




















Formally, this generalized form of P is expressed as:

Pμ = (kμ , ñμ) =
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where ρi = miμ/ti (i = 1,0) and η = ρ1/ρ0. The parametrized phase orders are de-
fined here as m1μ = m1 − μ and m0μ = m0 + μ with mi ∈ Z

+ and μ ∈ R
+, represent-

ing (via μ) arbitrary phase accumulation within the high- and low-index layers, respec-
tively. The addition of the accumulated phases in each layer thus produces a constant value
φ1 +φ0 = (m1μ +m0μ)π = (m1 +m0)π = π,2π, . . .= const. ∀ (k, ñ) on Pμ , as asserted above.
Note that this expression is simple in that it returns the k along Pμ at an effective index ñ given
only the values of the layer properties ti and ni, the order of the bandgap of interest 〈m1,m0〉
(cf. Ref. [18]) and the parametric order value μ which effectively determines the position along
the Pμ curve. In practice, this expression can be easily evaluated over a range of μ to define a
curve through a given gap over (λ , ñ) as shown in Fig. 5.

The form of Pμ is identical to P defined in Ref. [18] except that the orders miμ are gener-
alized to be continuous (μ ∈ R

+) instead of discrete integers or half integers (μ = 0 or 1/2),
representing arbitrary phase accumulation within each layer instead of just resonance and an-
tiresonance, respectively. The integer terms mi ∈ Z

+ correspond, via Pμ , to the local bound
region of order 〈m1,m0〉 (a nomenclature suggested previously [18]). In this way, given a spe-
cific bound region 〈m1,m0〉, Pμ traces out a curve within the region for μ = 0 → 1, starting at
the maximal bounding point P0 [Pμ of order (m1,m0)], passing through the central point P1/2

[Pμ of order (m1 − 1/2,m0 + 1/2)] and finishing at the minimal bounding point P1 [Pμ of order
(m1 −1,m0 +1)].

In other words, when compared to Bloch bandgap spectra, the curve swept out by Pμ for
varying μ passes through the closure points (P0 and P1) and the approximate central point (P1/2)
of an arbitrary bandgap (when these points exist in the domain 0 ≤ ñ ≤ n0 for a given bound
region 〈m1,m0〉). Pμ thus provides an approximation to the central λ or k of a given bandgap
for arbitrary ñ within the gap. Like the SPARROW model it is inherited from, this generalized
central curve definition holds for any alteration in ñ (or k), such as when the core size or shape
is altered, higher-order modes are considered or when, as for the case here, the core refractive
index of a Bragg waveguide is changed directly.

In the cases considered here, when compared to the calculated Bloch bandgap center kBloch
c

[Eq. (2)], when ignoring material dispersion, Pμ provides an agreement to better than 0.5% for
the TM bandgap and 4% for the TE bandgap central wavelengths for all core refractive indices
considered. The agreement is shown in Fig. 5 (top) where the Pμ curves appear to lie on top
of the calculated Bloch bandgap center curves (λBloch

c ). The dispersive layer index case (Fig. 5,
bottom) produces slightly larger wavelength differences of 0.8% and 5% for the TM and TE
gaps, respectively. In both cases, the TE gap center begins to deviate for higher ñ due to the fact
that Pμ appears to intercept the TM gap closure point (PB, due to the Brewster effect [3,18,25],
as above) which doesn’t coincide with the TE gap center. Also, the Pμ approximation to the gap
center breaks down as ñ → n0 for gaps terminating on the low-index line ñ = n0, where kres.

c
[Eq. (4)] and other simple expressions provide a better approximation, e.g., Ref. [27]; these
latter points will be discussed in future work.

Given the close agreement between Pμ and the Bloch bandgap center, Pμ also shows a rea-
sonable agreement with the experimentally measured transmission peak positions, compared
directly in Fig. 4.
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4.1. Sensitivity to refractive index

An analytic expression for the sensitivity of λ to changes in ñ along the Pμ curve is now derived,
extending the theory developed above. For large core waveguides, where ñ ≈ ncore, this is thus
a measure of the sensitivity of the transmission peak central wavelength to changes in the core
index. As for the definition of Pμ , this treatment is applicable to arbitrary bandgaps of arbitrary
binary stacks (waveguide or otherwise). Using this general expression, an example is given
based on the fundamental bandgap of the Bragg fiber cladding structure considered above.

