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SURFACE DEFLECTION OF PRIMATE FINGERTIP UNDER
LINE LOAD

M. A. SRINIVASAN*
Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, U.S.A.

Abstract—A study of the biomechanics of the skin and the subcutaneous soft tissues is of fundamental
importance in understanding the process of transduction at the mechanoreceptive nerve terminals
responsible for the sense of touch. In the present investigation, the fingertips (distal phalanges) of three adult
humans and four monkeys were indented in vivo using a line load delivered by a sharp wedge. The resulting
skin surface deflection profile was photographed and used as a clue to infer the mechanical nature of the
matenals that make up the fingertip. It is shown that the modified Boussinesq solution used by Phillips
and Johnson (1981), applicable when the fingertip is modeled as an elastic half-space in a state of plane
strain, predicts a skin surface deflection profile that can only roughly approximate the empirically observed
profiles. As an alternative, a simple model which views the fingertip as an elastic membrane filled with an
incompressible fluid (like a ‘waterbed’) under plane strain conditions is proposed. It is shown that the
predictions of this model, which takes into account the finite deformations that occur, agree very well with

0021 9290,89 $300 + 00
© 1989 Pergamon Press plc

the photographed profiles in the region of interest (up to about 3 mm from the load).

INTRODUCTION

Both humans and monkeys primarily use fingertips in
the exploration of the external world through the
sense of touch. When the fingertips come in contact
with an object, the deformation of the skin causes the
mechanoreceptive nerve terminals imbedded in the
skin to emit electrical impulses whose frequency de-
pends on the type and intensity of deformation. These
impulses are then transmitted through the peripheral
nerve fibers to the brain where they are appropriately
processed and interpreted. The features of the mech-
anoreceptor response, such as the frequencies of nerve
impulses, are directly related to the stresses and strains
in the immediate neighborhood of the nerve terminal
and, therefore, contain in a coded form, information
about the mechanical stimulus. In order to unravel
this code, it is important to understand the mechanics
of the fingertip.

The fingertip, viewed as a block of material, exhibits
complex mechanical behavior—inhomogeneity,
anisotropy, rate and time dependence. The gross
structure of the fingertip can be described as a flexible
membrane (the skin) enclosing soft tissues which are
mostly composed of fat. At body temperature, fat is in
the form of a liquid, or nearly so (O’Rahilly, 1983). Ata
finer level, the skin is seen as being composed of two
layers, the epidermis and the dermis, which can be
further divided into several sublayers. In fact, at the
length scale of the mechanoreceptors (5-100 um, ex-
cept for the Pacinian corpuscle, Darian-Smith, 1984),
the dermis does not even appear as a material continu-
um. It consists of five networks: collagen fibers, elastic
fibers, blood vessels, nerves and lymphatics (Gibson
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and Kenedi, 1968). Out of these, the first two are the
most important from a mechanical point of view and
their complex mechanical behavior has been investi-
gated by Gibson and Kenedi. Additional difficulties
arising from irregular inter-connections of the fiber
networks make a complete mechanical character-
ization of the fingertip, viewed as a conglomeration of
its constituent fiber networks and tissues, intractable.

Simplification can be achieved by ignoring the
details of the structure of the skin and considering it as
a membrane. Experimental investigations of its in vitro
mechanical properties have been performed by many
authors (Gibson et al., 1969; Cook et al., 1977; North
and Gibson, 1978; Fung, 1981). The mechanical be-
havior of the skin is so complex that Tong and Fung .
(1976) found it necessary to define a pseudo strain
energy function with thirteen material constants to
model the experimental data of Lanir and Fung
(1974). For our purpose of understanding the mechan-
ics of the fingertip, of which skin is only one of the
constituents, further simplifications are necessary.
Even the general theory developed by Danielson
(1973, 1977) for an elastic membrane resting on a
continuum foundation is too complex for our present
needs. Therefore, a reasonable alternative is to de-
velop specialized, simple, tractable models of those
aspects of mechanical behavior of the fingertip that are
expected to be important.

