simplify 

considerably.  Furthermore, in the vicinity of UHωω ≈  where 2
⊥n  becomes large (infinite in the case of a 

cold plasma at UHωω = ), the dispersion relation can be even further simplified by ignoring ⊥C , ThB , and 

                                                           
7 A. Bers, A. K. Ram, and S. D. Schultz, “Coupling to Electron Bernstein Waves in Tokamaks,” Proc. 2nd 
Europhysics Topical Conference on RF Heating and Current Drive of Fusion Devices, Brussels, Belgium, 
January 20–23, 1998, Contributed Papers, European Physical Society, Vol. 22A (eds. J. Jacquinot, G. 
Van Oost, and R. R. Weynants), Petit-Lancy, Switzerland (1998), pp. 237–240. 
8 A. K. Ram and S. D. Schultz, “Excitation, Propagation, and Damping of Electron Bernstein Waves in 
Tokamaks,” Phys. Plasmas 7(10): 4084–4094 (2000). 
9 A. K. Ram, A. Bers, and C. N. Lashmore-Davies, “Emission of Electron Bernstein Waves in Plasmas,” 
Phys. Plasmas 9(2): 409–18 (2002). 
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ThA , and obtaining the reduced dispersion relation 

0242 ≈−+ ⊥⊥ CRCRTR BnAnAδ      (29) 
where 
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The subscript R  indicates that the coefficients TRRxx Ab ≡)( , CRR AA ≡⊥ )( , and CRR BB −≡⊥ )( , have 

been evaluated in the vicinity of 22
UHωω ≈ .  It is readily evident from the sign of TRA  in (30) that the 

solution of this quadratic equation in 2
⊥n  is different for when ceUH ωω 2< , and for ceUH ωω 2

~
> .  The 

behavior of the dispersion relation in the vicinity of UHω  for these two cases is illustrated in Figure 1(a) 
and (b). 

 
Figure 1: Sketch of the dispersion relation )/( ceωω  vs )( Tek ρ⊥  near UHωω = , for (a) ceUH ωω 2<  and (b) 

ceUH ωω 2> .  Only propagating solutions (real ω  and real ⊥k ) are shown.  Dashed curves show the uncoupled SX 

and thermal T  modes; solid T  curves are the coupled mode solutions; dot-dashed curves are the electrostatic 
electron Bernstein waves (ES-EBW); dotted curves show the (presumed) connection of the solid T  curves to the ES-
EBW at large Tek ρ⊥ . 



Chapter 18.   Plasma Electrodynamics and Applications 

18-8  RLE Progress Report 146 

Note from Figure 1(a) that for ceUH ωω 2< , as )( Tek ρ⊥  increases from small values, the forward 

( 0>gpυυ , where pυ  is the phase velocity and gυ  is the group velocity) electromagnetic SX mode 

(shown in dashed lines), before reaching UHω , transforms to a backward ( 0<gpυυ ) “thermal mode” 

(shown in solid line), and thus never reaches UHωω = .  As can be easily shown from (29), this 

transformation occurs for small (but non-zero) )( Tek ρ⊥  proportional to 12/1 <<eδ , and thus the thermal 

mode description is valid within the used hydrodynamic model of Section 1.  As )( Tek ρ⊥  increases 
further, the hydrodynamic thermal mode ceases to be valid, and the mode changes (shown in dotted line) 
to the kinetic, electrostatic EBW mode for ceUH ωω 2<  (shown in dot-dashed line).  Note also that the 

kinetic, electrostatic EBW which for 0=⊥k  goes to UHωω =  is invalid for )( Tek ρ⊥  below the thermal 
mode, since then the mode becomes electromagnetic (the SX mode) and the electrostatic approximation 
for the EBW no longer holds. 
 
On the other hand, note from Figure 1(b) that for ceUH ωω 2> , as )( Tek ρ⊥  increases from small values, 
the forward, electromagnetic SX mode (shown in dashed lines) becomes a forward “thermal mode” 
(shown in solid line) that crosses UHωω = ,10 and as )( Tek ρ⊥  increases further the thermal mode 

changes (shown in dotted line) to become the kinetic, electrostatic EBW mode for cece ωωω 32 << .  

Here as well, the kinetic electrostatic EBW, which for 0→⊥k  approaches UHωω → , is invalid for 

)( Tek ρ⊥  below the thermal mode. 
 
The different behavior of the dispersion relation near UHωω = , for ceUH ωω 2<  and ceUH ωω 2>  has 
been pointed out before from specific numerical solutions of the full electromagnetic, kinetic dispersion 
relation based upon the linearized Vlasov-Maxwell equations,11 but not explained.  An analysis similar to 
ours can be found in12.  The advantage of showing that the dispersion transition can be based upon a 
proper hydrodynamic description is that such a description is more readily amenable to a detailed mode-
conversion analysis for an inhomogeneous plasma7,8,9 than a kinetic description would be. 
 
Finally, we remark that our hydrodynamic analysis can be readily extended to include non-zero ||k , as 
long as these are sufficiently small so that Landau and Doppler-shifted cyclotron damping are negligible 
(see Section 1). 
 

                                                           
10 It should be noted that at UHωω = , 0)( =≡ CRRT AA  so that neglecting )( 2

ThAδ  in (28) is not 

justified.  However, for 12 <<δ , accounting for )( 2
ThAδ  in (29) leads to only a small shift in the 

dispersion at UHωω = . 
11 S. Puri, F. Leuterer, and M. Tutter, “Dispersion Curves for the Generalized Bernstein Modes,” J. 
Plasma Phys. 9(1): 89–100 (1973). 
12 A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma 
Electrodynamics, Vol. 1:  Linear Theory (Oxford, New York: Pergamon Press), 1975. 
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3. Ohkawa Current Drive by Electron Bernstein Waves in Spherical Tori 
 
Sponsors 
Department of Energy (DoE) Contract DE-FG-91ER-54109 and Department of Energy (DoE) /National 
Spherical Tokamak Experiment (NSTX) Contract DE-FG02-99ER-54521 
 
Project Staff 
J. Decker, Dr. A. K. Ram, Professor A. Bers, and Dr. Y. Peysson 
 
Spherical Tori (ST) are tight aspect ratio tokamaks ( 5.1~/0 aR  in NSTX, where 0R  is the major radius 

and a  is the minor radius) that are attractive because of their ability to achieve high- β  regimes 