Given that Eq. (5) is analytic, one can derive a closed form for the partial derivative of ñμ
versus the wavenumber kμ (hence frequency or wavelength): ∂ ñμ/∂kμ . The inverse of this,
∂kμ/∂ ñμ , is thus a measure of the sensitivity of a bandgap center to changes in the effective
refractive index of the guided light. Note that this closed form derivation assumes the refrac-
tive indices are locally flat over the spectrum, i.e., at a wavelength λ ′, the index takes value
ni(λ ) = ni(λ ′) according to it’s material dispersion (e.g., Fig. 2) but one assumes ∂ni/∂λ = 0.
Later, this approximation is compared to the full numerical derivative which inherently includes
the material dispersion derivative (∂ni/∂λ �= 0). The approximate closed form of the sensitivity
is now derived.

The coordinates of the Pμ = (kμ , ñμ) curve are related via the parameter μ . In general, then:
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where the final step results from the parametric nature of the relationship between ñμ and kμ .
From Eq. (5):
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and note that:
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Similarly, from Eq. (5):
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Combining these via Eq. (6) and inverting the numerator and denominator:
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Defining λμ = 2π/kμ , implying ∂kμ =−(k2
μ/2π)∂λ , Eq. (10) can be expressed in terms of

wavelength as:
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. (11)

Equation (11) thus describes the sensitivity of the λμ component of the Pμ point for changes
in ñμ [as does Eq. (10) for the sensitivity of kμ ]. It thus also provides an approximation to
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Fig. 6. Sensitivity of the exact and approximate center of the fundamental bandgap to
changes in ñ for the layer properties described in § 2. Top: without material dispersion
[ni = ni(λ = 700 nm)]. Bottom: with material dispersion [ni = ni(λ )]. Black: numerically
calculated sensitivity of the Bloch bandgap center [from kBloch

c , Eq. (2)]; solid: TE; dashed:
TM. Green: the wavelength sensitivity of the Pμ point in to changes in ñ; solid: analytic
approximation to derivative of Pμ neglecting material dispersion derivatives [Eq. (11) –
setting ∂ni/∂λ = 0 but allowing ni = ni(λ )]; dashed: numerical derivative of Pμ including
material dispersion [∂ni/∂λ �= 0].

the sensitivity of an arbitrary Bloch bandgap center to changes in ñ. In the large-core regime
here where ñ ≈ ncore, this is thus an approximation to the sensitivity of the Bloch bandgap
center (and hence waveguide transmission peak) to changes in the core refractive index. This
expression for the sensitivity can be evaluated for any given point (any value of μ) on the central
curve Pμ = (kμ , ñμ) and obviates the need for numerical derivation of Pμ or kBloch

c over (k, ñ)
(keeping in mind the approximation of locally flat material dispersion: ∂ni/∂λ = 0).

For the case of non-dispersive layer materials, where ni = const., Eq. (11) provides an excel-
lent approximation to the Bloch bandgap sensitivity ∂λ Bloch

c /∂ ñ (where λ Bloch
c = 2π/kBloch

c ).
Figure 6 (top) demonstrates this for the Bragg fiber considered above. The Bloch gap sensitivity
is calculated numerically, directly from kBloch

c [Eq. (2)]. Due to the good agreement between Pμ
and kBloch

c (Fig. 5), there is an excellent agreement between their derivatives: the TM gap sensi-
tivity agrees to better than 0.5% and the TE to better than 8.5% for all wavelengths considered.

While Eq. (11) doesn’t explicitly include material dispersion [dispersive indices ni = ni(λ )
are permitted but ∂ni/∂λ = 0 is enforced] it can be used as a reasonable analytic approximation
to the Bloch bandgap center sensitivity when material dispersion cannot be neglected, demon-
strated in Fig. 6 (bottom). In this case, kμ and ñμ are calculated from Eq. (5) via root-finding
and used to evaluate Eq. (11) directly, i.e., Pμ is evaluated with material dispersion, but the eval-
uation of the derivative assumes the dispersion of the layer indices is locally flat (∂ni/∂λ = 0).
The agreement deviates significantly toward shorter wavelengths as may be expected – this is
the region where the material indices fluctuate most (cf. Fig. 2) – but is still within 50% of the
TM Bloch gap sensitivity for λ ≈570 nm, and much better for longer λ .