One such attempt was made by Phillips and
Johnson (1981) in their study of mechanoreceptors.
They assumed the fingertip to be mechanically equiv-
alent to an incompressible, homogeneous, isotropic,
linearly elastic half-space in a state of plane stress or
strain. In such a case, for infinitesimal deformations,
the Boussinesq solution (Timoshenko and Goodier,
1970) provides the stresses and strains in the medium
caused by a line load. Strictly speaking, this solution
predicts infinite vertical displacement under the load.
Phillips and Johnson used a modified form of the basic
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solution by ignoring its predictions in the immediate
vicinity of the load to obtain the strain fields under the
various gratings used as stimuli in their recordings of
neural response.

Of fundamental importance in their calculations is
the skin surface deflection profile under a line load.
The present study was motivated by the need to verify
experimentally the validity of the Boussinesq sol-
ution for in vivo fingertip deformation. In essence, the
goal of this investigation was to determine whether the
primate fingertip as a whole can be modeled as a
homogeneous linear elastic solid. The mismatch be-
tween the predicted results of the Boussinesq sol-
ution and the observed skin surface deflection pro-
file (ref. Fig.2) prompted the development of an
alternative theoretical model.

The model is based on the observation that the
structure of the fingertip is essentially like a fluid-filled
elastic membrane. In this paper, the equations govern-
ing the model behavior are given for the simple case of
a line load. Large deformations that usually occur in
tactile sensing are taken into account by the model,
and it is shown that the model predicts the exper-
imental skin surface deflection profile under line loads
much better than the Boussinesq solution. We shall
describe the experiments first and then the theoretical
model with its predictions.

METHODS

Experimental set up

A base plate (45x35x3 mm) with a triangular
prism {which we shall call a ‘wedge’) on one of its faces
was cast using transparent epoxy. The plate was
mounted on a tactile stimulator (LaMotte et al., 1983)
driven by servo-controlled hydraulic motors. Vertical
downward displacement of the plate with the wedge
on its underside caused the sharp edge (less than
50 ym wide and 25 mm long) of the wedge to indent
the finger to a desired depth. The vertical displacement
and the velocity were both controlled by a mini-
computer through pre-programmed local analog feed-
back circuits. The reactive force of the finger on the
wedge was measured with a force transducer in con-
tact with the top of the spring-loaded plate containing
the wedge.

An SLR camera with a cable release for the shutter
was set up on a micro-manipulator such that the line
of collimation was aligned with the length of the
wedge. Suitable close-up lenses were mounted onto
the camera, resulting in an image that was approxi-
mately the same size as the object, the fingertip. A fine
grained slow speed film was used.

Experimental procedure

Four anesthetized juvenile Macaca fascicularis
monkeys, each weighing 4-6 kg and three awake
human subjects (25-30 years of age) were used for the
experiments. The volar surface of the distal phalanx of
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the middle finger was chosen as the indentation site
with the length of the wedge perpendicular to the
length of the finger. Care was taken so that the
indentation occurred on the flat part of the distal
phalanx, midway between the tip and the joint. The
fingernail was glued to a flat, horizontal platform,
thereby preventing any translation or rotation of the
finger.

The platform with the finger on top was raised till it
barely touched the wedge and the force transducer
measured a contact force of 1 mN (negligible com-
pared to the forces of indentation which were 0.3-1 N,
depending on the depth of indentation). Centering the
view finder of the camera on the tip of the wedge, a
photograph of the resting state of the fingertip was
taken. Subsequently, the finger was indented with a
velocity of 1 mm per second until the desired depth of
indentation (0.5-2 mm) was reached and the wedge
was maintained at that position. During the indent-
ation phase, the force on the finger rose rapidly and
started falling during the steady phase. Within about
5's, it stabilized while the skin surface profile did not
change appreciably and a photograph was taken at
that time. The wedge was then completely withdrawn
and the next trial was begun only after sufficient
waiting time to ensure that the finger returned fully to
its normal form. Typically, a sequence of increasing
indentation depths in steps of 0.25-0.5mm up to a
total of 2 mm were given, while keeping the vertical
velocity constant at 1 mm s~ ! during the indentation
phase.