( 2
00 /2 Bpµβ = , where p  is the volume averaged pressure and 0B  the plasma toroidal field on 

axis).  Since ST are very overdense ( pc ωω << , where cω  is the cyclotron frequency and pω  is the 
plasma frequency), current drive (CD) using electron cyclotron (EC) waves is difficult and inefficient.  
However, it has been shown that, in the EC range of frequencies, it is possible to externally excite 
electron Bernstein waves (EBW) by mode conversion (MC) at the edge of ST plasma.7  In addition, EBW 
can propagate in the plasma without density limits and are strongly damped at any harmonic of the EC 
resonance.8  Current drive by EBW has been recently demonstrated in toroidally confined fusion 
plasmas.13,14  As EBW received much consideration for CD in ST experiments such as NSTX, MAST and 
CDX-U, it is important to describe the process of EBWCD in order to design and optimize these 
experiments.  Using our kinetic code DKE,15,16,17 we are solving the kinetic equation with Fokker-Planck 
(FP) collisions and quasilinear (QL) diffusion due to EBW.  In addition, we account for the effects of 
magnetic trapping of electrons, which are important in ST.  We show that large current densities can be 
driven in high- β  regimes of ST, and that this current is primarily driven by the Ohkawa18,19,20  
mechanism, which shows the central role of magnetic trapping of electrons in the ST physics. 
 

                                                           
13 V. Shevchenko, Y. Baranov, M. O’Brien, and A. Saveliev, “Generation of Noninductive Current by 
Electron-Bernstein Waves on the COMPASS-D Tokamak,” Phys. Rev. Lett. 89(26): 265005/1–4 (2002). 
14 H. P. Laqua, H. Maassberg, N. B. Marushchenko, F. Volpe, A. Weller, and W. Kasparek, “Electron-
Bernstein-Wave Current Drive in an Overdense Plasma at the Wendelstein 7-AS Stellarator,” Phys. Rev. 
Lett. 90(7): 075003/1–4 (2003). 
15 J. Decker, Y. Peysson, A. Bers, and A. K. Ram, “Plasma Electrodynamics and Applications: Section 3 –  
New Code and Results on LHCD and ECCD Synergism With the Bootstrap Current,” Progress Report No. 
144, MIT Research Laboratory of Electronics, Cambridge, 2002, Chapter 16, pp. 23–27 
http://rleweb.mit.edu/Publications/pr144/default.htm. 
16 J. Decker, Y. Peysson, A. Bers, and A. K. Ram, “Plasma Electrodynamics and Applications: Section 2 –  
Self-Consistent Calculation of ECCD and OKCD With the Bootstrap Current,” Progress Report No. 145, 
MIT Research Laboratory of Electronics, Cambridge, 2003, pp. 16-7 – 16-11  
http://rleweb.mit.edu/pr2002/files/pdfs/16.pdf. 
17 J. Decker, Y. Peysson, A. Bers, and A. K. Ram, “Plasma Electrodynamics and Applications: Section 4 –  
Numerical Code for Solving the Drift-Kinetic Equation in Tokamaks with Non-Circular Flux-Surfaces,” 
Progress Report No. 146, MIT Research Laboratory of Electronics, Cambridge, 2004. 
18 T. Ohkawa, “Steady State Operation of Tokamaks by RF Heating,” General Atomics Company Report 
No. GA-A13847 (1976). 
19 J. Decker, A. Bers, A. K. Ram, and Y. Peysson, “Plasma Electrodynamics and Applications: Section 1 –  
Ohkawa Versus Fisch-Boozer Method for Driving Current With Electron Cyclotron Waves,” Progress 
Report No. 145, MIT Research Laboratory of Electronics, Cambridge, 2003, pp. 16-2 – 16-6  
http://rleweb.mit.edu/pr2002/files/pdfs/16.pdf. 
20 J. Decker, “ECCD for Advanced Tokamak Operations Fisch-Boozer versus Ohkawa Methods,” Proc. 
15th Topical Conference on Radio Frequency Power in Plasmas, Moran, Wyoming, May 19–21, 2003, 
A.I.P. Conf. Proc. 694 (ed. C. B. Forest), Melville, New York (2003), pp. 447–454. 
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A. Modeling of CD by EBW 
 
In this study, we do not investigate the problem of EBW excitation and propagation, which requires a 
modeling of the MC and also ray-tracing calculations.  Instead, we concentrate on the EC resonance 
(ECR) region.  Because of the strong, complete absorption of the EBW power at the Doppler-shifted 
ECR, the width of the radial power deposition profile is typically very narrow compared to the equilibrium 
scale lengths in the plasma.  As a consequence, it is reasonable to assume the parallel index of refraction 

||n  to remain constant across the deposition region, where, in addition, the propagation path is assumed 
to be locally straight.  Consequently, in our simulations, the EBW beam is modelized by a single, straight 
ray with a Gaussian parallel spectrum centered around a constant ||k , and is assumed to be well focused, 

meaning that the poloidal extent of the beam satisfies πθ 2<<∆ b .  The ray is then characterized by a 

parallel spectrum width )/(1|| brk θ∆≈∆ .  In addition, we assume a circular plasma. 
 
