RLE Recent Papers

High-throughput Computation of Shannon Mutual Information on Chip

P. Z. X. Li*, Z. Zhang*, S. Karaman, V. Sze

[ paper PDF | supplementary material PDF ]


Exploration problems are fundamental to robotics, arising in various domains, ranging from search and rescue to space exploration. Many effective exploration algorithms rely on the computation of mutual information between the current map and potential future measurements in order to make planning decisions. Unfortunately, computing mutual information metrics is computationally challenging. In fact, a large fraction of the current literature focuses on approximation techniques to devise computationally-efficient algorithms. In this paper, we propose a novel computing hardware architecture to efficiently compute Shannon mutual information. The proposed architecture consists of multiple mutual information computation cores, each evaluating the mutual information between a single sensor beam and the occupancy grid map. The key challenge is to ensure that each core is supplied with data when requested, so that all cores are maximally utilized. Our key contribution consists of a novel memory architecture and data delivery method that ensures effective utilization of all mutual information computation cores. This architecture was optimized for 16 mutual information computation cores, and was implemented on an FPGA. We show that it computes the mutual information metric for an entire map of 20m × 20m at 0.1m resolution in near real time, at 2 frames per second, which is approximately two orders of magnitude faster, while consuming an order of magnitude less power, when compared to an equivalent implementation on a Xeon CPU.