Data analysis

In order to measure the net displacement of the
surface of the skin, enlarged images of the photo-
graphs were used such that the magnification factor
for the fingertip was 20. By superimposing the normal
resting profile of the finger with the deformed profile,
the net vertical displacements could be measured and
plotted.

As mentioned before, our ultimate goal is to apply
the results of the present biomechanical investigation
to the analysis of mechanoreceptor response. Since the
receptor response is dependent on the deformation in
its immediate neighborhood which, in turn, is domi-
nated by the loads in the vicinity, higher accuracy is
needed in measuring and predicting the skin surface
deflection profile in the region close to the line load.
Hence, the vertical displacement measurements were
taken at horizontal intervals of 0.05mm up to a
distance of 0.5mm from the wedge tip, and
0.25-0.5 mm steps thereafter.

RESULTS

The superimposed profiles of the undeformed and
the deformed skin surfaces for a monkey and a human
fingertip are shown in Fig. 1. Even though all the
monkey fingertips were comparable in size to the one
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Fig. 1. Superimposed profiles of the undeformed and the deformed skin surfaces for a monkey and a human

fingertip drawn to scale. While the rest of the monkey fingers were of the same size as the one shown in (A)

their shape was similar to the human finger (B} above and hence approximately flat in the region of

deformation. Although the deformed profiles very close to the load (at distances less than 0.05-0.1 mm)

could not be observed due to glare, the rest of the profiles were approximately symmetric and circular on
etther side of the load.
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Fig. 2. Experimental and theoretical profiles of the deflection of the skin surface under a line load for both

monkey and human. The distance from the load is plotted on a logarithmic scale to emphasize the needed

accuracy of model predictions near the load. Experimental data points are the averages of the corresponding

points on the left and the nght side of the load. It is evident that the Boussinesq solution used by Phillips

and Johnson (1981) only roughly approximates the actual profile, whereas the ‘waterbed’ model proposed
here predicts the deflection quite accurately up to about 3 mm from the load.
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shown, the pronounced initial surface curvature of the
displayed monkey fingertip was absent in the others,
and they were similar in shape to the human fingertip
shown. For a given depth of wedge indentation, the
skin surface deformation was spread over a larger
region in the human (6~-12 mm from the wedge tip) as
compared to the monkey (3-7 mm from the wedge tip).
In either case, the deflection profiles were generally
symmetrical with respect to the axis of the wedge.
The mean of the surface deflection on either side of
the wedge (at | mm indentation) is plotted in Fig. 2, so
as to eltminate possible small errors occurring due to
non-normality of the load to the fingertip surface at
the point of contact. In order to emphasize’ the re-
quired accuracy of the predictions of the models very
close to the load, a logarithmic scale is chosen for
the horizontal distance from the load. It is clear that
the modified Boussinesq solution (Phillips and
Johnson, 1981) represents the simplest linear approxi-
mation to the observed profile of the skin surface
deflection when the horizontal distance is expressed 1n
logarithmic units. The ‘waterbed’ model which, as
shown in Fig. 2, is capable of predicting the deflection

profile more accurately, is described in detail in the
next section.

The ‘waterbed’ model

We shall now construct a simple, theoretical model
of the fingertip which is able to predict the empirically
observed deflection profiles in the regions of interest
neighboring the location of the load. Once the validity
of the model is established, it can then be used to
predict the surface profile of the deformed fingertip in
more complex loading situations.