Given the plasma equilibrium and the ||k  spectrum of the wave, we calculate ⊥k  and the wave 
polarization and power flow by solving the wave equation, using our fully relativistic dispersion solver 
R2D2.21   
 
We use these wave properties to evaluate the EBW QL diffusion coefficient and calculate the steady-
state FP Equation with QL diffusion.  The electron guiding-center drifts velocities across flux-surfaces are 
generally small compared to the streaming velocities along the field lines, and can be neglected in first 
approximation.  In addition, for the equilibrium under consideration, we are in the low-collisionality 
(banana) regime in which the bounce time of trapped particles is much shorted than the collisional 
detrapping time.  As a consequence, the distribution function is uniform along the field lines, and can be 
obtained by solving the 2D momentum space ),( || ⊥pp  bounce-averaged FP equation 
 

0)()( =+ fQfC      (33) 
 
where )( fC  is the collisions operator and )( fQ  is the EBW QL diffusion operator, which can be 
expressed as 

fDfQ p

RF

p ∇⋅⋅∇=)(      (34) 
with the following diffusion tensor elements 
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21 Y. Peysson, J. Decker, and R. W. Harvey, “Advanced 3-D Electron Fokker-Planck Transport 
Calculations,” Proc. 15th Topical Conference on Radio Frequency Power in Plasmas, Moran, Wyoming, 
May 19–21, 2003, A.I.P. Conf. Proc. 694 (ed. C. B. Forest), Melville, New York (2003), pp. 495–498. 
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The QL diffusion tensors sums over all harmonics n , γω /c=Ω  is the relativistic gyro-frequency, and 

bω  is the EBW frequency. The QL diffusion coefficient ),( ||, ppDRF
nb ⊥  is given by the following expression 
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   (39) 

In (39), RF
nbD 0,,  is a constant with the dimension of a diffusion coefficient in momentum space, and can be 

normalized to the collisional diffusion coefficient as  
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It depends in particular on the incident wave power density )4/( 0

2
inc, rRPb π , and the power flow 

incidence factor || bb n⋅Φ .  The factor  
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depends on the circular and parallel components of the electric field polarization vector ε  and on Bessel 
functions nJ  with argument Ω= ⊥⊥ /υkzb .  
 
Finally, the resonance condition is found in the expression of res||N  
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B. Kinetic Calculations of Ohkawa EBWCD in NSTX 

 
In order to study EBWCD in a realistic ST scenario, we consider a typical NSTX 
plasma, with the equilibrium properties listed in Table 1.  In this high- β   
regime, the poloidal magnetic field off-axis becomes comparable to the toroidal 
magnetic field, which creates a dip in the total magnetic field profile, as seen on 
Figure 2. This well is even more pronounced when we plot the Doppler-shifted 
second harmonic of the cyclotron frequency, as shown on Figure 3.  We choose 
a frequency between the first and the second harmonic on the LFS, 

122/ =πω  GHz, which is shown as a red line on Figure 3.  The value 
5.1|| =N  is chosen here because it is the one for which we find the largest 

driven current.  It is interesting to note that the maximum CD is obtained for a 
value of ||N  such that the EBW frequency is tangent to the profile of Doppler-
shifted second harmonic cyclotron frequency.  This result can be explained by 
the fact that in the present optimized case, the magnetic field profile is locally 
flat, meaning that the optical depth in very large.  As a consequence, the power 
is deposited on energetic electrons far in the tail, which leads to larger CD 
efficiencies.  The non-monotonic magnetic field profile has therefore important 
and positive implications on EBWCD in STs. 

 
 

NSTX  

R0 (m) 0.9 

a (m) 0.6 

B0 (T) 0.35 

I0 (MA) 0.8 

Te0 (keV) 3.0 

ne0 (m-3) 3.0 x 1019 

Table 1: Equilibrium 
Properties in NSTX 
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Figure 2:  Toroidal (blue), poloidal (red) and total 
(black) magnetic field in NSTX. 

Figure 3:  2nd harmonic (blue) and Doppler-shifted 
(green) for 5.1|| =N .  EBW frequency in red.
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Figure 4:  Driven current density (red) and figure of merit (blue). 

 
 
The driven current density profile is shown on Figure 4.  It is centered around the peak value 

53.0peak =ρ .  We also show the figure of merit given by 
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2
Teeee

Tee

nmvP
enJ

υ
υ

η =      (43) 

  
where J  is the driven current density and P  is the density of power absorbed.  In this case, a total beam 
power of 1inc =P  MW is absorbed, and a total current of 87=I  kA is driven.  
 
In general, EBW are mostly electrostatic waves and therefore 1>>⊥N .  In the present case, we have 

12=⊥N  at peakρρ = .  As a consequence, finite Larmor radius (FLR) effects are significant, and the 

factor || ,nbΘ  has several peaks in ⊥p  space.  These peaks are apparent in the contour plot of the QL 

diffusion coefficient RF
nbD , , shown as green lines in momentum space for peakρρ =  on Figure 5(a).  
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Figure 5:  (a) Distribution function in EBWCD (red) and EBW QL diffusion coefficient (green).  The unperturbed 
Maxwellian is in black.  (b) Parallel distribution function. 

 
 
On this figure are also plotted the unperturbed Maxwellian and the steady-state distribution function in 
EBWCD.  The region of maximum diffusion is situated very near the trapped/passing boundary, and a 
large EBW-induced trapping takes place, since the diffusion is mostly in the perpendicular direction.   As 
a consequence, a large Ohkawa current is driven.  This current is more easily visualized on the “parallel” 
distribution function, obtained by integration over ⊥p  and plotted on Figure 5(b).  

),(2)( ||0|||| ⊥⊥⊥
∞∫= ppfdpppF π     (44) 

 
The depletion of electron due to wave-induced trapping on the resonant side, and the accumulation of 
electrons due to detrapping on the opposite side, both contribute to driving a large Ohkawa current. 
 

C. Conclusion 
 
We have shown that a large Ohkawa EBW current could be driven off-axis )5.0( >ρ  in ST plasmas. The 
Ohkawa effect is dominant because of 
• the large fraction of trapped particles 
• the dominantly perpendicular QL diffusion  
• the large FLR effects which allow a positioning of the diffusion region right near the trapped/passing 

boundary in momentum space.  
 
The large figure of merit is due to the very strong damping of the EBW, so that most of the power is 
deposited on very energetic, weakly collisional electrons.  This effect can be enhanced, and the figure-of-
merit improved, by locally flat magnetic field profiles in high- β  ST.  The resulting CD efficiency turns out 
to be several times larger than typical off-axis ECCD efficiencies in tokamaks. 
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4. Numerical Code for Solving the Drift-Kinetic Equation in Tokamaks with Non-circular Flux-
Surfaces 
 
Sponsors 
Department of Energy (DoE) Contract DE-FG-91ER-54109 and Department of Energy (DoE) /National 
Spherical Tokamak Experiment (NSTX) Contract DE-FG02-99ER-54521 
 
Project Staff 
J. Decker, Dr. Y. Peysson, Professor A. Bers, and Dr. A. K. Ram 
 
The calculation of current drive (CD) by radio-frequency (RF) waves in tokamaks requires one to solve 
the bounce-averaged drift-kinetic equation (DKE) with Fokker-Planck (FP) collisions and quasilinear (QL) 
diffusion due to the waves,22 taking into account the effects of radial drifts and particle magnetic trapping. 
For the past three years, we have been involved, in collaboration with Yves Peysson from Cadarache, 
France, in the development of a fast, accurate DKE solver, which allowed us to calculate self-consistently 
RFCD and the bootstrap current (BC).15,16  These simulations are of great interest for the development of 
advanced tokamak (AT) experiments, which rely primarily on these two sources of toroidal current to 
sustain the poloidal magnetic field. 
 
