Owen Medeiros

Research Assistant

PhD Student, EECS

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
66 Massachusetts Ave., Suite 36-283
Cambridge, MA 02139

Email: omedeiro@mit.edu
Tel: 6172589250

Owen is a Graduate student in the Research Laboratory of Electronics, at the Department of Electrical Engineering and Computer Science, MIT. He received his BS in Electromechanical Engineering from Wentworth Institute of Technology in 2019. His current work is focused on superconducting nanowires and large area single photon detectors. He likes to spend his free time kayaking or snowboarding.

QNN Publications, Conference Papers, & Thesis

[1]
V. Karam et al., "Parameter extraction for a superconducting thermal switch (hTron) SPICE model." arXiv, Jan. 22, 2024. Accessed: Jan. 29, 2024. [Online]. Available:
[1]
M. Colangelo et al., "Molybdenum Silicide Superconducting Nanowire Single-Photon Detectors on Lithium Niobate Waveguides," ACS Photonics, Jan. 2024, doi: 10.1021/acsphotonics.3c01628.
[1]
I. Christen et al., "Integrated Quantum Memories at 1.3 K with Tin-Vacancy Centers and Photonic Circuits," in CLEO 2023 (2023), paper SM1K.6, Optica Publishing Group, May 2023, p. SM1K.6. Accessed: Jul. 24, 2023. [Online]. Available:
[1]
M. Castellani et al., "A Nanocryotron Ripple Counter Integrated with a Superconducting Nanowire Single-Photon Detector for Megapixel Arrays." arXiv, Apr. 23, 2023. doi: 10.48550/arXiv.2304.11700.
[1]
R. A. Foster, M. Castellani, A. Buzzi, O. Medeiros, M. Colangelo, and K. K. Berggren, "A superconducting nanowire binary shift register," Appl. Phys. Lett., vol. 122, no. 15, p. 152601, Apr. 2023, doi: 10.1063/5.0144685.
[1]
A. Buzzi, M. Castellani, R. A. Foster, O. Medeiros, M. Colangelo, and K. K. Berggren, "A nanocryotron memory and logic family," Applied Physics Letters, vol. 122, no. 14, p. 142601, Apr. 2023, doi: 10.1063/5.0144686.
[1]
E. K. Batson et al., "Reduced ITO for transparent superconducting electronics," Supercond. Sci. Technol., vol. 36, no. 5, p. 055009, Apr. 2023, doi: 10.1088/1361-6668/acc280.
[1]
I. Charaev et al., "Single-photon detection using high-temperature superconductors," Nat. Nanotechnol., pp. 1–7, Mar. 2023, doi: 10.1038/s41565-023-01325-2.
[1]
R. A. Foster, M. Castellani, A. Buzzi, O. Medeiros, M. Colangelo, and K. K. Berggren, "A Superconducting Nanowire Binary Shift Register." arXiv, Feb. 09, 2023. Accessed: Feb. 17, 2023. [Online]. Available:
[1]
E. K. Batson et al., "Reduced ITO for Transparent Superconducting Electronics." arXiv, Dec. 16, 2022. doi: 10.48550/arXiv.2212.08573.
[1]
A. Buzzi, M. Castellani, R. A. Foster, O. Medeiros, M. Colangelo, and K. K. Berggren, "A Nanocryotron Memory and Logic Family." arXiv, Dec. 15, 2022. doi: 10.48550/arXiv.2212.07953.
[1]
E. Piatti et al., "Reversible Tuning of Superconductivity in Ion-Gated NbN Ultrathin Films by Self-Encapsulation with a High-k Dielectric Layer," Phys. Rev. Applied, vol. 18, no. 5, p. 054023, Nov. 2022, doi: 10.1103/PhysRevApplied.18.054023.
[1]
M. Castellani, “A Superconducting Nanowire Platform for Artificial Spiking Neural Networks,” presented at the WOLTE 15, Matera, Italy, Jun. 08, 2022.
[1]
A. Buzzi, “Building blocks design for superconducting nanowire asynchronous logic,” presented at the WOLTE 15, Matera, Italy, Jun. 08, 2022.
[1]
M. Castellani, “Design of a Superconducting Nanowire-Based Synapse for Energy-Efficient Spiking Neural Networks,” presented at the EIPBN 2022, New Orleans, LA, Jun. 02, 2022.
[1]
O. Medeiros, “Investigation of Thin Film Supercurrent and Photodetection in Wide Niobium Nitride Wires,” M.S. Thesis, Massachusetts Institute of Technology, 2022.
[1]
O. Medeiros, “Analysis of Niobium Nitride Films for Saturated Micrometer Wide Superconducting Single-Photon Detectors,” presented at the MRS 2021 Boston, Boston, Nov. 29, 2021.
[1]
Q. Xie et al., “NbN-Gated GaN Transistor Technology for Applications in Quantum Computing Systems,” in 2021 Symposium on VLSI Technology, Jun. 2021, pp. 1–2.
[1]
B. A. Butters, R. Baghdadi, M. Onen, E. A. Toomey, O. Medeiros, and K. K. Berggren, "A scalable superconducting nanowire memory cell and preliminary array test," Supercond. Sci. Technol., vol. 34, no. 3, p. 035003, Jan. 2021, doi: 10.1088/1361-6668/abd14e.
[1]
O. Medeiros, M. Colangelo, I. Charaev, and K. K. Berggren, "Measuring thickness in thin NbN films for superconducting devices," Journal of Vacuum Science & Technology A, vol. 37, no. 4, p. 041501, May 2019, doi: 10.1116/1.5088061.
QNN Talks
Castellani, M. (2022, June 8). A Superconducting Nanowire Platform for Artificial Spiking Neural Networks [Oral Presentation]. WOLTE 15, Matera, Italy.
Buzzi, A. (2022, June 8). Building blocks design for superconducting nanowire asynchronous logic [Oral Presentation]. WOLTE 15, Matera, Italy.
Castellani, M. (2022, June 2). Design of a Superconducting Nanowire-Based Synapse for Energy-Efficient Spiking Neural Networks [Oral Presentation]. EIPBN 2022, New Orleans, LA.
Medeiros, O. (2021, November 29). Analysis of Niobium Nitride Films for Saturated Micrometer Wide Superconducting Single-Photon Detectors [Oral]. MRS 2021 Boston, Boston.