As described earlier, the structure of the fingertip
can grossly be described as a flexible membrane
enclosing soft tissues composed of fat in a liquid state.
Also, the thickness of the skin is much less than the
overall diameter of the finger. Therefore, we model the
fingertip as a membrane of negligible thickness enclos-
ing an incompressible fluid. For further simplification,
we ignore the initial curvature of the fingertip and
assume it to be in a state of plane strain.

Consider an initially flat, linear-elastic membrane of
negligible thickness and width 2Z, resting on an
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Fig. 3. Schematic showing the physical model on which the
mathematical equations are based. The channel wall is
considered rigid. The flexible membrane is assumed to have
negligible thickness. Its resting state is shown by a horizontal
dashed line whale its deformed shape under a load F (which is
counter-balanced by the fluid pressure p) is shown schema-
tically by a continuous line, symmetric about 0Z.

incompressible fluid enclosed in a rigid-walled chan-
nel of arbitrary cross-section, as shown in Fig. 3. The
channel with the membrane-covered fluid is assumed
to be in a state of plane strain, and the applied load
and the membrane stress resultant are expressed as
forces per unit length in the direction perpendicular to
the cross-section. Let point O on the membrane be
chosen as the origin of a Cartesian coordinate system
(X, Z) with the positive directions as shown.

Let a downward, concentrated load F be applied at
0. Since the fluid is incompressible, the deformed
shape of the membrane should be such that the area of
cross-section of the fluid is preserved (i.e. the area of
fluid above the X-axis should be equal to the area
below), resulting in the deflected shape of the mem-
brane as shown schematically in Fig. 3. Then the
particle situated initially at (X, O) on the membrane
now occupies a position (X + U(X), W(X)) where U(X)
and W(X) denote the horizontal and vertical displace-
ments expressed as functions of the initial coordinate
X. Tt will be found useful to denote X + U(X) as the
final coordinate x. Let w(x) denote the vertical dis-
placement as a function of the final coordinate. It is
important to recognize that for any arbitrary X,

W(X)=w{x) where x=X+ U(X) (1)

as is evident from Fig. 4. The distinction between
W(X) and w(x) is necessary to clarify what is being
measured from the superimposed undeformed and
deformed fingertip profiles. We shall now write the
governing equations for the deformed configuration,
which is symmetric about the load axis.

(i) Incompressibility constraint. The incompress-
ibility of the fluid imposes the constraint

L
J. wix)dx=0 (2)

0
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so that the area of cross-section remains the same
before and after deformation.

(ii} Equilibrium of the deformed membrane.
(a) Under the load at x =0 (ref. Fig. 5A)

F=2Nsinf, 3)
where N is the membrane force.

(b) For O<x<L, equilibrium conditions in the
normal and tangential directions to the membrane
(ref. Fig. 5B) are

N=pR {4)
N =constant (5)
where p is the fluid pressure, which is constant for a
given load F, and R is the radius of curvature of the
membrane. Because of symmetry of deformation
about the load axis, it is sufficient to write and solve
the governing equations for 0<x < L. It is well known
from differential geometry that
1+(dw/dx)?}*?
g1 +(dw/dx) ) ©
dZw/dx?

(i) Constitutive law for the membrane. Since the
membrane is assumed to be linear elastic,
N=Ee {7)

where E is the membrane stiffness, and

_dU+1{(dU)2 (dW)z} ®
“ax e \ax ) §

A
L = INITIAL
e X
|
|
i b3
FINAL
FU(X)

W(X).= wix)

Fig. 4. Initial (before deformation) and final (after deforma-
tion) coordinates of a typical material point A on the skin.

Fig. 5. Free body diagrams at (A) the location of the load F
and (B) for an element of the membrane in the deformed state.
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Equation (8) is the strain—displacement relation for the
Lagrangian (or Green) strain (refer, for example, Fung,
1981).

(iv) Boundary conditions. The symmetry condition
at X =0 and the fixity of the membrane at X =L
impose the conditions,

U=0atX=0and L
W=0 at X=1L.