However, until last year, our calculations were limited to the case of plasmas with circular, concentric flux-
surfaces, which are not very realistic in modern tokamak experiments, where strong plasma shaping and 
high- β  regimes lead to more complex flux-surface geometries.  In addition, our models were limited to 
large aspect ratio toroidal plasmas and low- β  scenarios for which the poloidal magnetic field was much 
smaller than the toroidal magnetic field. 
 
In order to perform more realistic RFCD+BC calculations, in particular for the high- β , strongly shaped, 
low aspect ratio, so-called spherical tokamaks (ST), we have improved our description to account for 
arbitrary nested flux-surface geometry.  More precisely, the bounce integrals, which account for the 
particle orbits along the field lines, are now performed numerically based on an arbitrary, given numerical 
equilibrium.  
 
In Section A below, we give our description of the tokamak geometry, and calculate corresponding 
integral quantities such as the safety factor, the poloidal bounce or transit time, etc.  We also define the 
bounce-averaging operation.  In Section B, we present the DKE and describe the reduction of the 
equation in the small drift, low collisionality approximation.  In Section C, we outline the principal features 
of our DKE solver.  Finally, in Section D, we give the expression for the flux-surface averaged moments of 
the distribution function.  
 

A. Particle Motion in Tokamaks 
 
We consider a toroidal axisymmetric plasma immersed in a constant magnetic field, which can be 
expressed as 

φψφψ ∇×∇+∇= )(IB      (45) 
 
where ψ  is the poloidal flux and φ  is the toroidal angle.  )(ψI  is a function related to the toroidal 
magnetic field.  Its dependence upon ψ  is a measure of the plasma diamagnetism.  The field lines 
associated with the magnetic field B  form closed, nested flux-surfaces, parametrized by the flux function  
ψ .  If we define s  as being the curvilinear length along the poloidal field lines, we obtain a local 

orthonormal coordinate system (ψ , s , φ ) with ||/ ψψψ ∇∇= , ss ∇= , and φφ ∇= R , where R  is 
the local toroidal major radius.  We consider only electron motion, and assume in first approximation that 

                                                           
22 C. F. F. Karney, “Fokker-Planck and Quasilinear Codes,” Comp. Phys. Rep. 4(3-4), 183–244 (1986). 
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their orbit remains primarily on the same flux-surface (thin banana width approximation).  Then, the 
poloidal transit or bounce time is given by 

||
),( max

min s

s

sb

ds
p υψτ ∫=      (46) 

where mins  and maxs  are such that the particle has performed one entire poloidal rotation between mins  

and maxs , if it is a passing particle, or they are the location of turning points, if it is a trapped particle. sυ   
is the component of the velocity along the poloidal field lines.  However, the (ψ , s , φ ) coordinate system 
is not ideal for numerical integration.  Instead, we use the system (ψ ,θ , φ ) where θ  is the poloidal 

angle, taken with respect to the outboard horizontal mid-plane.  We denote 0θ  the poloidal position, on 

the flux-surface, where the magnetic field magnitude is minimum: )],([min(0 θθ ψBψ)B = .  The 

subscript zero refers to quantities evaluated at 0θθ = . 
 
The guiding-center momentum space coordinate system is ),( ξp , where p  is the momentum 

magnitude and pp /||=ξ  is the momentum projection along the field line.  Using the conservation of 

energy and magnetic moment, p  is a constant along the field line, while ξ  varies according to 

)1)(,(1)(sign),,( 2
000 ξθψξξθψξ −Ψ−=     (47) 

where ),( θψΨ  is the ratio of the magnetic field to its minimum on the flux-surface 
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As a consequence, electrons, which are characterized by (ψ , p , 0ξ ), are trapped if  
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where )(max ψB  is the maximum magnetic field on the flux-surface.  For trapped electrons, the turning 

points minθ  and maxθ  are then given by the positions where 
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For passing electrons, we can take simply 0min =θ  and πθ 2max = .  The bounce or transit time is then 
given by 
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where we define the normalized bounce time such that 1=λ  for electrons with 1|| 0 =ξ : 
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In equations (51)–(53), pR  is the major radius on axis, RBp /|| ψ∇=  is the poloidal magnetic field and 

r  is the local minor radius.  The integral q~  coincides with the safety factor q  in the large aspect ratio, 
low- β  limit.  The safety factor can also be calculated by numerical integration over θ  
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In order to reduce the kinetic equation, we define an integral over the particle orbit, called bounce 
averaging, by 
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where the sum over )(sign 0ξσ =  applies to trapped electrons and accounts for both the forward and 
backward motion along banana orbits (within the thin banana width approximation).  The bounce-
averaging of kinetic operators, such as collisions, electric field, RF waves, etc, introduces other bounce 
integrals, which can be expressed in the form 
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where ξ  is defined in (47) and Ψ  is defined in (48).  Typically, numerical data from equilibrium codes 
give R , Z , RB , ZB , and φB  on the ),( θψ  grid.  The evaluation of bounce integrals such as λ , 

mlk ,,λ , q , etc, can then be implemented numerically. 
 

