Quantum Nanostructures and
Nanofabrication Group

Prof. Karl K. Berggren and Dr. P. Donald Keathley

The frontier of information processing lies in nanoscience and nanotechnology research. At the nanoscale, materials and structures can be engineered to exhibit interesting new properties, some based on quantum mechanical effects. Our research focuses on developing nanofabrication technology at the few-nanometer length-scale. We use these technologies to push the envelope of what is possible with photonic and electrical devices, focusing in particular on superconductive and free-electron devices. Our research combines electrical engineering, physics, and materials science and helps extend the limits of nanoscale engineering.


New Publication “Precise, subnanosecond, and high-voltage switching enabled by gallium nitride electronics integrated into complex loads”
In this work, we report the use of commercial gallium nitride (GaN) power electronics to precisely switch complex distributed loads, such as electron lenses and deflectors. This was accomplished by... Read more >>
Marco Colangelo named 2021 Claude E. Shannon Award Winner
Congratulations to Marco Colangelo on receiving the Claude E. Shannon Award. This prestigious and competitive award will support his work for one year.
New Publication “Nanoantenna design for enhanced carrier–envelope-phase sensitivity”
Optical-field emission from nanostructured solids such as subwavelength nanoantennas can be leveraged to create sub-femtosecond, petahertz-scale electronics for optical-field detection. One application of particular interest is the detection of an... Read more >>
Marco Colangelo awarded IEEE CSC fellowship
Congratulations to Marco Colangelo on receiving the IEEE CSC Graduate Study Fellowship in Applied Superconductivity.
New Publication “Electrostatic electron mirror in SEM for simultaneous imaging of top and bottom surfaces of a sample”
The use of electron mirrors in aberration correction and surface-sensitive microscopy techniques such as low-energy electron microscopy has been established. However, in this work, by implementing an easy to construct,... Read more >>

The nanocryotron: A superconducting-nanowire three-terminal electrothermal device