(%)
(9b)

Solution of the equations

Before we begin to solve the equations, we must
express the radius of curvature of the membrane R in
terms of the initial coordinate X. Since X =x— U(X),
we get

dXx 1
—_— (10)
dx (1+dU/dX)
Therefore, using (1), we obtain
dw w’
——— (11a)
dx 1+U
d’w W'+WU-WwU”
—= - (11b)
dx? (1+U%)

where number of primes denotes the order of the
derivative with respect to X. Substitution of (11) in (6)
and use of (8) results in
(1+2¢)*
W +U) WU

(12)

We shall now group together all the equations that
U and W must satisfy. Since N and p are constants for
a given load F in addition to E being a material
constant, we see from (4) and (7) that R and ¢ must be
constants. In addition, the constraint (2) must be
satisfied along with the boundary conditions (9).

In order to simplify this set of non-linear differential
and integral equations, we assume that U is very small
with U’ < 1. We shall also neglect the non-linear term
W’U” in the expression for R [equation (12)]. After
solving the simplified set of equations, these assump-
tions will be seen to be justified for the values of L of
interest.

To a first approximation, equations (12), (8) and the
use of (1) and (10) in (2) give rise to

W=,
U+ 12Wy =K,

(13)
(14)

L
j W(X)dX =0 (15)

0

respectively. Here C, and K, are arbitrary constants,

To solve the set of equations above, we first inte-
grate (13) and satisfy the boundary condition (9b). The
W so obtained is then used in (14), the resulting
equation is integrated, and the boundary conditions
(9a) are satisfied. Thus we obtain for 0K X <L,
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1

W(X)=—%-(L2-XZ)—C2(L—X) {16)

ct

CZX(

UlX)= (LI—XZ)+C-—1—2——

L-X). (17

Use of (16} in (15) results in the relation

2
C2=—§LC,. (18)
Therefore for 0 X <L, we have
W(X)—W{S(X)2 4(X)+1} (19)
e L L

(2 (D)}

where W, denotes the vertical displacement under the
load at X =0.

Comparison of theoretical and experimental results

All the monkey and human fingertips studied (with
the possible exception of the monkey fingertip shown
in Fig 1A) could be considered as being approximately
flat in their resting state within the region of sub-
sequent deformation. In such a case, with the clarity
achieved by the two representations of the vertical
displacement w{x) and W(X), we see that the profile
obtained experimentally in Fig. 2 is, in fact, w(x). In
order to construct the theoretical w(x), we need to shift
the location of W(X) by an amount U(X) (as shown in
Fig. 4). However, for the values of L and X of interest,
if U(X) is sufficiently small, no distinction between
w(x) and W(X) need be made. Plotting W(X) as given
by (19) with W, made equal to the experimental value
and L chosen so as to have a good least squares fit with
the experimental curve, we obtain the theoretical
profiles shown in Figs 6 and 7 for each of the monkeys
and humans, respectively. Using (19) and (20) it is
easily shown that the value of X at which a theoretical
curve intersects the abscissa is equal to L/3 for that
curve and represents the location at which U(X) is
maximum. From Figs 6 and 7 we see that the values of
L occur between 10 and 15 mm for which the maxi-
mum shift due to U(X) (given by —8W3/9L) is less
than 8% of the X-coordinate, and hence negligible. As
is evident, the model predicts the profiles very well in
the region X less than about 3 mm, much better than
the modified Boussinesq solution (ref. Fig. 2).

DISCUSSION

In modeling the gross mechanical behavior of the
fingertip so as to understand the transduction process
at the nerve terminals, it is reasonable to neglect the
viscoelastic effects for a first analysis. Further simplify-
ing assumptions used by Phillips and Johnson (1981),
namely, that the fingertip is mechanically equivalent
to an incompressible, homogeneous, isotropic, linearly
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Fig. 6. Experimental skin surface deflection profiles for each of the monkey fingertips and the predictions of
the ‘waterbed’ model for various depths of indentation (0.5, 1, 1.5, and 2 mm under the line load).
Experimental data points are the averages of corresponding points on the left and right side of the load.