B. Reduction of the Drift Kinetic Equation 
 
The DKE in an axisymmetric toroidal plasma is given by 

)()()( ffff
t
f

gc EQC ++=∇⋅+
∂
∂

υ     (57) 

where ),,,,( tpff ξθψ=  is the distribution function, )( fC  is a FP collisions operator, )( fQ  is a RF 

QL diffusion operator, and )( fE  is a DC electric field operator.  The guiding-center velocity gcυ  is 
decomposed into the parallel motion along the field line, and a drift velocity, as 

Dgc b υυυ += ˆ
||       (58) 

The component of the drift velocity along the field lines can be neglected compared to the parallel velocity 

||υ .  The component across the flux-surfaces can be calculated either directly from the single particle 
drifts due to the magnetic field gradient and curvature, or from the conservation of toroidal canonical 
momentum.  It is expressed as 
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where Ω  is the relativistic gyrofrequency.  The DKE (57) becomes, in steady-state, 
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The characteristic time associated with the first term in this equation is clearly the bounce or transit time, 
while the time associated with the second term is the drift time. Typically, in high-temperature tokamaks, 
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the drift time dτ  is much longer than the bounce or transit time bτ , and also much longer than the 

collisional time eτ .  We have therefore the following ordering 

1<<=
d

b
d τ

τ
δ       (61) 

which is consistent with the small banana width approximation used in Section A.  The DKE (60) is 
expanded in the small dδ  ordering as ...10 ++= fff , which gives the set of equations (62)–(63) 

)()()( 000
0 fff
s
f

s EQC ++=
∂
∂

υ     (62) 

 

)()()(
||

)( 111
||||1 fff

f
BsR

I
s
f

s EQC ++=
∂
∂








∂
∂∇

Ω
+

∂
∂

ψ
υψ

ψ
υ

υ   (63) 

 
In tokamaks, the bounce time is usually much shorter than the collisional detrapping time Rr edt /ττ = .  

In this low-collisionality ( 1/* <<= dtbv ττ ) regime, banana orbits are well-defined and the particle motion 
description of Section A is valid.  In the zero-order DKE (62), the dominant term is therefore the motion 
along the field lines 

00 =
∂
∂

s
f

sυ       (64) 

and 0f  is constant along the field lines.  Bounce-averaging the equation (62), we then get an equation for 

),,( 000 ξψ pff = : 

0)}({)}({)}({ 000 =++ fff EQC     (65) 
In the low-collisionality regimes, the dominant terms in the first order DKE (63) are 
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which integrates as 
gff += ~

1       (67) 
where  
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υ
∂
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Ω
= 0|| )(~ f

If        (68) 

and g  is an s - (or θ -)independent function. The equation for g  is then obtained by bounce-averaging 
the equation (63): 

)}~({)}~({)}~({)}({)}({)}({ fffggg EQCEQC −−−=++      (69) 
 
To sum up, the total distribution function solution of the DKE expanded to first order in dδ  is 

gfff ++= ~
0      (70) 

where 0f  is the solution of the FP equation (65), in the presence of collisions, QL diffusion and DC 

electric field, but neglecting radial drifts; f~  is a source term due to radial drifts (68), and g  is the plasma 
response to these drifts in the presence of collisions, QL diffusion and DC electric field (69).  In the 
absence of QL diffusion and DC electric field, 0f  is a Maxwellian and 1f  is the “bootstrap distribution 

function”, meaning that the BC, generated by the radial drifts, is calculated by taking a moment of 1f . 
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C. DKE Solver 
 
The reduced DKE is a set of two 2D momentum-space, second order, linear integro-differential equations 
with boundary condition on momentum space fluxes.  These equations can be put in a the quasi-
conservative form 

I=⋅∇ pp S         (71) 
 

where the fluxes are decomposed into diffusive and convective parts 
 

fFfDS pppp +∇−=       (72) 
 

and I  is an integral term resulting from the collisions operator.  Because this integral term is a small 
contribution to the equation, it is treated explicitly while the differential term is solved implicitly.  In 
addition, the symmetrization of the distribution function in the trapped region is also treated implicitly,23 
which leads to extremely fast convergence of the DKE code.  
 
The equation is solved on non-uniform grids, which allows more precise calculations in the significant 
regions of momentum space, for example in the vicinity of the trapped/passing boundary.  
 
The code has been benchmarked against other models and codes for the calculation of the BC, the 
neoclassical conductivity and RFCD.  An example of BC calculation in Alcator C-Mod is shown in Figure 
6, where the results from our kinetic code are compared to fluid models.24,25  
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Figure 6:  Bootstrap current in Alcator C-Mod. The results from our DKE code are compared with various fluid 
models.24,25 

 
 
 
 
                                                           
23 J. Killeen, G. D. Kerbel, M. G. McCoy, and A. A. Mirin, Computational Methods for Kinetic Models of 
Magnetically Confined Plasmas (New York: Springer-Verlag), 1986. 
24 S.P. Hirshman and D.J. Sigmar, “Neoclassical Transport of Impurities in Tokamak Plasmas,” Nucl. Fus. 
21(9), 1079–1201 (1981). 
25 O. Sauter, C. Angioni, and Y. R. Lin-Liu, “Neoclassical Conductivity and Bootstrap Current Formulas for 
General Axisymmetric Equilibria and Arbitrary Collisionality Regime,” Phys. Plasmas 6(7), 2834–2839 
(1999). 
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D. Moments of the Distribution Function 
 
In order to study RFCD and the synergism between RFCD and the BC, we need to calculate moments of 
the distribution function, in particular the flux-surface averaged current density and density of power 
absorbed. 
 
The flux-surface averaged toroidal current density associated with the θ -independent functions 0f  and 
g  is given by 
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The flux-surface averaged toroidal current associated with f~  is 
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The density of power absorbed corresponding to any momentum space operator O , such as C, Q ,or 
E , is  
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where 

Pp B
B

R
r

r
d

q 02

0 |ˆˆ|
1

2
)(ˆ

⋅
≡ ∫ ψπ

θ
ψ

π
    (78) 

and O
pS  is the projection, in the direction of the momentum p , of the momentum-space flux pS  (72) 

associated with the operator O . 
 

 
 
 E. Conclusion 

 
We have developed a numerical code which solves the DKE in arbitrary tokamak geometry with no 
approximation on the aspect ratio and arbitrary plasma β .  This code will allow us to calculate RFCD 
and Ohmic CD self-consistently with the bootstrap current and study possible synergisms.  In particular, 
future work using this new code will extend our study of Electron Bernstein Wave (EBW) CD26 in ST to 
include the effect of realistic geometries and the synergism with the BC.     
 