The complete inclusion of material dispersion (∂ni/∂λ �= 0) results in more complex expres-
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sions. One straightforward alternative is to use numerical root-finding of the Pμ coordinates (as
above) but then also numerically calculate the local slope, rather than approximating it ana-
lytically as per Eq. (11); this inherently includes the spectral derivatives of the layer materials
but requires a significant number of calculated points, and hence iterations, for sufficient pre-
cision. The evaluation of the Bloch gap sensitivity in Fig. 6 was also calculated numerically
in this fashion and hence also inherently includes the full material dispersion. Figure 6 (bot-
tom) shows the comparison between these numerical derivatives of Pμ and the Bloch bandgap
central wavelength when the layers’ material dispersion is considered. As expected from their
good agreement in absolute value as per Fig. 5, their sensitivities also agree well: below 1% for
λ � 575 nm and better than 9.5% over all wavelengths considered for the TM gap centre.

The numerical derivatives of the Bloch center and Pμ (both including material dispersion)
agree well with experiment. From four data points, the experimental results implied an approx-
imately linear sensitivity of 330 nm/RIU, § 2. As Fig. 6 shows, from a continuous range of
points over the wavelengths of interest (λ=700 nm–500 nm), the numerical calculations predict
sensitivities of ∂λ Bloch

c /∂ ñ ≈ 200–383 nm/RIU and ∂λμ/∂ ñ ≈ 200–422 nm/RIU. The analyt-
ical approximation of the latter [Eq. (11)] agrees well with these values for longer wavelengths
but deviates, increasing to ≈719 nm/RIU at λ=500 nm, due to the appreciable material disper-
sion at shorter λ (Fig. 2). In regimes of non-negligible dispersion, Eq. (11) is thus useful as a
rapid design tool, with the full numerical values required for more precise calculations.

4.2. Sensitivity trends

The analytical form of Pμ [Eq. (5)] and hence ∂λμ/∂ ñ [Eq. (11)] allows some fundamental
physical observations to be made with respect to the sensitivity. The case considered here has
layers of a high refractive index contrast. The 1/(n2

1−n2
0) dependence of ∂λμ/∂ ñμ implies that

layers with a lower refractive index contrast would produce a more sensitive response to ñ (core
index here). Also, the 1/(ñ2−n2

0) dependence of Eq. (11) implies that ñ variations closer to the
low layer index (ñ = n0) will induce more sensitive spectral shifts. One can see from Fig. 5, for
example, that this is the case since the gaps generally flatten out as ñ → n0 over (λ , ñ), and is
demonstrated explicitly by the sensitivity curves of Fig. 6.

This suggests that Bragg waveguides with a low contrast between the cladding layer re-
fractive indices should be more sensitive to changes in the core index than those with a high
contrast, especially when the core refractive index is also close to the lowest of the cladding
layer indices. Indeed, this has recently been shown experimentally by Qu and Skorobogatiy [27]
who demonstrated refractive index sensing with sensitivities of ≈ 1400 nm/RIU in aqueous so-
lutions via a polymer Bragg fiber made from low-index polymers with a low refractive index
contrast. The low refractive index values of the cladding layers and their low contrast with
each other allowed this regime of increased sensitivity to be reached, as just discussed. Indeed,
such polymers are possibly the only presently practical materials with which low contrast with
aqueous solutions could be achieved within a hollow Bragg waveguide.

Alternatively, these identified trends can be used in reverse to design structures that are al-
most invariant to changes in the core index: high index contrast layers and/or core indices far
from the layer indices. This would be useful in scenarios in which a sample’s refractive index
might fluctuate but a constant guided spectrum is desired.