DISTANCE FROM THE LOAD (mm)
050 500 100
i :

¥ INDENTATION
UNDER LOAD(mm)
o 0%

810
a1 s }EXPERIMENTAL

v 20
e THEORETICAL

SURFACE DEFLECTION (mm)

Fig. 7. Experimental skin surface deflection profiles for each
of the human fingertips and the predictions of the ‘waterbed’
model. Same format as in Fig. 6 is followed. Notice that for a
given depth of indentation. the region of deformation for a
human finger is much higher than that for a monkey finger.
For the human subject shown in the bottom panel, only
indentations of 1 and 2 mm were given.

elastic half-space in a state of plane stress or strain
under infinitesimal deformations, enable the appli-
cation of the Boussinesq solution to obtain stresses,
strains and displacements under a line load. As shown
in Fig. 2, the surface deflection profile predicted by the
Boussinesq solution only roughly approximates the
empirically observed profiles for both monkeys and
humans.

Based on the observation that the gross structure of
the fingertip is essentially like an elastic membrane
filled with an incompressible fluid, the ‘waterbed’
model has been proposed here. It is demonstrated that
this simple model takes into account the large defor-
mations that normally occur in tactile sensing and
predicts the skin surface deflection profiles for both
monkeys and humans extremely well in the region of
interest (up to about 3mm from the load, Figs6
and 7). In the region beyond, the model predictions
are inaccurate. Indeed, the bulging (i.e. W <0) predic-
ted by the model in the region L/3<X <L is not
observed in the experimental profile. This bulging is a
consequence of the assumptions of plane strain and
incompressibility. In the actual finger, while incom-
pressibility is expected to be satisfied quite well, the
extra volume of fluid due to the indentation flows in
the direction of the length of the wedge and increases
the width of the finger and the length of contact.
However, as observed by Phillips and Johnson (1981),
responses of slowly and quickly adapting mechano-
receptors are not influenced by typical loads at dis-
tances of more than about 3 mm. Hence, the errors in
the predicted deflection profile beyond 3 mm from the
line load are not serious for our purpose, and the
negative values of W at the bulge should be neglected
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as an artifact of the model. These errors could be
eliminated by a three-dimensional version of the mo-
del.

In order to see an interesting implication of the .

model, consider equations (4) and (5). When plane
strain conditions are satisfied under any object whose
cross-sectional shape is arbitrary, wherever the mem-
brane surface is not in contact with the object, these
equations are valid. Since for a given object applied at
a specified load the fluid pressure, p, is constant, we
have the result that the radius of curvature R should
be constant. Thus, either the membrane surface con-
forms to the shape of the object wherever it is in
contact or has a circular profile wherever it is not. The
free skin surface therefore assumes a circular cylindri-
cal shape under plane strain loading conditions (as is
evident in the empirically observed profiles shown in
Fig. 1). This particular implication has been noted
earlier by Taylor and Lederman (1975). Indeed, it can
be demonstrated similarly that in the general three-
dimensional case when plane strain assumptions do
not hold, the free skin surface should assume a spheri-
cal shape wherever it is not in contact with the
indenting object, while conforming to the surface of
the object elsewhere. However, for further accuracy in
modeling the mechanical behavior of the fingertip, it
may be necessary to take into account the finite
thickness and the bending rigidity of the skin, espec-
ially in regions where bending is severe. This is sup-
ported by the fact that the accuracy of the predictions
of the current model reduces as the depths of inden-
tation increase. Furthermore, under higher depths of
indentation, the observed deflections within 3 mm
the load for all the cases shown in Figs 6 and 7
are always lesser than the model predictions, indi-
cating that the actual fingertip is stiffer than the
waterbed model that neglects the membrane thick-
ness.
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