                                                           
26 J. Decker, A. K. Ram, A. Bers, and Y. Peysson, “Plasma Electrodynamics and Applications: Section 3 –  
Ohkawa Current Drive by Electron Bernstein Waves in Spherical Tori,” Progress Report No. 146, MIT 
Research Laboratory of Electronics, Cambridge, 2004. 
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5. Development of the 1-Dimensional Collisionless Kinetic Code ELVIS 
 
Sponsors 
Department of Energy (DoE) Contract DE-FG02-91ER-54109 
 
Project Staff 
D. J. Strozzi, Professor A. Bers, Dr. A. K. Ram 
 
Unlike conventional fluids, which are dominated by particle collisions, plasmas frequently are sufficiently 
hot or low-density that collisions play a small role in the dynamics.  In collisionless regimes, kinetic 
descriptions of the plasma that follow the distribution of particles in both position and velocity space are 
sometimes necessary.  For instance, linear electrostatic plasma waves experience collisionless Landau 
damping, which fluid theory does not predict.  Laser-plasma interactions lead to parametric instabilities 
which couple electromagnetic waves to electrostatic waves.27  As these instabilities grow, the electrostatic 
fluctuations reach large amplitudes.  Kinetic effects may therefore be important in their saturation.  We 
have developed a code called ELVIS (Eulerian VLasov Integrator with Splines) that solves for the 1-
dimensional time evolution of a plasma with longitudinal and transverse electromagnetic fields. 
 
We give the governing equations for the Vlasov-Maxwell system in Section A.  Section B presents our 
numerical scheme for evolving the system in time.  We present benchmarks of the code on periodic, 
electrostatic (no transverse fields) electron plasma waves in Section C.  In particular, we explore Landau 
damping, trapping, and wave-breaking behavior. 
 

A. Governing Equations 
 
We consider a plasma that varies only in x  )0//( =∂∂=∂∂ zy .  The plasma interacts with a 

longitudinal electrostatic field xE  and transverse electromagnetic fields yE  and zB  (linearly polarized in 
the y  direction).  We treat the particles as a cold fluid in the y  direction, all with the same transverse 

velocity ),( txyν .  This transverse flow couples the longitudinal )(x  and transverse ),( zy  dynamics. 
 
The Vlasov equation describes the collisionless evolution of the distribution function ),,( tpxf xs  for each 
particle species s  in the x  direction: 

)(0 zysxsxs
x

s
xs

s
x

s BEeZF
p
fF

x
f

t
f νν +==

∂
∂+

∂
∂+

∂
∂

   (79) 

The velocity sxx mp /=ν  nonrelativistically and )/( ssxx mp γν =  relativistically, where 
2)/(1 cmp sxs +=γ .  xsF  is the electromagnetic force acting on the particles in the x -direction, e  is 

the positron charge, and sZ  is the species charge state.  Fluid quantities are found by taking moments of 

sf .  For example, the number density sn  is 

 ∫
∞

∞−

= ),,( tpxfdpn xsxs  (80) 

 
The longitudinal electric field xE  is related to the charge density ρ  by Gauss’ law: 

 ∑==
∂

∂ −
sss

x nZe
x

E ρρε 1
0  (81) 

                                                           
27 W. L. Kruer, The Physics of Laser Plasma Interactions (Redwood City, California: Addison-Wesley), 
1988. 
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The transverse fields yE  and zB  are found by forming the right- and left-moving combinations +E  and 

−E : 

 yzy JE
x

c
t

cBEE 1
0

−±± −=







∂
∂±

∂
∂±= ε  (82) 

∑=
s

ysssy nZeJ ν  is the transverse current.  The evolution equations for ±E  come from Ampere’s law. 

 
The transverse momentum equation is given by conservation of canonical y  momentum, taken to be 
zero initially: 

 ys
ys

s Eq
t

m =
∂

∂ν
 (83) 

 
B. Numerical Method 

 
In this section we describe how we advance the system by one timestep from nt  to 1+nt , where 

dtntn = .  We do this in a leapfrog manner.  We evolve f  by splitting the Vlasov equation into advection 
equations in space and momentum and solving each along characteristics.  This method was first used 
by Cheng and Knorr for the electrostatic Vlasov-Poisson system.28  We follow Ghizzo et al’s extension29 
of scheme to the electromagnetic, Vlasov-Maxwell system.  Unlike them, we use cubic splines for the 
interpolation involved in the spatial free-streaming of f  rather than Fourier transforms. 
 

(i). Time Evolution of f  
 
The Vlasov equation states that f  (we suppress species subscript s  when there is no confusion) is 

constant along its characteristics, or the particle orbits.  The orbits are the paths )](),([ tPtX x  in phase 
space described by 

 x
x

x F
dt

dPV
dt
dX == ,  (84) 

The time-splitting method entails alternately solving a free-streaming and acceleration equation: 

 0=
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x p
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 (85) 

Each equation is an advection equation, with characteristics along which f  is constant.  The 
characteristics of the free-streaming equation are 
 000 , xxx PPtVXX =+=  (86) 

Free-streaming therefore amounts to shifting f  in space: 

 ),,(),,( tpdtxfdttpxf xxx ν−=+  (87) 
Similarly, the acceleration step gives 
 ),,(),,( tdtFpxfdttpxf xxx −=+  (88) 

                                                           
28 C. Z. Cheng and G. Knorr, “The Integration of the Vlasov Equation in Configuration Space,” Jour. 
Comp. Phys. 22(3): 330–351 (1976). 
29 A. Ghizzo, P. Bertrand, M. M. Shoucri, T. W. Johnston, E. Fijalkow, and M. R. Feix, “A Vlasov Code for 
the Numerical Simulation of Stimulated Raman Scattering,” Jour. Comp. Phys. 90(2): 431–457 (1990). 
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We can picture this as turning the force into a series of kicks applied at the timesteps nt  and zero 

otherwise.  This requires )( ntρ  to compute xE , as well as )( ntE± .  Following Ghizzo, we use a leapfrog 
scheme to interleave the time evolution of the longitudinal and transverse fields.  They have shown this 
approach to be accurate to order dt .28 
 
We advance f  for a whole timestep by alternating a half free stream, a full acceleration, and a half free 

stream.   We advance f  from 2/1−nt  to 2/1+nt as follows: 
 

 

)(S stream-half),,2/(),,(

(A) accelerate),,(),,(

)(S stream-half),,2/(),,(

1/221

1/22/1

+

−+

−

−=

−=

−=

+

−

nxx/nx

nxnx

nxxnx

tpdtvxftpxf

tdtFpxftpxf

tpdtvxftpxf

 (89) 

 
By arranging the time evolution so the first and last steps are both half-streams, we can combine these 
into a single stream for a full timestep dt  (denoted S  in Figure 7).  We must first take a special initial 
time-step to setup the system appropriately for this.  
 