Note that the theory and results developed and used here are applicable to layers of arbitrary
refractive index, not just to the regime of low index contrast, say. It is thus useful as an analysis
and design tool for many platforms and devices of interest today with arbitrary layer indices
(of high or low contrast) and arbitrary core (ncore) or effective mode indices (ñ) – up to the
aforementioned ñ → n0 approximation limit (§ 4) – such as most modern hollow Bragg fibers
and I-ARROWs that can be filled with liquids.
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5. Discussion and conclusion

The shifting of the transmission spectrum of a Bragg fiber with high cladding layer index con-
trast has been experimentally demonstrated by filling the hollow core with liquids of various
refractive indices. An analytical model was derived to describe the spectral behaviour of such
binary layered systems and was compared to the experimental results.

The Bragg fiber used in this work demonstrated a transmission peak sensitivity to core refrac-
tive index of ∂λpeak/∂ncore ≈ 330 nm/RIU, which is comparable with the results of a similar
I-ARROW based architecture (which relies on detection of a transmission minimum, not max-
imum as used here) [8]. This sensitivity is lower than the low index contrast Bragg fiber sensor
demonstrated by Qu and Skorobogatiy [27], but the cladding layer index contrast here is much
higher, producing a larger dynamic range in core index aided by the omnidirectional nature
of the bandgap; the main purpose of the results presented here was to analyse the response of
binary layered systems to light of arbitrary effective indices, in both theory and experiment,
rather than the optimum design of a sensor device.

Reasonable agreement with what is expected from a Bloch wave based analysis was
achieved, but only when the material dispersion of the layers was incorporated since the layer
materials demonstrate non-negligible dispersion over the wavelength range of interest. The lay-
ers’ material dispersion acted in such a way that the band edges ‘straightened out’ compared to
the equivalent bandgap spectrum in the absence of material dispersion. This material-induced
band edge straightening was verified both in experiment (by the approximate linearity of the
peak shifting with core index, § 2) and theory (by calculation of the bandgap maps and centers
incorporating the material dispersion, § 4).

A novel theory was developed, defining a simple analytic expression for Pμ [Eq. (5)]: a
generalized, parametric, version of the intersection point P of the SPARROW model [18]. The
expression is simple in that it requires only the input of the layer parameters ni and ti and the
bandgap/resonance order 〈m1,m0〉 of interest. Pμ was shown to be a close approximation to the
central frequency of the considered bandgap spectra. For the Bragg fiber cladding considered
here, Pμ approximated the TM Bloch bandgap central wavelength to better than 0.8% for all
cases considered. For large core waveguides (where ñ ≈ ncore), this analytic expression can be
used to analyse and design binary layer waveguides with low-index cores for arbitrary layer
parameters, core indices, and bandgaps/resonances.

The analyticity of Pμ allowed an analytic expression for its derivative to be found (∂λμ/∂ ñμ ),
thus describing the sensitivity of the approximate bandgap central frequency to changes in the
effective index ñ (by altering the core index, say). Good agreement between the analytic Pμ
sensitivity and the numerically calculated Bloch bandgap center sensitivity was shown (Fig. 6).
The sensitivity expressions also agreed well with the measured sensitivity of the filled Bragg
fiber considered (≈ 330 nm/RIU), which included the effects of nontrivial layer material dis-
persion while maintaining analyticity (by assuming the layer indices, while variable with λ ,
are everywhere locally flat). The expression was used to show how the sensitivity could be
enhanced by using low refractive index contrasts between cladding layers and/or between the
core and cladding layers or, alternatively, how the sensitivity could be reduced by using high
contrasts to produce devices with invariant spectral properties under fluctuating sample indices.

These results highlight some of the key features of variable core index multilayer waveg-
uides, emphasizing the importance of low-index–core and liquid–core binary layered cladding
waveguides (such as Bragg fibers or I-ARROWs) in sensing, microfluidics, fiber lasers, and
novel nonlinear devices. These results can also be applied to investigations of the design and op-
eration of other devices such as binary multilayer reflectors in general, with arbitrary incidence
angle or index, and to structures with a binary cladding such as SEFLs [13] and VCSELs [15]
with cores or cavities of various or varying refractive indices.
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