Screen Shot 2014-11-07 at 1.41.52 PM

Chi Lu, Ulrich P. Froriep, Ryan A. Koppes, Andres Canales, Vittorio Caggiano, Jennifer Selvidge, Emilio Bizzi, Polina Anikeeva

DOI: 10.1002/adfm.201401266

Abstract:
Restoration of motor and sensory functions in paralyzed patients requires the development of tools for simultaneous recording and stimulation of neural activity in the spinal cord. In addition to its complex neurophysiology, the spinal cord presents technical challenges stemming from its flexible fibrous structure and repeated elastic deformation during normal motion. To address these engineering constraints, we developed highly flexible fiber probes, consisting entirely of polymers, for combined optical stimulation and recording of neural activity. The fabricated fiber probes exhibit low-loss light transmission even under repeated extreme bending deformations. Using our fiber probes, we demonstrate simultaneous recording and optogenetic stimulation of neural activity in the spinal cord of transgenic mice expressing the light sensitive protein channelrhodopsin 2 (ChR2). Furthermore, optical stimulation of the spinal cord with the polymer fiber probes induces on-demand limb movements that correlate with electromyographical (EMG) activity.

Related Links:

Polymer Fiber Probes Enable Optical Control of Spinal Cord and Muscle Function In Vivo (Advanced Functional Materials)

Striking the cord: Optical control of motor functions (MIT News)

Professor Polina Anikeeva

Bioelectronics Group