 
Figure 7: Schematic of ELVIS time evolution algorithm. 

 
 

(ii). Gauss’ Law 
 
We solve Gauss’ Law for xE  in Fourier space.  Given )(xρ  we compute its Fourier transform )(kρ .  

From this we find the Fourier transform of xE , ikkkE /)()( ρ= , and set 0)0( ==kE .  We then 

inverse Fourier transform to find )(xEx .  We still have to choose the DC component of xE , which 
corresponds to the boundary condition needed in Gauss’ law.  The code provides for two choices: 
 

1. Short-circuit boundary condition: This choice comes from demanding the potential φ  be periodic, 
where xEx ∂−∂= /φ   If we integrate this equation over the box, we find 
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 0)()0(
0

=−=∫ LdxE
L

x φφ  (90) 

 
We therefore offset xE  so that its average is zero. 

 
2. Finite boundary condition: We imagine for this case a plasma of finite extent, surrounded by an 

infinite vacuum region.  In the code, the initial density profile is localized in x , so that there are 
regions of zero density between the box edges an the plasma.  As long as the density remains 
sufficiently small near the edges, we may consider it as periodic ]0)()0([ == Lnn .  It is 

therefore acceptable to use the Fourier method, since xE  is periodic if n  is.  We do not want 

particles in the low-density edges to feel an appreciable xE .  This could happen is we use the 

short-circuit boundary condition.  Instead, we set 0)0( ==xEx .  Since the plasma is periodic, 

)( LxEx =  should be zero as well.  This will be the case if the system has no net charge, as can 
be seen by integrating Gauss’ law over the box. 

 
(iii). Advancing Transverse Fields ysν  and ±E  

 
We advance ysν  from 2/1+nt  to 2/3+nt  using a forward-Euler step with the force ys Eq  coming from ±E  at 

1+nt : 
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The advection equations for ±E are analogous to the Vlasov equation.  As with the force F  in the Vlasov 
equation, we view the source yJ  as a series of kicks acting at the half-timesteps 2/1+nt .  The staggering 

of the kicks at the full timesteps for f  and half-timesteps for ±E  is part of the leapfrog technique. 
 
Advancing ±E  from nt  to 1+nt  is performed as follows: 
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Figure 7 sketches how we advance the system for one timestep, from 0=n  to 1=n : 
 

C. Results for Electrostatic Problems 
 
Before proceeding to electromagnetic problems, we use ELVIS in its electrostatic (no transverse fields), 
periodic mode with fixed ions and the short-circuit boundary condition for Gauss’ law.  This is useful for 
studying the evolution of electron plasma waves (EPWs) both linearly and nonlinearly.  The linear 
dispersion relation for EPWs in a Maxwellian ef  is given by the complex ω  roots for real k  of 
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2/12

00 )/( enTeDe ελ =  is the electron Debye length, 2/1)/( eeTe mT=ν  is the electron thermal speed, 

)(erfc)(
2

ζπζ ζ ieiZ −=  is the plasma dispersion function, and the Maxwellian equilibrium ef  is 
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For  1<<Dekλ ,  this gives 
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2/1
0

2
0 )/( epe men εω =  is the electron plasma frequency.  The imaginary part of ω  represents 

collisionless Landau damping of the wave. 
 
A single traveling EPW involves perturbations to the density, bulk flow, and electric field given by 

 txk
k
enE

k
nn ωψψ

ε
αψωανψα −==== cossinsin

0

0
1101  (96) 

We impose an EPW in the initial conditions by perturbing just the density and not the velocity.  This 
corresponds to a standing EPW, or two traveling EPWs moving in opposite directions. 
 
Figure 8 shows xE  vs. time at a fixed x  in an electrostatic run with an initial standing EPW density 

perturbation corresponding to 3.0=Dekλ  and amplitude 310−=α .  The blue points are simulation 
results and the red curve is a best-fit damped harmonic given by 

)](exp[)(sin[)( 0010fit ttttEEtE −−−+= νω .  The fitted values are 160.1=ω  and 01257.0=ν  and 

match very nicely with the numerical roots of the kinetic dispersion relation 160.1=ω  and 
01262.0=ν .  The fit is for 10=tpω  to 100 .  We exclude the start of the run since phase-mixing 

reduces the wave amplitude more than Landau damping for the first oscillation.  The fitted offset and 
amplitude are 9

0 104.1 −⋅−=E  and 5
1 104.7 −⋅=E  
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Figure 8: xE  vs. t  at a fixed x .  3.0=Dekλ  and 310−=α .   The red fit has peωω 160.1=  and 

peων 01257.0= . 
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A nonlinear treatment of the time evolution of EPWs shows that the wave amplitude does not decay 
indefinitely, but instead oscillates and eventually reaches a constant value.30  This occurs because 
particles trapped in the potential well of the wave bounce back and forth, first receiving energy from and 
then giving energy back to the wave.  The time scale for bouncing is related to the bounce frequency 

2/1
0 )/( eb mkeE=ω  of particles trapped in the wave.  The instantaneous damping rate matches the 

Landau value for early times 1<<tbω , followed by oscillation, and asymptotically approaches zero for 

1>>tbω . 
 
Figure 9 compares the time evolution of the electric field amplitude given by Landau damping, O’Neil’s 
calculation, and ELVIS simulations.  Initially, the phase-mixing of initial conditions gives a more rapid loss 
of wave energy than the Landau rate.  This is most apparent in the case 1.0=α .  After this, Landau 
damping occurs until the trapped particles bounce and the wave amplitude oscillates. The wave loses 
more energy than O’Neil predicts, since his derivation assumes a fixed wave amplitude.  As the wave 
damps, some initially trapped particles become untrapped and do not give back all the energy they gain 
to the wave.  In addition, 2/1~ Ebω , so as the wave damps the trapped particles take longer to bounce.  
This explains why the amplitude bounces more slowly in the self-consistent simulations than in O’Neil’s 
theory. 
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Figure 9: Nonlinear amplitude oscillation of )(tEx  at fixed x  in standing EPW.  3.0=Dekλ . 

