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Introduction 
 
Photonic crystals and nanophotonics employ nanoscale optical structures, on the scale of the 
wavelength of light, in order to produce optical phenomena far different from those in more 
homogeneous media—both for classical electromagnetism and for electromagnetic fields arising 
from quantum and thermal fluctuations. Our work has centered on four general categories of 
problems in nanophotonics: what new effects and devices can one achieve in such structures, 
how does one design devices given so many degrees of freedom and with what computational 
techniques, and what higher-level understanding can one develop for such complex systems.  
 
1. Electromagnetic effects in blast-induced brain injuries 
 
Sponsors: 
Joint Improvised Explosive Device Defeat Organization (JIEDDO) 
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Injury Center). 
 
We are investigating how electromagnetic effects may play a role in brain injuries that are 
observed in soldiers exposed to improvised explosive devices (IEDs) and similar blasts, even 
when there is no obvious physical injury to the head, as part of a larger project studying 
mechanisms and mitigation of blast-induced brain injuries. In considering different possible 
mechanisms for brain injury, we found an unexplored mechanism—many kinds of bone are 
piezoelectric materials, polarizing under stress, and when an IED-scale blast wave impacts the 
cranial bone it may produce short-range electric fields of magnitudes and frequencies known to 
have neurological effects, many times larger than existing safety standards (Lee, 2011). Our 
initial work used theoretical modeling combined with experimental piezoelectric properties of 
various animal bones; efforts to form more detailed models and measure human cranial-bone 
properties are ongoing. 

 
Figure 1. An explosive shockwave incident upon a head is simulated by full-head-model 
finite-element simulations, generating a cranial stress map (middle), as a function of time.  
When these stresses are combined with experimental piezoelectric constants for bone, we 
obtain a predicted charge density in the skull, from which an in-brain electric field can be 
computed. 
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2. Design, Modeling, and Control of Casimir Forces in Nanostructured Media 
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Prof. S. G. Johnson, Prof. J. D. Joannopoulos, Prof. J. White, A. W. Rodriguez, A. P. McCauley, 
H. Reid 
 
Casimir forces are an interaction between uncharged objects that arise at micrometer-scale 
separations due to quantum vacuum-photon fluctuations. Besides their importance in basic 
physics research as a direct manifestation of the quantum vacuum as a measurable force, 
Casimir forces have important influences on cold atom trapping, thin fluid films, and potentially for 
future nanomechanical devices. Although they were first predicted in 1948 for parallel metallic 
plates, Casimir forces have proven surprisingly difficult to calculate—less than a decade ago, 
almost nothing was known for non-planar geometries, and no general computational methods 
were available. In our work, we have developed ways to directly adapt computational tools from 
classical electromagnetism to predict Casimir interactions. Extending these developments, in 
2010 we showed how to apply powerful boundary-element methods to the Casimir problem, as 
well as the workhorse technique of finite-difference time-domain (FDTD) simulations. In the latter 
case, we developed a mathematical equivalence between Casimir calculations, which are 
typically performed at complex or imaginary frequencies for various reasons, and classical 
electromagnetism at real frequencies with artificial dissipation, forming a sort of “analog 
computer” in which any classical simulation (or experimental) technique can be applied off the 
shelf to the Casimir problem. We have also applied these and other techniques to predict forces 
and phenomena in a variety of new geometries, such as showing that material dispersion can be 
exploited to obtain stable Casimir “levitation” and non-touching microsphere clusters in fluid 
suspensions (fig. 2). 
 
 

 
Figure 2. Appropriate materials choices allow Casimir forces to be designed so as to yield 
stable non-touching and “levitating” configurations, here showing the levitation height of 
microspheres above a gold substrate as a function of sphere radius and material. 
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3. Theoretical Limitations of Metamaterial Devices 
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One development in photonics that has captured the public imagination has been the idea that 
appropriately designed “metamaterials” can theoretically achieve electromagnetic “cloaking”—
surrouding an object and making it invisible to electromagnetic radiation—as first proposed by 
Pendry in 2006. Although experiments have demonstrated these theoretical proposals on small 
scales, typically for wavelength-scale objects, we are interested in understanding the practical 
limitations of this and similar problems on a deeper theoretical level. Recently (Hashemi, 2010), 
we used a simple 1d model system to show how the difficulty of cloaking scales—in particular, we 
showed that the properties of the cloak materials must become more and more perfect as the 
size of the cloaked object increases, eventually becoming impractical. The basis for this scaling is 
that, at the simplest level, a cloak hiding an object above a ground plane must simulate a time 
delay—it must replicate the delay that the electromagnetic wave would have incurred had it 
bounced off an unobstructed ground—and thus falls prey to well-known limitations on delay–
bandwidth and delay–loss products. 
 
 

 
Figure 4. A simple model “cloaking” problem which illustrates the fundamental constraints 
on cloaking difficulty: in one dimension, a thickness-d cloak masking an object above a 
reflective ground plane must delay any incident wave for a time 2(d+h)/c, the delay the wave 
would have incurred for bare ground. This time delay increases proportional to h, and means 
that the cloaking materials must be increasingly lossless and that the cloak must be 
increasingly thick. 
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