 
Not only the damping rate but the frequency of the EPW oscillates in time due to the finite wave 
amplitude.31  Morales calculates the frequency shift Ltt ωωωδ −= )()(  to be 
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)(tω  is the actual time-dependent real frequency, Lω  is the real frequency from the linear dispersion 

relation [given by Eq. (93) or, approximately, by (95)].  ε  is the dielectric function )(tg  is a function that 
oscillates on the bounce time scale, 0)0( =g , and 1)( =∞g .  
  
For a Maxwellian 0f  as in Eq. (94) in the fluid limit Tep νν >> , this becomes 
 

                                                           
30 T. O’Neil, “Collisionless Damping of Nonlinear Plasma Oscillations,” Phys. Fluids 8(12): 2255–2262 
(1965). 
31 G. J. Morales and T. M. O'Neil, “Nonlinear Frequency Shift of an Electron Plasma Wave,”  Phys. Rev. 
Lett. 28(7): 417–420 (1972). 



Chapter 18.   Plasma Electrodynamics and Applications 

18-26  RLE Progress Report 146 

 

2
)2/(1

2
15

2
2/1

0

1
1

8
1











≡

+
−=Ω −−

p

Tea

DeL v
vae

a
aa

kλ
α

πω
 (98) 

 
We can find )(tω  for a simulation by splitting )(tEx  at a fixed x  into temporal bins of several linear 

wave periods, and fitting xE  with ])(sin[)1( 0
2

10fit ttctbtEEE −+++= ω .  This gives us the best-fit 

frequency in each bin, and accounts for the slow change in amplitude via b  and c . 
 
Figure 10 shows Lωωδ /  from this fitting procedure.  We see that Morales overstates the frequency shift 

ωδ  compared to the simulations.  For each of the three cases shown, the numerical ωδ  is about 2/3 

Morales’ value.  The observed ωδ  scales as 2/1α  and is negative, as predicted by Morales. 
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Figure 10: Fitted frequency shift )(tωδ  for an initial standing EPW of amplitude α  and  3.0=Dekλ . 

 
There is a maximum amplitude for coherent, periodic EPWs, called the wavebreaking limit.  This has 
been derived analytically for the cold-relativistic,32 cold-nonrelativistic,33 warm-nonrelativistic,34 and warm-
relativistic35,36 fluids models.  A simple way to understand wavebreaking is the over-taking of slow 
particles by fast particles.  A fluid model treats averaged, “bulk” quantities of the plasma particles as 
functions of time and space: the density, flow, etc.  If the flow in a periodic wave is large enough, fast fluid 
may “out-run” the fluid in front of it before the wave oscillates.  This would lead to two flow values at one 
x , which is impossible in a fluid model.  Kinetic models, which follow the number of particles at each 
location with each velocity, do not break down in this way.  The physical importance of wavebreaking in a 
kinetic description is that waves above this threshold rapidly lose energy and heat the particles. 
 
Figure 11(a) displays the wavebreaking limit for a warm, nonrelativistic plasma derived by Coffey.    
Increasing the temperature increases pTe νν /  and lowers the wavebreaking limit below the cold value 

found by Dawson (to which maxE  is normalized in the figure).  Finite temperature gives rise to a pressure, 
which opposes the formation of high density regions in the wave. 
 

                                                           
32 A. I. Akhiezer and R. V. Polovin, “Theory of Wave Motion of an Electron Plasma,” Soviet Physics–JETP 
3(5): 696–705 (1956). 
33 J. M. Dawson, “Nonlinear Electron Oscillations in a Cold Plasma,” Phys. Rev. 113(2): 383–387 (1959). 
34 T. P. Coffey, “Breaking of Large Amplitude Plasma Oscillations,” Phys. Fluids 14(7): 1402–1406 (1971). 
35 T. Katsouleas and W. B. Mori, “Wave-Breaking Amplitudes of Relativistic Oscillations in a Thermal 
Plasma,” Phys. Rev. Lett. 61(1): 90–93 (1988). 
36 W. B. Mori and T. Katsouleas, “Wavebreaking of Longitudinal Plasma Oscillations,” Physica Scripta 
T30: 127–133 (1990). 

α = 0 .001 
α =  0.01 α = 0.1 



Chapter 18.   Plasma Electrodynamics and Applications  
 

18-27 

One way to see the wavebreaking dynamics is to consider the long-time evolution of a wave present in 
the initial conditions.  Linear kinetic theory predicts the wave is Landau damped.  However, we have seen 
that for moderate amplitudes the wave energy oscillates with some overall decrease in energy, as 
calculated by O’Neil and verified in ELVIS simulations.  As the wave amplitude increases beyond the 
range of validity for O’Neil, the phase-space vortices start to trap bulk distribution particles far from the 
wave’s phase velocity.  This rapidly heats the particles, and lowers the wave amplitude. 
 
Let us see how this plays out for initial traveling EPWs as we increase the amplitude.  Figure 11(b) shows 
the ratio of final to initial electric-field energy 2

0 )2/( xEW ε=  for waves of different initial amplitude.  For 

these waves 2.0=Dekλ , giving very weak Landau damping )105.5/( 5
1

−⋅−=peωω .  O’Neil’s theory 
predicts that for all the amplitudes shown, trapped particles bounce so quickly that the wave loses 
essentially no energy.  However, numerical simulations show an appreciable fraction of energy is lost, 
and this fraction increases with initial amplitude.  This reveals a nonlinear mechanism that transfers 
energy from the wave to the particles. 
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Figure 11: (a) Coffey’s wavebreaking electric field amplitude.  maxE  is scaled by Dawson’s cold wavebreaking value.  

(b) Ratio of final to initial electric-field energy in ELVIS simulations of a traveling EPW with  2.0=Dekλ  and different 
amplitudes. 
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